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THE INDEX OF A GROUP IN A SEMIGROUP

GEORGE M. BERGMAN

We shall define the right and left indices of a subgroup
G in a semigroup S with unit, and show that if G has can-
cellation in S, and at least one of these indices is finite, then
they are equal. If only right cancellation holds, and the
left index is finite, the right index will be either less than
the left index, or infinite. It will be shown by counterex-
amples that these theorems are "best results."

Let S be a semigroup with unit and G a subgroup of S with the
same unit. Let [S: G]^ denote the cardinality of the set of right
cosets xG of G in S, and [S: G\/ the cardinality of the set of left
cosets. These are equal when S is a group, because the operation
x h-> x~ι gives an anti-automorphism of S and of G.

For S any finite semigroup, we see by a counting argument that
these two indices will be equal if G has left and right cancellation in S:

( 1 ) gx = x => g = e (x e S, g e G) ,

( 2 ) xg = x => g = e (x e S, g e G) .

If only one of the cancellation conditions is assumed, say (2), then
we see [S: G]+ ^ [S: G\/. As indicated above, we shall generalize these
results, replacing the assumption that S is finite by assumptions that
one or both of the indices is. But let us begin with two counterexamples,
one showing that one-sided cancellation is not enough to imply equal
indices even for finite S; the other, that assuming cancellation, the
two indices can still be any two infinite cardinals.

!_• Counterexamples* (a) Assuming only right cancellation.
Let X be a set, G a simply transitive group of permutations of

X, and S the semigroup of maps of X into itself consisting of the
elements of G and the constant maps, all written on the right. Then
it is easy to see that G has right cancellation in S, and that [S: G]^ = 2,
G forming one coset, and the constant maps another; but [S:G]s =
1 + \X\: each constant map comprises a left coset. In this example,
if X is finite, S will also be.

(b) With cancellation, but infinite indices. Let G be a group
with a one-to-one endomorphism a such that [G: a(G)\ > ^ 0 . (E.g.,
let H be an uncountable group, G ^ j f f φ i J © ^ © - - - , and a the
"right shift" endomorphism.) Let S be the semigroup of all expres-
sions xng(n ^ 0, g e G), with multiplication defined using the law gxn =
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xnan(g). Then it is easy to verify that S is a semigroup with can-
cellation (in fact, embeddable in a group), and that elements xng and
xnh, though they always belong to the same right G-coset, will belong
to the same left coset if and only if gh~ι e an(G). Hence [S: G]^ =
1 + 1 + . . . = κ 0 f but [S: G],= 1 + [G: a{G)\ + [G: a\G)\ + . . . =
[G: a(G)] > y$0. By using more indeterminates x, all acting in the
same way on G, one can get arbitrary cardinals as left and right
indices.

2* In the next five sections, we shall prove the two theorems
mentioned in the introduction.

Let us begin with some general observations on a semigroup S
with unit, having a subgroup G with [S:G]/< °o.

Given any x e S, define Gx g G as {g e G | xg e Gx}. This will be a
subgroup of G: in fact, it is the isotropy subgroup of the coset Gx
under the action of G, by right multiplication, on the class of left
cosets of G in S. Since this class is finite, [G: Gx] < oc.

If G satisfies left and right cancellation in S, the correspondence
between elements g and h satisfying xg = hx for given x is one-to-one
and will constitute a monomorphism of groups, φx: Gx —+ G; what we
shall call, in the next section, a "partial monomorphism" of G into
itself.

Dropping cancellation again, we note that if x is any element of
S, the family of cosets Gx, Gx2, Gx3, . . . will be finite, hence we can find
positive integers α, b such that Gxa = Gxa+b. Hence Gxa — GxaJrmb for
all m ^ 1. Taking m = a and multiplying on the right by xa{b~ι\ we
get Gxab ~ Gx2a\ in other words, there is some positive power y of x
such that Gy = Gy\ and we can write y2 = gy. It follows that for
any n ^ 0, yn+ι = gny.

Now again assume right and left cancellation of G in S. Since
Gy is of finite index in G, there will exist c > 0 such that gc e Gy.
We calculate:

gc+ιy = yc+2 = ygcy = φy{gc)yy = φy{9c)gy .

