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LINEAR IDENTITIES IN GROUP RINGS, II

D. S. PASSMAN

In this paper we continue our study of linear identities
satisfied by group rings. An algebra E is said to have a
polynomial part if £ has an idempotent ¢ such that eFe
satisfies a polynomial identity. Let K[G] be the group ring
of G over K and suppose that this ring is semiprime. If A
denotes the finite conjugate subgroup of G, then we show
that K [G] has a polynomial part if and only if [G: A] < o
and [A']| < oo,

The notation here and the list of references (with a few exceptions)
are the same as in [I] and are therefore not repeated. Results refer-
red to from that paper have an “I” placed before the appropriate
numbers so that, for example, Theorem I.4.2 is Theorem 4.2 of [I].

1. Twisted group rings. Let K be a field and let G be a (not
necessarily finite) group. We let K*[G] denote a twisted group ring
of G over K. That is K‘[G] is an associative K-algebra with basis
{Z|xe G} and with multiplication defined by

(*) TP =V, Yy, V(@ y)e K —{0).

The associativity condition is equivalent to Z(y2z) = (xy)z for all
%, Y, 2€ G and this is equivalent to

**) Y(x, y2)7(Y, 2) = Y(x, ¥)V(xy, 2) .

We call the function 7: G x G/K — {0} the factor system of K'G].
If v(z, ) =1 for all x, ye G then K'[G] is in fact the ordinary group
ring K[G]. In this section we briefly consider the possibility that
K'[G] satisfies a polynomial identity.

LEmMA 1.1, If xe G, then in K'[G] we have
(i) 1=71,1)1
(i) 7' = v, e )~ 71, )~ a

= Y@ a1, 1) e

Proof. Setting y = 1 in (**) yields 7(1, 2) = 7(x, 1). Thus for all
%, 2€ G we have 7(1,2) = Y(x, 1) = Y(1,1). Therefore by (*), ¥(1,1)~'1
is the identity of K'[G].

Now by (*) and the above Y(x~, )~ Y(1, 1)~ is a left inverse
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for # and 7(x, ™)' v(1,1)" 2~ is a right inverse for Z. Thus Z is
invertible and Z—' is equal to both of these expressions:

THEOREM 1.2. Let K![G] be a twisted group ring. Suppose that
G has a subgroup A with [G: Al = n and with K'[A] commutative.
Then K'[G] satisfies a polynomial identity of degree 2mn.

Proof. Using the above lemma, we see as in the proof of
Theorem I. 4.2 that K'[G] S (K‘[A])., the ring of =» X n matrices
over K'[A]. The result follows from the main theorem of [2].

We now consider the reverse direction.
LEMMA 1.3. Let D be division algebra over a field F and sup-
pose that
dim,.D < cardinality of F .
Then D 1is algebraic over F. If, in addition, F is algebraically
closed, then D = F'.

Proof. Let xe D — F. Then for all ze F we have 1 —zx # 0
and hence (1 — zx) is invertible. Clearly all such terms (1 — zx)™*
commute. Since dim,D is less than the cardinality of the set
{(1—2zx)~'} there must be a nontrivial linear dependence

n w.

1 = O
51‘" 1—2zx

with w;, 2;€ F, w; # 0 and the z; distinct. Multiplying the above by

II(1—zxx) yields a nontrivial polynomial satisfied by x. Thus D is

algebraic over F. Since F' is central in D, the second statement is

clear.

PROPOSITION 1.4. Let A be an abelian group and suppose that
K'[A] satisfies a polynomial identity of degree m. Them A has a
subgroup Z with [A: Z] £ n/2)* and with K'[Z] central in K'[A].

Proof. Let F be a field extension of K which is algebraically
closed and with the cardinality of F bigger than that of A. By
Lemma 1. 5.3, K'[A] satisfies a multilinear polynomial identity of
degree n and hence F''[A] = F QxK'[A] also satisfies this identity.

Now F'[A] has a unit element by Lemma 1.1 and thus F'[A4]
has an irreducible representation p. Then o(F‘[A]) is a primitive F-
algebra satisfying a polynomial identity of degree # and hence by a
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theorem of Kaplansky ([14], Th. 6.3.1) o(F‘[A]) = D,, where D is a
division algebra over F' and m < n/2. Now F' is algebraically closed
and

dim,D < cardinality of A < cardinality of F

and hence by Lemma 1.3 we have D = F. We choose a fixed iso-
morphism and write o(F'‘[A]) = F,. Let tr denote the usual trace of
a matrix in F,.

