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LINEAR IDENTITIES IN GROUP RINGS, II

D. S. PASSMAN

In this paper we continue our study of linear identities
satisfied by group rings. An algebra E is said to have a
polynomial part if E has an idempotent e such that eEe
satisfies a polynomial identity. Let K [G] be the group ring
of G over K and suppose that this ring is semiprime. If Δ
denotes the finite conjugate subgroup of G, then we show
that K[G] has a polynomial part if and only if [G: Δ] < oo
and | Δ'| < oo.

The notation here and the list of references (with a few exceptions)
are the same as in [ I ] and are therefore not repeated. Results refer-
red to from that paper have an " I " placed before the appropriate
numbers so that, for example, Theorem 1.4.2 is Theorem 4.2 of [I] .

1* Twisted group rings* Let K be a field and let G be a (not
necessarily finite) group. We let Kι [G] denote a twisted group ring
of G over K. That is K*[G] is an associative iΓ-algebra with basis
{x\xeG} and with multiplication defined by

(*) xy = 7(α, y)xy , 7(x, y) e K - {0} .

The associativity condition is equivalent to x(yz) = (xy)z for all
x, y, zeG and this is equivalent to

(**) v(x, yzMv, z) = τ(fic, y)Ύ(xy, z) .

We call the function 7: G x G/K - {0} the factor system of K'[G].
If Ί{%, y) — 1 for all x, ye G then Kι[G] is in fact the ordinary group
ring K[G\. In this section we briefly consider the possibility that
K*[G] satisfies a polynomial identity.

LEMMA 1.1. IfxeG, then in Kl[G] we have

( i ) 1 = 7 ( 1 , 1 ) - 1 ! _
( i i ) x-1 = Ύ(xy x-1)-1 7(1, I ) " 1 x^

Proof. Setting y = 1 in (**) yields 7(1, z) = Ύ(x, 1). Thus for all

x,zeG we have 7(1, z) = Ύ(x, 1) = 7(1,1). Therefore by (*), 7(1,1)- 1 !
is the identity of K*[G].

Now by (*) and the above Ί(x~\ x)~ι 7(1,1)"1 cF1 is a left inverse
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for x and τ ( ^ x"1)"1 ^(1,1)"1 x~ι is a right inverse for x. Thus x is
invertible and x~ι is equal to both of these expressions.

THEOREM 1.2. Let K*[G] be a twisted group ring. Suppose that
G has a subgroup A,with [G: A] = n and with K^A] commutative.
Then K*[G] satisfies a polynomial identity of degree 2n.

Proof. Using the above lemma, we see as in the proof of
Theorem I. 4.2 that K*[G] S (K*[A])n, the ring of n x n matrices
over K*[A]. The result follows from the main theorem of [2].

We now consider the reverse direction.

LEMMA 1.3. Let D be division algebra over a field F and sup-
pose that

άϊmFD < cardinality of F .

Then D is algebraic over F. If in addition, F is algebraically
closed, then D = F.

Proof. Let xeD — F. Then for all zeF we have 1 - zx Φ 0
and hence (1 — zx) is invertible. Clearly all such terms (1 — zx)'1

commute. Since dim^D is less than the cardinality of the set
{(1 — zx)-1} there must be a nontrivial linear dependence

/ *T 1-ZiX

with Wi, ZiQ F, Wi Φ 0 and the zt distinct. Multiplying the above by
Π(l — ZiX) yields a nontrivial polynomial satisfied by x. Thus D is
algebraic over F. Since F is central in D, the second statement is
clear.

PROPOSITION 1.4. Let A be an άbelian group and suppose that
K^A] satisfies a polynomial identity of degree n. Then A has a
subgroup Z with [A: Z] ^ (n/2)2 and with K*[Z] central in K*[A].

Proof. Let F be a field extension of K which is algebraically
closed and with the cardinality of F bigger than that of A. By
Lemma I. 5.3, Kι[A] satisfies a multilinear polynomial identity of
degree n and hence Fι[A] = F®KK*[A] also satisfies this identity.

Now F*[A] has a unit element by Lemma 1.1 and thus F*[A]
has an irreducible representation p. Then p(Ft[A\) is a primitive F-
algebra satisfying a polynomial identity of degree n and hence by a
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theorem of Kaplansky ([14], Th. 6.3.1) ρ(F'[A]) = Dm where D is a
division algebra over F and m ^ n/2. Now F is algebraically closed
and

ά\mFD ^ cardinality of A < cardinality of F

and hence by Lemma 1.3 we have D = F. We choose a fixed iso-
morphism and write p(F*[A]) = Fm. Let tr denote the usual trace of
a matrix in Fm.

Let Z = {xeA\x is central in i f ^ ] } . Then by (*) and Lemma
1.1 we see that Z is a subgroup of A and i^[Z] is central in K*[A].

Let a e A - 2 . Since x is not central in Kι[A] we conclude
that for some ye A, x and y do not commute. Since A is abelian we
then have by (*), y~ιxy = αx where α e iΓ S F and α ^ 1. Thus

Since similar matrices have the same trace we obtain

tr ρ(x) = tr /o(^)-1 ρ(x)p(y)

~ tr αp(x) = a tr

and hence tr p(x) = 0 since a Φl.
Now let a e Z . Then x is also central in F*[A] so ίo(^) is central

in Fm and hence ô(ίc) = al where a is a nonzero scalar and J is the
identity matrix. This yields tr p(x) = α m. If m were equal to zero
in i^ then we would have tr p(x) = 0 for all x e A and hence

certainly a contradiction. Thus m Φ 0 in F.