Using left cancellation, we conclude that φy(gc) = g% i.e., ygc = ̂ cτ/.
It follows that y2c = gcyc = ycgc. Putting z — yc, h = g% we get an
equation z2 — zh, where z is again a power of x.

3* Partial monomorphisins. By a partial monomorphism / from
a group G to a group H, we shall mean a monomorphism of groups,
from a subgroup Gf of finite index in G, into the group H. We shall
call two partial monomorphisms f,g:G-+H equivalent if they agree
on some subgroup of finite index in G (not necessarily all of Gff]Gg).
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This is an equivalence relation. (However we shall not here identify
equivalent partial monomorphisms.)

By the composition of two partial monomorphisms, F >G >H,
we shall mean the partial monomorphism #/defined on Fgf — f~ι{Gg) C Ff.
It is easy to show that this sort of composition respects equivalence.

(Thus one may form a category whose objects are groups, and
whose morphisms are equivalence classes of partial monomorphisms,
or more generally, of partial homomorphisms, analogously defined.
This category might be worthy of some study.)

Note that the images of two equivalent partial homomorphisms
/, g: F-~> G will be commensurable subgroups of G, that is, they have
a common subgroup which is of finite index in each of them.

Define the index of a partial monomorphism /: G —> H as the
quotient vf — [G: Gf]/[H: fyGf)], or zero if the denominator of this ex-
pression is infinite—in either case, a nonnegative rational number. It
is easy to check that the indices of equivalent partial monomorphisms
are equal (it is in order that this be true that we have restricted our
attention to monomorphisms, rather than defining partial homomor-
phisms), and with the help of this fact, one checks that the index of
a composition of partial monomorphisms is the product of their indices.

Note that for partial monomorphisms, F • G —̂ -> H, the image
of gf will have finite index in the image of g if and only if vf Φ 0.

4* Back to semigroups* Once more let S be a semigroup with
unit, and G a subgroup with the same unit, having two-sided can-
cellation in S, and such that [S: G\/ is finite.

The maps φx: GX-^G defined in §2 (φx{g) = h if xg = hx) will be
partial monomorphisms of G into itself. Note that we are writing
Gx where the terminology of §3 would have Gφχ. We shall similarly
put vx for vφχ.

Given x,yeS, we see that φxy is an extension of φxφy, so in
particular, these are equivalent partial monomorphisms. Hence v will
be a homomorphism of semigroups from S into the multiplicative
semigroup of nonnegative rationale. Note that vg = 1 for g e G.

Suppose vx = 0 for some xeS. By the argument given in §2,
some power z of x will satisfy z2 = zh for some heG. Now the image
of φzφz will have infinite index in the image of φz, because vz = 0,
but it will also be commensurable with the image of the equivalent
partial monomorphism φz2 = φgh, which is in turn commensurable
with the image of φzφh, which has finite index in the image of
φz—contradiction!

Hence v will be a multiplicative homomorphism of S into the
positive rationale. But since it sends G to {!}, and G has finite left
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index in S, its image will be a finite subsemigroup of the positive
rationals—and the only such semigroup is {1}. Hence vx — 1 for all
xeS, i.e., [G: φx{Gx)] = [G: GJ.

5Φ Measure for measure* Let us define two finitely additive
measures μ/ and μ+ on the set S, taking for a basis of measurable sets
of μt the left cosets Hx of subgroups H of finite index in G, to each of
which we assign the measure 1/[G: H], and defining the second measure
similarly in terms of right cosets. It is clear that these are consistent
definitions, and μ/{S) = [S: G]/, while μ+(S) is defined if and only if
[S: G]» is finite, and if this is so, equals [S: G]^.

Given xe S let us define the semicoset of x as GxΠxG = xGx =
Φx(Gx)x. Now left translation by the elements of G transitively per-
mutes the semicosets which form a given left coset Gx, and we see
that the number of them will be [G: <px(Gx)]. Because vx — 1, this
equals [G: Gx], which we know is finite. Since there are only finitely
many left cosets Gx, the number of semicosets will be finite.