Let Z={re A|Z is central in K'[A]}. Then by (*) and Lemma
1.1 we see that Z is a subgroup of A and K‘[Z] is central in K’[A].

Let xe A — Z. Since T is not central in K‘[A] we conclude
that for some ye A, ¥ and ¥ do not commute. Since A is abelian we
then have by (*), ¥'Zy = a% where ac K S F and a = 1. Thus

oY) p@)PY) = ao(T) .
Since similar matrices have the same trace we obtain

tr o(T) = tr o{y)~ 0(@)0(Y)
= trap(X) = a tr (%)

and hence tr o{Z) = 0 since a # 1.

Now let € Z. Then Z is also central in F'‘[A] so o(%) is central
in F,, and hence o(Z) = al where a is a nonzero scalar and I is the
identity matrix. This yields tr o(Z) = a - m. If m were equal to zero
in F' then we would have tr o(Z) = 0 for all x€ A and hence

tr (F,) = tr o(FY[A]) = 0 ,

certainly a contradiction. Thus m %= 0 in F.

Let «, ,, +++, 2, be a finite set of elements in distinct cosets of
Z. We show that o(x), o(%,), -+, ---, 0(%,) are linearly independent
over F. Suppose that

a1(0(5c—1) + azp(@) + oeee + 0«7/0(9@) =0
for a;€ F. Multiplying the above on the left by o(Z,') we obtain

2 00T T;) = 0.

Now for 4 # j, Z;'%, = bZ for some be F and xe€ A — Z and hence
tr o(Z7'%;) = 0. Thus taking traces of the above expression we obtain
am = a; trI =0 and hence a;, =0 since m %+ 0 in F. This shows
that the o(%;)’s are linearly independent and thus » < mw’. This
clearly yields [A: Z] < m* < (n/2)* and the result follows.

If R is a ring, we let R’ denote the opposite ring of R. Thus
R’ = R as sets and addition is the same. Moreover, for a, be R’ we
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have a - b = ba.

LEMMA 1.5. Let E be a semiprime algebra over K and suppose
that E satisfies a polynomial identity of degree m. Then E Xy E°
satisfies a polynomial identity of degree < n*/2.

Proof. Let P be a prime ideal in E. Then E/P is a prime ring
satisfying a polynomial identity of degree n and hence, by a theorem
of Posner ([14], Th. 7.3.2), E/P < (F,),, where F', is a field depending
on P and m = [n/2]. Since E is semiprime it follows easily that
E < R, where R is the commutative algebra I/,F,. Thus clearly
E° S R, also and

EQzE 'S R, Qx By = (R Qx B)e
Thus by [2], EFQ®x E° satisfies a polynomial identity of degree

o2m? < n?/2.

LevMmA 1.6. Let K'[G] be a twisted group ring. Then K[G] is
K-isomorphic to a subalgebra of K'[G] Q K'[G]°.

Proof. Let z,yeG. In K'YG] we have xy = Y(x, y)xy so taking
inverses yields ¥~ = ¥(x, ¥)"'ay~'. Thus in K‘[G]° we have
T lo ?—/-—1 — ’Y(x, y)—lzv_,!}—l .
Finally in K'[G] ® K*[G]" we have
ERINTRT™ = @) Q@ 7™
= Y@, 97 (@ 9" ey @y
=y Q@uy™ .

This shows that the K-linear map K[G] — K'[G] Qx K'[G]° defined by
*— T QT ' is an injective isomorphism and the result follows.

THEOREM 1.7. There exists a finite valued function J" with the
following property. Let K be a field and let K'[G] be a twisted
group ring which satisfies a polynomial identity of degree m. Sup-
pose that both K'G] and K|G] are semiprime. Then G has a sub-
group A with [G: A] < J"(n) and with K'[A] commutative.

Proof. Since K'[G] is semiprime, Lemma 1.5 implies that
K'[G] ®x K'[G]

satisfies a polynomial identity of degree < »*/2. Thus by Lemma 1.6,
K[G] is a semiprime group ring which satisfies a polynomial identity
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of degree < n*/2. Hence by Theorem I. 9.4, G has an abelian subgroup
B with [G: B] < J'(n*/2). Now K'[B] satisfles a polynomial identity
of degree n so by Proposition 1.4, B has a subgroup A with [B: 4] <
(n/2)* and with K'[A] commutative. The result follows with J"(n) =
(n/22 I (n/2).