Let xL, x2, * ,xr be a finite set of elements in distinct cosets of
Z. We show that ρ{Xι), p(x2), •••> • m

9p{%r) are linearly independent
over F. Suppose that

= 0

for at 6 F. Multiplying the above on the left by p{x^1) we obtain

r

y a o/x~1 x •) = 0

Now for i Φ j , xiιx3 = bx for some be F and xe A — Z and hence
tr ρ(xjιXj) — 0. Thus taking traces of the above expression we obtain
aim — aι tr I — 0 and hence a{ = 0 since m Φ 0 in F. This shows
that the p(XiYs are linearly independent and thus r ^ m2. This
clearly yields [A: Z] <̂  m2 g (w/2)2 and the result follows.

If J? is a ring, we let J?° denote the opposite ring of R. Thus
R° = R as sets and addition is the same. Moreover, for α, b e R° we
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have a o b = ba.

LEMMA 1.5. Let E be a semiprime algebra over K and suppose
that E satisfies a polynomial identity of degree n. Then E§ξ)κE

0

satisfies a polynomial identity of degree rg n2/2.

Proof. Let P be a prime ideal in E. Then E/P is a prime ring
satisfying a polynomial identity of degree n and hence, by a theorem
of Posner ([14], Th. 7.3.2), E/P g (FP)m where FP is a field depending
on P and m = [n/2]. Since E is semiprime it follows easily that
E g Rm where R is the commutative algebra ΠPFP. Thus clearly
E° s i?m also and

E0KE0^ Rm ®κ Rm = (Λ ® z Λ)m2 .

Thus by [2], E®KE° satisfies a polynomial identity of degree
2m2 ^ w2/2.

LEMMA 1.6. Lβί K*[G] be a twisted group ring. Then K[G] is
K-isomorphic to a subalgebra of K^G] 0 K^G]0.

Proof. Let x, yeG. In Kι[G] we have xy = Ύ(x, yjxy so taking
inverses yields y~λx~ι = Ύ(x, y)~λ~xy~ι. Thus in K^Gf we have

χ~~ι ° y~ι = 7(α, y)~ιχy~ι -

Finally in JSΓ*[G] (g) i ί^G] 0 we have

(x ® ^ - 1) (^ (g) ^ - 1 ) = (a??/) 0 (x~] o ^ - 1 )

= 7(α;, y) Ί (x, y)~ι ~xy 0 ά^/"1

= xy® xy~" .

This shows that the iί-linear map K[G] -> JSΓ*[G] 0 Z K^G]0 defined by
a? —•» ac 0 ^ - 1 is an injective isomorphism and the result follows.

THEOREM 1.7. There exists a finite valued function J" with the
following property. Let K be a field and let Kι[G] be a twisted
group ring which satisfies a polynomial identity of degree n. Sup-
pose that both Kl[G] and K[G] are semiprime. Then G has a sub-
group A with [G: A] fg J"(ri) and with K^A] commutative.

Proof. Since Kι[G\ is semiprime, Lemma 1.5 implies that

satisfies a polynomial identity of degree ^ n2/2. Thus by Lemma 1.6,
K[G] is a semiprime group ring which satisfies a polynomial identity



LINEAR IDENTITIES IN GROUP RINGS, II 489

of degree g n2j2. Hence by Theorem I. 9.4, G has an abelian subgroup
B with [G: B] ^ J'(n2l2). Now K^B] satisfies a polynomial identity
of degree n so by Proposition 1.4, B has a subgroup A with [B:A]<^
(n/2)2 and with K*[A] commutative. The result follows with J"(n) =
(n/2)2J'(n2/2).

Two final remarks are in order. First, the examples of § 4 of [3]
show that even in the case of ordinary group rings, an exact converse
to Theorem 1.2 does not hold without the semiprime assumption.
Second, it follows easily from Theorem 3.7 of [11] that if K[G] is
semiprime, then so is K*[G]. Thus the two semiprime assumptions of
Theorem 1.7 can be reduced to the single assumption that K[G] is
semiprime.

2* Weak polynomial identities* Let E be an algebra over K
A generalized polynonomial over E is, roughly speaking, a polynomial
in the indeterminates d, ζ2, , ζn in which elements of E are allowed
to appear both as coefficients and between the inde terminates. A pre-
cise definition appears in [13]. We say that E satisfies a generalized
polynomial identity if there exists a nonzero generalized polynomial
/(Ci,ζ2, >ζΛ) such that f(a19a2,.. ,a n) = 0 for all a19 a2,---,aneE.
The problem here is precisely what does it mean for / to be nonzero.
For example, suppose the center of E is bigger than K and let a be
a central element not in K. Then E satisfies the identity /(ζL) =
aζx — ζ1a but surely this must be considered trivial. Again, suppose
E is not prime. Then we can choose nonzero a, β e E such that E
satisfies the identity /(d) = (xζxβ and this must also be considered
trivial. We avoid these difficulties by restricting the allowable form
of the polynomials.

We say that / is a weak polynomial of degree n if

oeSn

where aiya e E. This form is of course motivated by Lemma I. 5.3.
The above / is said to be nondegenerate if for some σ

aUσEa2,σE an,σEan+1,σ Φ 0 .

Otherwise / is degenerate.

LEMMA 2.1. Suppose K[G] satisfies a nondegenerate weak poly-
nomial identity of degree n. Then K[G] satisfies a weak polynomial
identity
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/(Ci> C2> ' •> CΛ) = Σ tfl,oCσ(l)#2,σCσ(2)

witt ί(ff l f l)ί(α ί f l) ί(fl:.+lll) Φ 0.