The semicosets xGx — φx(Gx)x will be measurable under μ^ with
measure 1/[G: Gx], and under μ/ with measure 1/[G: φx(Gx)]. As
we just observed, these numbers are equal. Hence we have parti-
tioned S into finitely many μ^-αnά-μ^ measurable sets on each of which
these two measures have the same value. So μ/{S) = μjβ), complet-
ing the proof of:

THEOREM 1. Let S be α semigroup with unit e, and G ϋ S a
subgroup with the same unit, having left and right cancellation in
S. Then if [S: G}/< oo, we have [S: G], = [S: G\Λ

By symmetry, the same is true if [S: G]fc < co.

6. One-sided cancellation* Now let us suppose only that G
has right cancellation in S, and [S:G]/< oo.

The subgroups Gx defined in § 2 still have finite index in G. Since
Gx depends only on the coset Gx, there are only finitely many distinct
groups Gx, hence their intersection, which we shall call Go, also has
finite index in G.

Let us measure the failure of the left cancellation law by writing,
for each xeS, Hx = {geG\gx = x}, the isotropy subgroup of x. We
can now prove:

THEOREM 2. Let S be a semigroup with unit e, and G g S a
subgroup with the same unit, satisfying right cancellation: xg = x =>
g — e (xe S, ge G), and having finite left index: [S:G]/< °c. Then
either oj the hypotheses:
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(a) [S:Gί<oo
(b) None of the isotropy subgroups Hx gΞ G is conjugate in G to

a proper subgroup of itself
implies:

(c) [S:G].t±[S:G]s,
(d) the subgroup Go = {g eG\vxe S, xg e Gx) (offinite index in G)

has left (as well as right) cancellation in S,
(e) Each isotropy subgroup HX^G has only finitely many distict

conjugates, as a subgroup of G,
(f) There are only finitely many distinct isotropy subgroups Hx,
(g) Every isotropy subgroup Hx S G is finite.
In fact, conditions (a)-(g) are all equivalent.

Proof. The scheme of proof will be:

(e)

(f) (b)

(a) (d)

(c)

Aside from an application of Theorem 1, the one key step, with
which we shall begin, is:

(b)=>(d): We wish to prove that for all xe S, Hxf] Go = {e}.
Suppose we have an x for which this is not true. By the argument
given in §2 we can find a positive power y of x such that y2 = gy
for some y eG. Note that Hy2 a Hy a Hx. Let h be an element of
HyC)G0 — {e}. Since heG0 ^ Gy, we can write yh = iy (ieG). By
right cancellation we have y Φ yh = iy, so ΐ g Hy. But iy2 = yhy = y2,
so ieHy2 = Hgy = g(Hy)g~\ Hence Hy2 is conjugate to a proper sub-
group, Hy, of itself, contradicting (b).

(d)-^(g): By (d), no Hx meets the subgroup GQ, hence each Hx

must have order ^ [G: Go].
(g) => (b): Immediate.
(d)=>(c): Go will have finite left index in S, so we can apply

Theorem 1 to conclude [S: GQ]^ = [S: Go]/. Comparing G-cosets and
G0-cosets, we get [S: G]. = [S: G0]J[G: Go] = [S: G0]s/[G: Go] ^ [S: G],.

(c) => (a): Immediate.
(a)=>(f): It is easy to see that two elements of the same right

coset have the same left isotropy subgroup. This makes the implica-
tion clear.

(f) => (e): For, any conjugate of an isotropy subgroup is an isotropy
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subgroup: gHxg~ι = Hg

(e) => (b): If gHxg~x c Ha, then clearly Hx c gHxg~ι c gΉxg~* c
are all distinct, contradicting (e).

One can state many special cases and corollaries to this result.
For instance, if G has right cancellation and finite right index in S,
then [S: G]/^ [S: G]^ If G is a group with ascending chain condition
on subgroups, or an abelian group then condition (b) is automatic,
hence given S 3 G as in Theorem 2, all of (a)-(g) hold.

A question we have not been able to answer is: if G in Theorem
2 is finitely generated, or more generally, if S is finitely generated,
must conditions (a)-(g) hold? (A finitely generated group can have a
subgroup properly containing a conjugate of itself. E.g., the group
defined by two generators a and 6, and one relation aha~ι = b2.)