Two final remarks are in order. First, the examples of §4 of [3]
show that even in the case of ordinary group rings, an exact converse
to Theorem 1.2 does not hold without the semiprime assumption.
Second, it follows easily from Theorem 3.7 of [11] that if K[G] is
semiprime, then so is K‘[G]. Thus the two semiprime assumptions of
Theorem 1.7 can be reduced to the single assumption that K[G] is
semiprime.

2. Weak polynomial identities. Let E be an algebra over K
A generalized polynonomial over E is, roughly speaking, a polynomial
in the indeterminates (,, {,, « -+, {, in which elements of E are allowed
to appear both as coefficients and between the indeterminates. A pre-
cise definition appears in [13]. We say that E satisfies a generalized
polynomial identity if there exists a nonzero generalized polynomial
f&,¢,--+,¢,) such that f(a,a,---,,) =0 for all a, a,,---,a,ec K.
The problem here is precisely what does it mean for f to be nonzero.
For example, suppose the center of E is bigger than K and let « be
a central element not in K. Then E satisfies the identity f({) =
al, — {,& but surely this must be considered trivial. Again, suppose
E is not prime. Then we can choose nonzero «, 8¢ E such that E
satisfies the identity f({) = a8 and this must also be considered
trivial. We avoid these difficulties by restricting the allowable form
of the polynomials.

We say that f is a weak polynomial of degree n if

f{Cu Czy ) Cn) :gczs; al,oCa(L)O(Z,aCH(Z) et Uy, oCo(n)a'rH-l,a

where «;,€ E. This form is of course motivated by Lemma I. 5.3.
The above f is said to be nondegenerate if for some o

al,aEaz,uE e ajn,vEOL,n-l-],a i 0 .
Otherwise f is degenerate.
LemmaA 2.1. Suppose K[G] satisfies a nondegenerate weak poly-

nomial tdentity of degree n. Then K[G] satisfies a weak polynomial
1dentity
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JCh G oo 6) = 2 low@,0Com ** Qnolom @i,

geS,

with 6(a,,)0(q,,)«+0(,+,,,) #= 0.

Proof. Suppose K[G] satisfies f with the above form. Since f is
nondegenerate, by reordering the {’s if necessary, we may assume that

amK[G]az,l K[G] °°c an,lK[G]an+1,l #0.
Thus there exists x,, #,, *+ -, ©,€ G with
(£ PREA1s ST PRLICILIN £ ST N 4 ARSI 0.

If we replace {; in f by #,{; we see clearly that K[G] satisfies a weak
identity f with a, ,a,, +*+ @iy, 7= 0.
Fori=1,2, --., n + 1 write

iy = >, BiiVi
where B;;€ K[4] and {y;} is a set of coset representatives for 4 in G.
Since «a,,®,, -+ ., # 0 we conclude that
Br.5YiBeisiy *** Bty Yiny, = 0

for some ji, Joy +*y Jusie Thus if 2z, = y;y;, -+ y;,_, with 2, =1 then

Bt #£0 .

2T oyt
B 1 322 cee SR

1,51172,5,5
Now B;,;; = 0(a;,.y5;) so
B = O, y77") = 0(ics 27h) -
It therefore follows that if we replace {; in f by z:}.{:iz;4, and if, in

addition, we multiply f on the left by 2z, and on the right by z;.,,
then this new weak identity obtained has the required property.

The following is a slight extension of Lemma I. 1.3.

LemMA 2.2. Let S=U H,u,, be a finite union of cosets of the sub-
groups H, of G all of infinite index and let H be a subgroup of
finite index in G. Let &, &y «++, &y By Bey ==+, B: € K[G] and sup-
pose that for all xe H — S we have

axB + axB; + oo + B, =0.

Then O0(a)B, + 0(@)B: + +++ + 0(@)B: =0 and the above equation
holds for all xe H.

Proof. We show first that 6(x)B, + 0(a))B. + <+ + 6(a;)B, = 0.
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Suppose by way of contradiction that this is not the case and let
ve G be in the support of this element of K[G].

Let W be the intersection of H and the centralizers of all elements
in Supp f(a;) for ¢t =1,2,---,¢t. By Lemma I. 1.1, [G: W] < co.
Clearly if x¢ W < H then « centralizes all 0(«;).