Proof. Suppose iί[G] satisfies / with the above form. Since / is
nondegenerate, by reordering the ζ's if necessary, we may assume that

auιK[G\alΛK[G\---a%ΛK[G]a%+1Λ Φ 0 .

Thus there exists x19 x2, , xn e G with

a1Λxγa2Λx2 . anflxuan+ltl Φ 0 ..

If we replace ζ* in / by x£t we see clearly that K[G] satisfies a weak
identity / with altla2tl an+Uί Φ 0.

For i = 1, 2, , w + 1 write

^,i = Σ βij yj

where β^ e K[A] and {̂ } is a set of coset representatives for Δ in G.
Since auίa2Λ ^ + i , ! ̂ 0 we conclude that

βl,j\V,•&'*&* ' * # A+l.i + l ^ +1 ^ 0

for some j \ , i 2 , , j n + 1 . Thus if 2< = yJ1yJ2 2/J ί_ 1 with ^ = 1 then

Now ^ ί f i . = θ{aiΛyjl) so

It therefore follows that if we replace d in / by «ί+iζi«ί+i and if, in
addition, we multiply / on the left by zt and on the right by z~+29

then this new weak identity obtained has the required property.

The following is a slight extension of Lemma I. 1.3.

LEMMA 2.2. Let S — U Hrurs be a finite union of cosets of the sub-
groups Hr of G all of infinite index and let H be a subgroup of
finite index in G. Let alf a2, , at, β19 βz, •••,/?*€ K[G] and sup-
pose that for all xe H — S we have

aιxβι + a2xβ2 + . . . + atxβt = 0 .

Then Θ(a1)β1 + Θ(a2)β2 + + θ(at)βt = 0 and the above equation
holds for all xe H.

Proof. We show first that θ(aί)β1 + Θ{a2)β2 + + θ(at)βt = 0.
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Suppose by way of contradiction that this is not the case and let
veG be in the support of this element of K[G],

Let W be the intersection of H and the centralizers of all elements
in Supp θ(ai) for ί = 1, 2, . . . , £ . By Lemma I. 1.1, [G: W] < oo.
Clearly if xe W £ if then # centralizes all θ(aτ).

Write αΓί — 0(6 )̂ + a{ where Supp α Π ̂  — 0 and then write the
finite sums

άi = Σ «ii2/i > 2/j 6 4

/Si - Σ M i

If iji is conjugate to some vzj1 in G choose g^ e G with gTjViQij — vzj1*
Let a? G TF — S. Then we must have

0 = x~ιaιxβι + x~ιa2xβ2 + . . . + χ'ιatxβt

+ Wβ, + α;βft + .. + α ; ^ ] .

Since v occurs in the support of the first term it must also occur in
the second and hence there exists yif zό with v = y\z$ or

x~]ViX = vzj1 = gTjViQii

Thus x e C0(yi)gij. We have therefore shown that

W S S U (U Cβ(^)Λy) - (U ff^r.) U (U Cσ(Vi)9ώ

Since [G: W] < oo this implies that G is a finite union of cosets of the
subgroups Hr and CG{Vi) all of infinite index in G. This contradicts
Lemma I. 1.2 and the first result follows.

Now write at = Σyάaiά where α:̂ - e iί[J] and the y5 are coset re-
presentatives for Δ in G. Then ai3 = θ(yj1a^) so α̂  = Σyΰθ(yj1aί).
Since

yγa]xβι + yj"azxβ2 + + yjιatxβt = 0

for all # € if — S we conclude from the above that

Hvj^dβi + Θ{y7ι<*ύβ* + + θ{yjιat)βt - 0 .

Thus clearly α ^ + α2/92 + + 0:̂ 4 = 0.

Finally, let yeH. Then for all xe H — Sy~x we have

+ ^{yβz) + + atx(yβt) = 0 .

Since S?/"1 has the same form as S we conclude from the preceding
paragraph that

(XiVβi + oc2yβ% + + atyβt = 0 .
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Since y e H was arbitrary, the result follows.

As an amusing corollary of this lemma we have

THEOREM 2.3. Suppose that K is algebraically closed and non-
denumerable and suppose that K[G] is semiprίme. Then K[G] has
a minimal right ideal if and only if G is finite.

Proof. Certainly if G is finite then K[G] has a minimal right
ideal. We now consider the converse.

Suppose / is a minimal right ideal in K[G]. If Γ = 0 then
K[G]I is a nonzero ideal with square zero and this contradicts Lemma
I. 3.1 and the fact that K[G] is semiprime. Thus P Φ 0 and it follows
easily that / — eK[G] for some idempotent e. By Schur's lemma,
D = eK[G]e is a division algebra over K.

If G is not finite let H be a countably infinite subgroup of G
with H a Supp e. We show now that eK[H]e is also a division
algebra. Let ae K[H] and suppose that eae Φ 0. Then there exists
βeK[G] with (eae) (eβe) = e. Write β = /30 + & where /90e
and Supp βt Π H = 0. Then

(βαβ) (β/30e) + (eα'e) (efrβ) = β .

Since e e K[H] we have Supp (eae) (eβte) Π H = 0 and thus

(eae) (eβoe) = e .