7* Another counterexample* We shall now give a rather com-
plicated example (perhaps necessarily so) showing that conditions (a)-
(g) of Theorem 2 can, in fact, fail to hold.

Let G be a free group on countably many generators g0, gί9 •••.
Let S be obtained by adjoining to G, as a semigroup with unit,

one generator y, and the relations

( 3 ) yy = goy ,

( 4 ) ygt = gniv, (ΐ = o, i , •••)•

(Actually, the conditions (4) with exponent —1 are implied by
those with +1.)

Applying (3) and (4) to the expression yygfljj, = 1, 2, •••) in the
two possible orders, we get the equations gUiQoV = g$τλV- Applying
(3) and (4) to yyy in the two possible ways, we get gxg^y — gΰgQy, i.e.,
the ΐ = 0 case of the preceding equation with exponent + 1 only.
Multiplying on both sides by g"1 and transposing, we get g^gly = goy.

Finally, we can take each of the above equations, multiply on the
right by an arbitrary sequence Fo of gf"s and y's, and apply (3) and
(4) to get:

( 5 )
where i = 0, 1, •••, but only the exponent

+ 1 is allowed for i = 0, and

= g0Fy .

(F any expression

i n g0, gr\ gt\ •••) -

To have a set of relations defining S as a semigroup, we also
want to write down the semigroup-relations defining the free group G:
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( 6 ) ^ = 0, 1, .-.)
97 9i = e

We now claim that the elements of S can be uniquely represented
by the set of words w in the gfι and y not involving any of the ex-
pressions on the left-hand side of equations (3)-(6). This means, in
fact, words w = A, where A is a reduced expression for an element
of the free group G, and words w = Ay, where A is as before, and
w does not end in one of the left-hand expressions of (5).

It is clear on the one hand that repeated arbitrary applications
of the reductions (3)-(6) will eventually bring any word to such a
form. To show the uniqueness of this expression, it suffices to verify
that when we have an overlap of two reducible expressions of the
sort given by (3)-(6), the results of the two possible reductions can
be further reduced to some common expression. (Cf. [1, Th. III. 9.3].)

All but one of these calculations are either trivial, or reduce to cal-
culations made in the preceding paragraphs, and we leave the verifi-
cation to the reader. The one case requiring special consideration is that
of an expression yAy, where Ay is the left-hand side of one of the
equations of (5). Let us denote by By the right-hand side of the same
equation.

By repeated application of (4), yAy can be reduced to A'yy, where
Ar is the result of raising the subscript of each term in A by 1.
Equation (3) then gives A'gQy, and repeated applications of (5) yield
g0Ay, since gQ lowers subscripts as it moves to the left, so long as it
encounters no g^iys (which it won't by the conditions in (5)) and so
long as it has no g^1 to the right of it (ditto). We can then reduce
g0Ay to gQBy. Alternatively, we could have begun by reducing yAy
to yBy, and this then to B'yy, B'goy, and g0By. The resulting expres-
sions are the same, completing the desired step in the verification of
our normal-form assertion.

To determine [S: G]* and [S: G]/, let us consider an element of S
whose expression in our reduced form is Ay. Write A as BO', where
B, C eG, and C is chosen so that O (as in the preceding paragraph)
is the largest right-hand segment of A not involving g0 or g^\ Then
B must either be empty or end in gf1. We can thus, by (4) rewrite
our element as ByC, and we observe that By will again be irreducible.
It is easily deduced that every element of S can be written uniquely
either as a reduced expression for an element of G, or as ByC, where
B and C are such reduced expressions, and B either is empty, or ends
in g?1. It follows that [S: G]+ = fc$0> the cosets other than G corre-
sponding to these elements B, and that G has right cancellation in S.

On the other hand, since every element of S can be written
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as g or (nonuniquely) gy, we have [S: G]/ — 2.
Larger values of [S: G]^ could have been obtained by adjoining to

G still more free generators, hati (where i takes on all integer values,
and a ranges over a large index set) and the relations yh^ — h%i+1y,
for all i and a.
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