Write «; = 6(«;) + a; where Supp «; N 4 = @ and then write the
finite sums

a; =3 a;Y;, Y;€4
Bi = >, b;2; .
If y; is conjugate to some vz;* in G choose ¢,;;€ G with ¢;;y.9:; = vz7".

Let xe W — S. Then we must have

0 =2'axB + 27 'a,xB, + ++« + 27, xB,
= [(9(“1)‘81 + 0(“2):82 cer a(at)Bt]

+ [aixlgl + aéxﬁz + e + a;th] .
Since v occurs in the support of the first term it must also occur in
the second and hence there exists y;, z; with v = y?z; or

7Y = V27 = 95YiGis -
Thus z € Cy(y:)g;;. We have therefore shown that
W<S U (UCy)9:s) = (U Hau,.) U (U Co(y)gss) -

Since [G: W] < <o this implies that G is a finite union of cosets of the
subgroups H, and C,(y;) all of infinite index in G. This contradicts
Lemma I. 1.2 and the first result follows.

Now write a; = Jy;a;; where «;;e K[4] and the y; are coset re-
presentatives for 4 in G. Then «;; = 0(y;'a;) so «; = Jy;0(y;'a;).
Since

Y7 oxB + Y exB, + <00 + yiaws, = 0
for all xe H — S we conclude from the above that
O(yi'a) B, + 0y ') B, + + -+ + O(y7 )5 = 0.
Thus clearly a,8, + @,8, + +++ + a,8, = 0.
Finally, let ye H. Then for all x¢ H — Sy~ we have
o,z (YB,) + Lw(YBy) + -+ + ax(ys,) =0.

Since Sy~ has the same form as S we conclude from the preceding
paragraph that

@yl + aypBy + - +ayB, =0.
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Since y ¢ H was arbitrary, the result follows.
As an amusing corollary of this lemma we have

THEOREM 2.3. Suppose that K is algebraically closed and non-
denumerable and suppose that K[G] is semiprime. Then KI[G] has
a minimal right ideal if and only if G is finite.

Proof. Certainly if G is finite then K[G] has a minimal right
ideal. We now consider the converse.

Suppose I is a minimal right ideal in K[G]. If I*=0 then
K[G]I is a nonzero ideal with square zero and this contradicts Lemma
I. 3.1 and the fact that K[G] is semiprime. Thus I* % 0 and it follows
easily that I = ¢K[G] for some idempotent e¢. By Schur’s lemma,
D = ¢K|[G]e is a division algebra over K.

If G is not finite let H be a countably infinite subgroup of G
with H 2 Supp e. We show now that eK[H]e is also a division
algebra. Let ae K[H] and suppose that exe = 0. Then there exists
g€ K[G] with (exe) (eGe) = e. Write @ = B, + B, where B,¢ K[H]
and Supp B8, N H= @. Then

(eae) (eBie) + (erxe) (eBe) = e .
Since ec K[H] we have Supp (exe) (eB.¢) N H = @@ and thus
(ecte) (eBe) = e .

Now e¢K|[H]e is a division algebra of countably dimension over K.
Since K is algebraically closed and nondenumerable we have eK[H]e =
Ke by Lemma 1.3. Thus for all x¢ H we have exe = a,e for some
a,€ K. Now clearly there are only finitely many xe H say x,, @,, +- -,
x, with Supp(exe) N Supp ¢ # @. Thus exe = 0 for all xe H — Y {x;}.
We think of the {x;} as cosets of {1). Since [H:{1)] =« we
conclude by Lemma 2.2 applied to the group ring K[H] that exe = 0
for all xe H. Thus ¢ = 0, a contradiction and the result follows.

3. Reduction to 4. In this section we prove the following
result.

THEOREM 3.1. Suppose that K[G] satisfies a nondegenerate weak
polynomial tdentity of degree m. Then [G: 4] < « and K[4] satisfies
a nondegenerate weak polynomial identity of degree m.

Proof. We show first that [G: 4] < « following the proof of
Theorem I. 6.2. Assume by way of contradiction that [G: 4] = c.
By Lemma 2.1 we can assume that K[G] satisfies the weak identity
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f(Cl? sz ccy Cfn) = Zb al,oCu(l)aZ,aCa(zl e an,aCa(n)an-(-l,a

with 0(“1,1) 0(“2,1) s e(anﬂ,x) * 0.
For j=1,2,+-+,n + 1 define T; & S, by

T,={0e8S,|loc(l) =1,002) =2,+--0@F—-1) =35—1}.