Now eK[H]e is a division algebra of countably dimension over K.
Since K is algebraically closed and nondenumerable we have eK[H]e =
i£e by Lemma 1.3. Thus for all xeH we have exe = α̂ β for some
α̂  G if. Now clearly there are only finitely many xe H say xlf x2, * ,
xt with Supp(βα β) Π Supp e Φ 0 . Thus βxe = 0 for all xe H — \J{Xi}.
We think of the {xj as cosets of <(1)>. Since [£?:«( 1)>] = ©o we
conclude by Lemma 2.2 applied to the group ring K[H] that exe = 0
for all xe H. Thus e2 = 0, a contradiction and the result follows.

3. Reduction to Δ. In this section we prove the following
result.

THEOREM 3.1. Suppose that K[G] satisfies a nondegenerate weak
polynomial identity of degree n. Then [G: Δ\ < oo and K[Δ] satisfies
a nondegenerate weak polynomial identity of degree n.

Proof. We show first that [G: Δ] < oo following the proof of
Theorem I. 6.2. Assume by way of contradiction that [G: Δ] = oo.
By Lemma 2.1 we can assume that K[G] satisfies the weak identity
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ζ2> " * > C J = Σ ^l,σC(l)^2, σC(2) ' # # &n,σζσ(n)&n + l,σ
σesn

with 0(α lfl) 0(αrail) . . 0(arn+lfl) ^ 0.
For j = 1, 2, , w + 1 define Γy £ Sn by

Γy - {σ 6 Sn\ (7(1) = 1, σ(2) = 2, . . . σtf-1) - i - 1 } .

Then Tx — Sn, Tn+1 = {1} and T, is just an imbedding of Sw+1_i in Sn

Define the weak polynomials /} of degree w + 1 — j by

= Σ θ{altσ)θ{a2tϋ) ^(^-i,σ)^i,σζσ(i)α: i+1,σζσ( i+1) αrn>αζ<J(n)αrn+lfff .
oeTj

Thus Λ = / and

/Λ + 1 - θ(altl)θ(aiΛ) ^K,!)^+i,i

is a nonzero constant function since

θ(auι)0(a2Λ) •. θ(an+1j Φ 0 .

^ be the set of monomial polynomials obtained as follows.
For each σ we start with

and we modify it by (1) deleting some but not all of the ζ<; (2)
replacing some of the aitO by θ(aitσ); and (3) replacing some of the ai>a

by 1. Then ^ consists of all such monomials obtained for all σ e Sn

and clearly ^ f is a finite set. Note that ^/S may contain the zero
monomial but it contains no nonzero constant monomial since in (1)
we do not allow all the ζ* to be deleted.

For j = 1, 2, , n + 1 define ^€ά S ^ by μ e ^ if and only
if ζ1? ζ2, •••, ζi-x do not occur as variables in μ. Thus ^ λ = ,,// and
^^C+i £ {0} where 0 is the zero monomial.

Under the assumption that [G: Δ\ = oo we prove by induction on
i = 1, 2, , n + 1 that for all xjΊ Xj+V, , xn e G either

or there exists μe^tj with Supp μ(x3 , x3-+1, •••, α;w) Π ^ ^ 0 . Since
/ = / i is an identity satisfied by UL[G], the result for i = 1 is clear.

Suppose the inductive result holds for some j < n + 1. Fix
sci+1, x i+2, " xneG and let a e G play the role of the j t h variable. Let
μ e ^€y+1. If Supp μ(xj+1, , xn) Π ^ Φ 0 we are done. Thus we
may assume that Supp μ(x3 +1, , xxn) Π Δ = 0 for all μ e ^%+i. Set
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Now let μ e Λ] so that μ involves the variable ζs. Write μ=μ'ζjμ"
where μ' and μ" are monomials in the variables ζ i+1, , ζn. Then
Supp μ(x9 χj+1, - , xn) n Δ Φ 0 implies that

xeh'-'Δh"-1 = Δh'-W-1

where hJ e Supp μ'{xj+11 , xn) and h" e Supp μ"(Xj+1, •••,$*). Thus it
follows t h a t for all x e G — S where

S = U Δh'~ιh"-χ

we have Suppμ(#, xί+ί, •••»») Π Δ = 0 for all μe^^ . Thus by the
inductive result for j we conclude that for all xeG ~ S we have
fj(x, xj+li , xn) = 0. Note that S is a finite union of cosets of J, a
subgroup of infinite index in G.

Now clearly

fj(X, Xj + 1y , Xn)

oeτj+1

where the ^(ζJ +i, •• ,ζ») are suitable monomials. Note that

0i[0(<O0(<O 0(αy-i,σ)αi,J = ^ ( 0 ^ 2 . . ) • θ(ai%a)

and that θ(μ(xj+1, , αθ) = 0 since by assumption

Supp μ(xί+1, , xn) Π 4 = 0 .

Now /,•(&, xj+ί9 , xn) = 0 for all xeG — S and hence by Lemma 2.2
and the above few remarks we obtain

0 = Σ θ(auσ)θ{a2ia) θ(ajίθ)aj+uσxσ{j+1) . . α?β(w)α:n+1,σ

= / y + i ( » y + i > • • • > a ? * )

and the induction step is proved.
In particular, we conclude for j = n + 1 that either /Λ + 1 = 0 or

there exists μe^£^+ι with Suppμ Π Δ Φ 0 . However, /w + 1 is known
to be a nonzero constant function and ^ C + 1 S {0}. Hence we have a
contradiction and we must therefore have [G: A] < oo,

We show next that for any weak identity / we have

0 - Σ θ(aua)θ(a%lθ) θ(an+1,σ) .
a

To do this it is convenient to multiply / on the right by a new variable
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ζn+1 so that if Sn S Sn+1 is the set of all permutations fixing the point
n + 1 then

is a weak identity satisfied by K[G],
Let {Vj} be a finite subset of G such that Supp aijO S {#,-} for all

i, σ. Let &„ a?2, •••,#»+! be arbitrary elements of J . If we write
each ai>σ in terms of the y's and if we put ζt — xt in the above then
we obtain

0 = Σ dcrVrjXaiDy^XσW ' * * 2/rn+1»α(»+l)

where r = (τly r2, , rw+1) runs through all n + 1-tuples with allow-
able entries and aσ>7e K.

Fix x2, « ,α?n+1e J . Then the above linear identity holds for all
xxe A and [G: Δ\ < oo. Thus Lemma 2.2 applies with H — Δ. Let us
consider the effect of this lemma on a typical term of the above.
Now

^^1/^(1)2/^(2) α?i 2/rn+1aw+υ

becomes

(1)2/^(2, •) ί i ' yrn+1Xa(n+l)

where xL indicates that xx is deleted. Since z = 2/r1&αu)2/r28σ(2> € G
it follows that

z if z e J

Now J is normal in G and a?2> a?3, , xn+1 e A. Thus

if and only if 2/̂ 2/̂  € 4 . Therefore by applying Lemma 2.2 we
obtain setting xι — 1

0 = Σ ^σ,r2/r1^(i)2/r2^(2) 2/rn + ia?α(«+l)

This identity holds for all x2, , xn+1 e A so we apply Lemma 2.2
successively. At the last step, since all Xi will be 1, we will have

where the sum is over all those σ, τ terms with
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yτιyH - Vra-ιw e Δ
τιyH

ynVr2 Vτβ-xw S Δ

Vτ$x% Vvσ-ιtn+1) e J .

Since σ is a permutation the above is equivalent to

yri e Δ, yriyT2 eΔ, , yTiyT2 yTn+ί e Δ

a n d h e n c e e q u i v a l e n t t o y r χ , yv%, •••, τ / Γ % + i e J . T h u s c l e a r l y

Σ ' d^Vrjy^ * Vrn = Σ *(αi,α)^(α2,σ)

and the latter sum is therefore equal to zero.
Now fix x19x2, * ,xneΔ and-replace ζ< in / by x£{. This is a

new weak identity satisfied by K[G] and applying the above result to
it we obtain

0 = Σ θ{auaxσ{ι))θ{a2iσxσi2)) θ(an,σxa{n))θ(an+lyσ) .
oesn

Since xte Δ we have θ{aifOxσ{i)) = θ(ai>a)xaii) and hence

0 = Σ θ(alfo)xaωθ(a2,σ)xσ{2) θ(anjxσ{n)θ(an+1,σ) .
σeSn

This shows immediately that K[Δ] satisfies the weak polynomial iden-
tity

Moreover, # is nondegenerate since

θ(alfl)θ(a2tl) ί ( α Λ + l f l ) Φ 0

and the result follows.

4. Polynomial parts. Let E be an algebra over K. We say
that E has a polynomial part if and only if E has an idempotent e
such that eEe satisfies a polynomial identity.

THEOREM 4.1. Let K[G] be a semiprime group ring. The fol-
lowing are equivalent:

( i ) [G: Δ] < oo and \ Δ'\ < oo
(ii) K[G] has a polynomial part;
(iii) K[G] satisfies a nondegenerate weak polynomial identity.

Proof. ( i ) = > ( i i ) . Since K[G] is semiprime it follows from
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Theorem I. 3.6 that | Δ'\ is not zero in K. Set

e = —\-Σ xeK[G].
I Δ' I «i'

It follows easily that e is a central idempotent in K[G] since zf is
normal in G. Moreover, it is also easy to show that eK[G] ~ K[G/Δ'].
Now G/Δ' has an abelian subgroup ΔjΔ' of finite index. Hence by
Theorem I. 4.2 K[GjΔf\ satisfies a polynomial identity and thus K[G]
has a polynomial part

(ii)=>(iii). Let e be an idempotent such that E — eK[G]e satis-
fies a polynomial identity. By Lemma I. 5.3 E satisfies an identity of
the form

If aeK[G] then of course eaeeE. This shows immediately that
K[G] satisfies the weak polynomial identity

Moreover, / is nondegenerate since aσ Φ 0 for some σ and then
aoe β e = ασe ^ 0.

(iii) => ( i ) . By Theorem 3.1, [G: Δ] < oo and if [̂ /] satisfies a non-
degenerate weak polynomial identity

By Lemma 2.1 applied to Δ we may assume that

^1,1^2,1 ' * * tf»,l#» + l,l ^ 0 .

Let C be the finitely generated subgroup of Δ, generated by
Supp aifO for all i, <7. Let ί ί be the intersection of the centralizers in
Δ of all the elements in Supp ai>σ for all i, σ. By Lemma I. 1.1,
[Δ: H] < co. Clearly ϋΓ[iί] centralizes ίΓ[C]. Thus if we restrict the
variables of / to values in K[H] we see that K[H] satisfies the iden-
tity

#(Cl, C2> , C«) = Σ /5aCa(l)C(2) * ' ' ζff(n)<;

where βσ = altσa2tσ an.H,σ e ϋΓ[C] and & =£ 0. By multiplying all
βσ on the left by some x e C if necessary we may assume that
1 G Supp ft. Write ft - /3'σ + # ' where Supp /3'σ Q H' Π C and

Supp # ' n (H' n C) =• 0 .