Then T, = S,, T,., = {1} and T; is just an imbedding of S,.,_; in S,.
Define the weak polynomials f; of degree n +1 — j by

fj(ij €j+1y Cn)

= eZII’ 0(“1,0)0(6(2,0) e 0(af—1,a)aj,oCa(J')aj+1,qcu(.i+1) e an,oCa(n)an+1,a .
oely

Thus f, = f and
Fuer = 0(@,,)0(@s,) =+ 0(,,) 000,
is a nonzero constant function since
O(ae, )0(ct;,) ++ O(@piry) =0 .

Let . # be the set of monomial polynomials obtained as follows.
For each ¢ we start with

al,aCo(l)a%aCa(z) et an,oCa(n)“wA—l,a

and we modify it by (1) deleting some but not all of the {;; (2)
replacing some of the a;, by 6(«;,); and (3) replacing some of the a;,
by 1. Then _# consists of all such monomials obtained for all ¢ S,
and clearly .7 is a finite set. Note that _# may contain the zero
monomial but it contains no nonzero constant monomial since in (1)
we do not allow all the {; to be deleted.

For j=1,2,---,n + 1 define # < .7 by pe_« if and only
if ¢, ¢, »++,;—, do not occur as variables in ¢. Thus _# = .~ and
A, S {0} where 0 is the zero monomial.

Under the assumption that [G: 4] = - we prove by induction on
i=1,2+-+,n + 1 that for all z;, ;.,, -+, x,€ G either

f](xjy Ljs1y ** x'n) =0

or there exists pe_Z with Supp p(xj;, sy, =+, ®,) N 4 # @. Since
f = fi is an identity satisfied by K[G], the result for j = 1 is clear.

Suppose the inductive result holds for some j <n + 1. TFix
Xjiy, Xire *+ %, € G and let xe G play the role of the j** variable. Let
pre . If Supp (2 o+, 2,) N 4% @ we are done. Thus we
may assume that Supp p(®;.y, --+, 22,) N 4= @ for all e ... Set
Ay — A = AN
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Now let p£e 77 so that ¢ involves the variable {;. Write p=p/¢;p”
where ¢’ and g are monomials in the variables (;;,, +++, .. Then
Supp p(x, 24y, + -+, x,) N 4 %= @ implies that

xe hl-—‘ldhll-—l — Ahl—-lhli—l

where &' € Supp t' (%4, * ¢, 2,) and A" € Supp ¢’ (e, +++, %,). Thus it
follows that for all xe G — S where
S —_ U Ahl——lh"——l

res;
h/,h/l

we have Supp p(x, 4y, ++-2,) N 4= @ for all #e_;. Thus by the
inductive result for ;7 we conclude that for all xe G — S we have
fi(@, iy, oo+, 2,) = 0. Note that S is a finite union of cosets of 4, a
subgroup of infinite index in G.

Now clearly

j}(xv Ljrry **°y xn)

= TZ 6(6{1,0)0(“2_0) e 6(“]'-—1,a)aj,vwaj+1,axa(j+1) o Bgm&nti,0
9eTli+1

4 3 p(®iagy vy B)IN(Ljigy o0, )

reA i

where the 9((;y,, +++, {,) are suitable monomials. Note that
Oil0(0,,0)0(Xs,0) * =+ 0(Xim,0)Xs,0] = 0(01,0)0(s,0) =+ O(ex;,0)
and that @(u(x;y, ++-, ®,)) = 0 since by assumption
Supp #(@siry ++ ) N4 =D .

Now fi(x, ;55 *++,2,) =0 for all xte G — S and hence by Lemma 2.2
and the above few remarks we obtain

0= > 60(a,)0(A,0) *+* 0(@,)Xi41,0%0 0540 *** BotmWnir,o
aeTj_H

= fir1@jrry =0y @)

and the induction step is proved.

In particular, we conclude for j = » + 1 that either f,,, =0 or
there exists pe _+,,, with Suppun 4+ @. However, f,., is known
to be a nonzero constant function and _#,,, S {0}. Hence we have a
contradiction and we must therefore have [G: 4] < .

We show next that for any weak identity f we have

0= Z 0(“1,0)0(a2,o) e ﬂ(a,n-H,o) .