Then by assumption ft' ^ 0 and we claim that
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#'(Ci, ζ2> *> C») = Σ βfσZσil)ζo(2) * ' ' Cα(n)

is an identity satisfied by K[H). Since #' is multilinear it suffices to
check this fact by evaluating g' on elements of H.

Let x19 x2, , xn e H and set z = &A %»• Then since

we have

where Aβ e fl"'. Since ίΓ[£Γ] satisfies the identity g we therefore have

0 - {Σσβ'σhσ)z + (Σaβ'a'hσ)z .

Now Supp/3'Λ S # ' and (Supp/2"/O Π £Γ' = 0 . This shows that

0 = {Σσβ
f

ahσ)z = £'(&!, x2, , a?n) .

Let Z be the subgroup of A generated by the Supp β'a for all σ.
Then Z is a finitely generated subgroup of if' Π C. Since i ί central-
izes C it follows that Z is central in H. Since Z is finitely generated
it follows that there is a finitely generated subgroup RX^H with
Z S iϊ"ί. By Lemma I. 2.2 iίj is finite and hence Z is a finite central
subgroup of if.

Let F be the algebraic closure of K. Then certainly F[H] also
satisfies the identity g'. Since i£[G] is semiprime and Z Q J, Theorem
I. 3.6 implies that | Z\ Φ 0 in F. Thus J^t^] is a finite dimensional
commutative semisimple algebra over an algebraically closed field and
since β[ Φ 0 there exists a primitive idempotent e e i^f^] with β/3ί =£ 0.
Since eF[Z] = eF we have e/3ά = βασ for some aσ e F. Thus since e is
central in -Fl-ff], the algebra eF[H] satisfies the nontrivial ordinary
polynomial identity

Since iΓ[G] is semiprime and if g z/ it follows easily from Theorem
I. 3.3 and Theorem I. 3.6 that F[H] is semiprime. Since | Z\ is finite
there results also show that F[HjZ] is semiprime. In addition
F[H] = eF[H] + (l-e)F[H] is a ring direct sum and thus Lemma I. 3.1
implies easily that eF[H] is semiprime.

We now observe that eF[H] — Ft\H\Z\ where the latter is some
twisted group algebra of H/Z. This follows since

eeF[Z], eF[Z] = eF

and e is a central idempotent in F[H]. In view of the above, Theorem
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1.7 applies and we conclude that HIZ has an abelian subgroup A/Z
with [HIZ: A/Z] < <χ>. Since [A: H] < oo we have [A: A] < oo.
Moreover if B is the intersection of the finitely many conjugates of
A in Δ then [Δ: B] < oo by Lemma I. 1.1. Also B is a normal sub-
group of Δ with B' Q A' Q Z so B' is finite. Write

A = <i?, WL, i^2, •••, wty .

Then by Lemma I. 1.1,

has finite index in A. Since B/B' is abelian it then follows that
WB'IB' is a central subgroup of finite index in Δ/B' and hence by
Lemma I. 2.1, (Δ/B')' is finite. Since Bf is finite and (Δ/B'Y = A'/B'
we have | Δ'\ < oo and the theorem is proved.

It is interesting to note that, in contrast to Theorem I. 9.4, the
degree of the weak polynomial indentity does not play an important
role here. For example, in the proof of ( i ) = > ( i i ) above a weak
polynomial was obtained whose degree was independent of | Δr |. Thus
I Δf I cannot be bounded by a function of the degree. The same is true
of the index [G: Δ] as the following example indicates.

Suppose that G = AH where Δ is abelian, H is finite and | H \ Φ 0
in K. For example, we could take G = Z\Zn where Z is infinite
cyclic and Z% is cyclic of order n. Set

1
v

£1 xeH

so that e is an idempotent in K[G\. If heH then he = e and thus
eK[G]e is spanned by the terms eye with y e A. Now

e y e =
±1 I

1

H
e Σ.V*.

xeH

Since A is abelian and G = AH it follows easily that Σxy
x is central in

K[G], This shows that eK[G]e is commutative and hence satisfies a
polynomial identity of degree 2. Thus iΓ[G] satisfies a nondegenerate
weak polynomial identity of degree 2 independent of the index [G: A],

5. Miscellany • Let P be a nonabelian p-group of order p\ If
if is a field of characteristic p then it is easy to see that K[P] is Lie
nilpotent of class p. Thus K[P] satisfies a polynomial identity of
degree p + 1. Now it would be interesting to find the minimal degree
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of the polynomial identities satisfied by K[P] and the following a mild
step in that direction.

THEOREM 5.1. Let K be a field and let P be a finite nonabelian
p-group. If K[P] satisfies a polynomial of degree n, then n >

Proof. Since P' Φ < 1 > we can choose N normal in P with
[PΊ N] = p. If P = PIN, then K[P] also satisfies a polynomial iden-
tity of degree n and Pf is central of order p. Thus it suffices to
assume that P = P or equivalently that P' is central of order p.
Choose x, ye P which do not commute and let z = xyx~xy~γ Φ 1. Then
Pf = <£> and z is central of order p. We have xy = zyx and hence
by induction xyi = ziyix.

We may assume by Lemma I. 5.3 that K[P] satisfies the multi-
linear identity

ζ*J ' # f C») — ft ' # * ftft + Σ ασC(l)C<7(2) * ζ*(n)

and we set ζ̂  = xy*. Consider the σ monomial evaluated here. We
have

μσ =r χyσ{1)χyσ^ . . . χy°™ .

Now shift all the y'& to the left starting with y°ω. Since yσ{i) must
pass precisely i x's we have, using xyj = £JV'#

For each σ we define the integral vector ^ by

vσ = « σ ( l ) , σ(2), ...,<x

so that ^ = « 1 , 2, , w » and

where ^ vα is the usual dot product of vectors.
We consider the values vL vσ. By the Cauchy-Schwarz inequality

with equality if and only if vσ is a scalar times vx and hence in our
case if and only if σ = 1. Since clearly vσ v, = vx ^ we have for
all σ ^ 1, (v, v,)2 < (^ v,y so

since these are all positive quantities.
Clearly zero is a lower bound for all v, vσ. A better bound is
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obtained as follows. For each σ define σ' by σf(i) = n + 1 — σ(i).
Then σf is clearly also a permutation and va, — v — vσ where

By the above

V! Vj.έZVi Va, = Vι (V — Vσ) = Vλ V — Vλ V

and thus

Returning to the polynomial identity we have

0 = f(χy\ χy\ . . . , xy*) = izv^ + Σ aσz^'vΛ yn{n+1)'2xn .

It therefore follows that the zVl'Vl terms must be cancelled by other
terms in the sum and thus for some σ Φ 1 we have zV} 'Vί = zVί'v°.
Hence p \(v1 vι — v± vσ). Now by the above

0 < v, vλ - vx vσ ^

and since p divides vx vι — ̂  ^σ we must have

Thus ^ 3 > n{n2 — 1) ^ 6p and w > ^ 6 p . This completes the proof.

We will need the following few facts on locally finite groups.

LEMMA 5.2. Let G be an arbitrary group.

( i ) Let N be a normal subgroup of G and suppose that both N
and G/N are locally finite. Then G is locally finite.

(ii) Let M be the subgroup of G generated by all locally finite
normal subgroups of G. Then M is locally finite and G/M has no
nonidentity finite normal subgroup.

Proof. ( i ) Let H be a finitely generated subgroup of G. Then
HN/N is a finitely generated subgroup of G/N and thus

HN/N~H/(HfλN)

is finite. Since H is finitely generated and [H: HΓ) N] < oo we see
that HΠN is finitely generated by Lemma I. 7.1. Thus HnN is
finite and this result follows.

(ii) Suppose Nt and N2 are locally finite normal subgroups of G.
Then NλN2 is normal in G and N^JN, ~ ΛΓ2/(Λ/Ί Π N2) is clearly a locally
finite group. Thus by (i) above NtN2 is locally finite. By induction we
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see that any finite number of locally finite normal subgroups of G
generate a locally finite group. Since any finitely generated subgroup
of M is contained in the group generated by a finite number of locally
finite normal subgroups we see that M is locally finite. Let H/M be
a normal subgroup of finite order in G/M. Then H is normal in G
and H is locally finite by (i) so H = M and H/M = < 1 >.

There are a number of interesting characteristic subgroups of G
which are related to the question of K[G] being prime or semiprime.

Let £? be the set of normal subgroups N of G such that K[G/N]
is prime. By Theorem I. 2.5 this condition is independent of the field
K and in fact N e S^ if and only if Δ{G/N) is torsion free abelian.
Set

Ω = Ω(G) = Π ^

Then Ω is clearly a characteristic subgroup of G.
Let p be a prime and let S% be the set of normal subgroups N

of G such that K[G/N\ is semiprime for some field K of characteristic
p. By Theorem I. 8.6 this condition is independent of the field K and
in fact Ne S^ if and only if Δ(G/N) has no elements of order p. Set

Ω9 = Ω,(G) = Π N .
Λ* ε ,/ p

Then Ωp is clearly a characteristic subgroup of G.
Let OP'(G) denote the subgroup of G generated by all elements

of order a power of p.

Theorem 5.3. With the above notation we have
( i ) K[G/Ω] is prime for any field K and hence Ω is the unique

minimal member of S^.
(ii) K[G/ΩP] is semiprime for any field K of characteristic p

and hence Ωp is the unique minimal member of S^v.
(iii) Ω is a characteristic locally finite subgroup of G.
(iv) Ωp is a characteristic locally finite subgroup of G.

Furthermore Ωp = Opf{Ωp) S Op'ψ).

Proof. We start with a simple observation. Let N Ξ2 H be nor-
mal subgroups of G. Let x = xH be an element of order k in Δ(G/H).
Then xk e H gΞ N and all conjugates of x in G are contained in finitely
many cosets of H and hence of N. Thus x — xNe Δ(G/N) and xk = 1
so the order of x divides Jc.

( i ) Let x = xΩ be an element of finite order in Δ(G/Ω) and let
NeS^. Then by the above x = xN is an element of finite order in
Δ(G/N) so x = 1 by Theorem I. 2.5. Thus α e f l ^ ^ = β and » = 1.
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Hence K[G/Ω] is prime by Lemma I. 2.2 and Theorem I. 2.5.
(ii) The proof here is the same as ( i ) except that we let x

have order a power of p and we apply Theorem I. 3.1.
(iii) Let M be the subgroup of G given in Lemma 5.2. ii. Then

G/M has no nonidentity finite normal subgroups so by Theorem I. 2.5.,
J l ί e y . Since Ω Q M and M is locally finite, this result follows.