To do this it is convenient to multiply f on the right by a new variable
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C,., so that if S, & S,., is the set of all permutations fixing the point
n + 1 then

Z al,oCa(l)aZ,aCa(z) e Ca(n)an+1,aCa(n+1)

g8,

is a weak identity satisfled by K[G].

Let {y;} be a finite subset of G such that Supp a;, < {y;} for all
1,0. Let x,a, +-+,2x,, be arbitrary elements of 4. If we write
each «;, in terms of the ¥’s and if we put {; = x; in the above then
we obtain

0 = Z au,ryrlxo(l)yrzxv(z) e yrn+1xu(n+1)
g,T

where 7 = (7, T;, *++, T,+,) runs through all » + 1-tuples with allow-
able entries and a,,. € K.

Fix 2, +++, %, € 4. Then the above linear identity holds for all
2,€4 and [G: 4] < . Thus Lemma 2.2 applies with H = 4. Let us
consider the effect of this lemma on a typical term of the above.
Now

Ao, Yo @o)Yeglaizy 0 B0 * Yo Dotntn

becomes
ao,rﬁ(yrlwa(l)yrzxo(z) °* ') {1;\1 0t Yo Potnty)

where #, indicates that x, is deleted. Since 2z = ¥. @Yoy +++ €G
it follows that

Now 4 is normal in G and x,, %, +++, 2,., € 4. Thus
= yrlxa(l)yrzma&) cee €4

if and only if y.y., +-- €4. Therefore by applying Lemma 2.2 we
obtain setting z, =1

0= Z Ao, YooY ®o@ *** Yo Totntn) »

g5T
Yoy Yrg V=1 €4

This identity holds for all z,, -+, 2,.,€ 4 so we apply Lemma 2.2
successively. At the last step, since all z; will be 1, we will have

0 = Z' aa,ryrlyrz e ytn+1
g,

where the sum is over all those o, T terms with
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Ye Yoy *** Yepmry €4
yrlyrz cee yra—l(z) € A

Yo Yey *** Yeoringy €d.
Since ¢ is a permutation the above is equivalent to

Yo, €4, Yo Yo, €4, <oy YeYeyrr* Yo, €4

and hence equivalent to y., y., -, ¥.,,, € 4. Thus clearly

E’ aa,.-yrlyrz e yrn :a§ 0(a1,a)0(a2,0)' i 0(an+1,a)

75T

and the latter sum is therefore equal to zero.

Now fix x, a,, +-+, 2,€ 4 and-replace {; in f by x,{;. This is a
new weak identity satisfied by K[G] and applying the above result to
it we obtain

0= Z 0(al,ama(1))0(a2,ama(2)) cee 0(an.vxo(n))0(aw+l,a) .

gES,
Since z;€ 4 we have 0(a;,,%,:) = 09(a;,,)%, and hence

0 = Z 0(al,a)xo(l)0(a2,q)xu(2) s 0(an,a)xa(n)0(a%+1,0) M

oeS,

This shows immediately that K[4] satisfies the weak polynomial iden-
tity

g(CU M) Cn) :aezs 0(al,a)Ca(1)0(a2,a)Cv(2) R 0(“1&,0)Ca(n)0(an+1,a) .

Moreover, g is nondegenerate since
0(“1,1)0(052,1) M 0(an+1,1) * 0
and the result follows.
4. Polynomial parts. Let E be an algebra over K. We say

that £ has a polynomial part if and only if E has an idempotent e
such that eFe satisfies a polynomial identity.

THEOREM 4.1. Let K|[G] be a semiprime group ring. The fol-
lowing are equivalent:

(i) [G: 4] < o and [4'| < oo
(ii) KI[G] has a polynomial part;
(ili) KI[G] satisfies a mondegenerate weak polynomial identity.

Proof. (i)=(ii). Since K][G] is semiprime it follows from
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Theorem 1. 3.6 that | 4’| is not zero in K. Set

1
e = Wl—%ﬂxeK[G] .

It follows easily that e¢ is a central idempotent in K[G] since 4’ is
normal in G. Moreover, it is also easy to show that eK[G] = K[G/4'].
Now G/4' has an abelian subgroup 4/4’ of finite index. Hence by
Theorem I. 4.2 KJ[G/4'] satisfies a polynomial identity and thus K[G]
has a polynomial part

(ii) = (iii). Let e be an idempotent such that E = ¢K[G]e satis-
fies a polynomial identity. By Lemma I. 5.3 E satisfies an identity of
the form

Q(Cu O N ; aaCa(l)Ca(Z) coe Lo o

If a«e K[G] then of course exec E. This shows immediately that
K[G] satisfies the weak polynomial identity

f(Cu Czy s *° %y Cn) = ;aaeCa(l)eCo(z)e e 3Ca(n)e .