(iv) Since any prime ring is also semiprime we have S* £ Sζ
and hence Ωp S Ω. Thus by (iii) Ωp is locally finite. Let N = OV'{ΩP)
so that N is also normal in G. Since Ωp is periodic we see that Ωp/N
has no elements of order p. Let xN be an element of order p in
J(G/N). Then xΩp is an element of order p or 1 in J[G/ΩP]. Since
K[G/ΩP] is semi-prime for any field K of characteristic p by (ii),
Theorem I. 3.6 implies that xΩp has order 1 so x e Ωp. Since xp e N
and Ωp/N has no elements of order p we conclude that xe N and xN
has order 1, a contradiction. Thus A{GjN) has no elements of order p
and Ne S% by Theorem I. 3.6. Hence Ωp S N so β p = iV = O^(^) .
Finally Ωp ^ Ω implies Op/(ΩP) S O*'(i2) and the result follows.

It is not necessarily true in (iv) above that Ωp = Op'(β). Let q
be a prime distinct from p and let A be an infinite elementary abelian
q group. Set G = A (g), Zp, the semidirect product of A by Zp, the
cyclic group of order p, where Zp acts on A by permuting a basis in
cycles of length p. Clearly A = J(G) so by Theorem I. 3.6 we have
ΩP(G) = <1>. If ΛΓ is normal in G with iΓ[G/iV] prime then by
Theorem I. 2.5 we must have N 3 A. Then G/N is finite so G = ΛΓ.
This shows that i2(G) = G and hence Op'(β) ^ Ωp in this case.

6. Solvable subgroups. Probably the chief stumbling block in
obtaining characteristic p analogues of Theorem 5.3 of [7] has been
the use of Jordan's theorem on complex linear groups in its proof.
In this section we offer a simple argument which can be used instead
of it in characteristic 0. In addition we announce an appropriate
analogue in characteristic p and we indicate some interesting conse-
quences. Proofs of the latter results require a complete reformulation
of the pertinent parts of [7] from a character-theoretic to a module-
theoretic point of view and they will appear elsewhere.

LEMMA 6.1. Let G be a finite group with r.b.n. (in the notation
°f [7]). If G Φ <X> then there exists an element xeG, x Φ 1 with
[G: C(x)] ^ n\

Proof. Say G has m irreducible characters and hence also m con-
jugacy classes. Since G Φ ζΐ} we have m > 1. Let the degrees of
the characters be 1 = n19 n29 •• , nm where n1 corresponds to the
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principal character. Then

I G I = n\ + n\ + + n2

m ^ 1 + (m-l)n2

since G has r.b.n.. Let the conjugacy classes of G have sizes
1 = c19c2, •••, cm where cλ corresponds to the identity class. If
c = min^A then

I G I = C l + c2 + . . . + Cm ^ 1 + ( m - l ) c .

Taken together these two inequalities then yield n2 ^ c = [G: C(x)]
for some x Φ 1.

LEMMA 6.2. Let G be a finite group with r.b.n. If G Φ <T>
then G has a normal subgroup N with [G: N] ^ (n2) ! and
C(N) Φ

Proof. Let x be as in Lemma 6.1 and let N be the core of C(x),
that is, N is the intersection of all conjugates of C(x). Then
[G: N] ^ (n2) I since [(?: C(α)] ^ ^ 2 and a? e C(N) so C(iV) ̂  <1>.

Jordan's theorem is used on page 896 of [7] to bound the order
of a group E satisfying

(1) E is nonabelian.
(2) All proper homomorphic images of E are abelian.
(3) E has no nonidentity normal abelian subgroup.

We use Lemma 6.2 instead as follows.

LEMMA 6.3. Let E be a finite group with r.b.n. and let E satisfy
(1), (2) and (3) above. Then \E\^ (n2)!

Proof. Let N be the normal subgroup of E given by Lemma 6.2.
Suppose ΛΓ^<1>. Then by (2), N a Ef. Since C(N) is normal
in E and C(N) Φ <1> we have also C(iV) 3 E'. Thus N n C(N) =
Z(A0 3 E' and J5" is abelian, contradicting (1) and (3). Hence N = <1>
and \E\ = [E: N] ^

The appropriate characteristic p analogue of bounded representa-
tion is of course that the group ring satisfy a polynomial identity.
Using a combinatorial argument similar to that of Theorem I. 6.2 we
can obtain

LEMMA 6.4. Let G be finite and nonabelian and let K be any
field. If K[G] satisfies a polynomial identity of degree n then there
exists an element xe G — Z(G) with [G: C(x)] ^ (n\)2.
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Of course this immediately yields analogues of Lemmas 6.2 and
6.3. Define the integer valued function %(n) as follows.

Then using the above argument instead of Jordan's theorem we ob-
tain the following replacements for Theorem I. 8.2 and I. 9.4 respec-
tively.

THEOREM 6.5. Let G be a finite group and let K be a field with
G' I Φ 0 in K. If K[G] satisfies a polynomial identity of degree n,

then G has an abelian subgroup A ivith [G: A] <^ %(n).

THEOREM 6.6, Let K[G] be a semiprime group ring which satis-
fies a polynomial identity of degree n. Then G has an abelian sub-
group A with [G: A] <£ n\ %{n).

If K[G] is not semiprime we can still obtain results of interest.
Let G be an arbitrary group and let S(G) be the subgroup of G
generated by all normal solvable subgroups of G. It follows easily
that S(G) is a characteristic locally solvable subgroup of G. In par-
ticular, if G is finite, then S(G) is the unique maximal normal solvable
subgroup of G.

THEOREM 6.7. Let G be a finitely generated group and let K be
any field. If K[G\ satisfies a polynomial identity of degree n then
S(G) is solvable and [G: S(G)] ^ %{n).

THEOREM 6.8. Let G be an arbitrary group and let K be any
field. If K[G] satisfies a polynomial identity of degree n then
[G: S(G)] ^n\ . %(n).
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