Moreover, f is nondegenerate since a,* 0 for some ¢ and then
ae-e---e=aqae*0.

(iii) = (i). By Theorem 3.1, [G: 4] < « and K|[4] satisfies a non-
degenerate weak polynomial identity

f(Cn cty Cn) = Z al,aCa(l)a2,aCa(1)a2,aCa(2) b an,oCa(n)an-i—l,a .
a

By Lemma 2.1 applied to 4 we may assume that
(22012 PRLILILN 2 M2 PERIPRE 0.

Let C be the finitely generated subgroup of 4, generated by
Supp «;, for all 7, 0. Let H be the intersection of the centralizers in
4 of all the elements in Suppe;, for all 7,6. By Lemma I. 1.1,
[4: H] < co. Clearly K[H] centralizes K[C]. Thus if we restrict the
variables of f to values in K[H] we see that K[H] satisfies the iden-
tity

g(CU Czs c Cn) = ; BaCa(l)Ca(z) b Ca('n)

where B, = a,,,t,, +++ Ay, € K[C] and B, # 0. By multiplying all
B, on the left by some xeC if necessary we may assume that
1eSupp B,. Write B, = B8, + 8/ where Supp 8, < H' N C and

Supp 8/ N(H'NC) = @ .

Then by assumption @] %= 0 and we claim that
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[/ (S EREREN &) =2, B;Cau)ca(z) cor Cotm

is an identity satisfied by K[H]. Since ¢’ is multilinear it suffices to
check this fact by evaluating ¢’ on elements of H.
Let 2, 2, *++, 2, H and set z = 2,2, -+ ,. Then since

Loy *** Loty = L% *++ &, mod H'
we have
To®o) *** Loy = Mo?
where h,c H'. Since K[H] satisfies the identity g we therefore have
0 = (Z.8:h0)2 + (287 M)z -
Now Supp B,h, & H' and (Supp B8/k,) N H' = @. This shows that
0= (Z,8h)z = g'(@yy @3y + -+, Ta)

Let Z be the subgroup of 4 generated by the Supp g, for all o.
Then Z is a finitely generated subgroup of H' N C. Since H central-
izes C it follows that Z is central in H. Since Z is finitely generated
it follows that there is a finitely generated subgroup H, & H with
Z < H]. By Lemma 1. 2.2 H! is finite and hence Z is a finite central
subgroup of H.

Let F be the algebraic closure of K. Then certainly F[H] also
satisfies the identity ¢g’. Since K[G] is semiprime and Z < 4, Theorem
I. 3.6 implies that | Z |0 in F. Thus F[Z] is a finite dimensional
commutative semisimple algebra over an algebraically closed field and
since B; # 0 there exists a primitive idempotent e e F[Z] with eg] = 0.
Since eF'[Z] = ¢F we have eB, = ea, for some a,€ F. Thus since ¢ is
central in F'[H], the algebra e¢F[H] satisfies the nontrivial ordinary
polynomial identity

h(Cu Czy ey Cn) = Zaaaca(l)(;u(m e Ctr(n) .

Since K[G] is semiprime and H < 4 it follows easily from Theorem
I. 3.3 and Theorem I. 8.6 that F[H] is semiprime. Since | Z| is finite
there results also show that F[H/Z] is semiprime. In addition
F[H] = eF[H]+ (1—e)F[H] is a ring direct sum and thus Lemma I. 3.1
implies easily that eF'[H] is semiprime.

We now observe that eF [H] = F‘[H/Z] where the latter is some
twisted group algebra of H/Z. This follows since

ec F[Z], ¢F[Z] = ¢F

and e is a central idempotent in F'[H]. In view of the above, Theorem
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1.7 applies and we conclude that H/Z has an abelian subgroup A/Z
with [H/Z: A/Z] < . Since [4: H] < o we 'have [4: A] < .
Moreover if B is the intersection of the finitely many conjugates of
A in 4 then [4: B] < « by Lemma 1. 1.1. Also B is a normal sub-
group of 4 with B’ & A’ & Z so B’ is finite. Write

4= <B7 Wiy Wy ***, wt> .
Then by Lemma I. 1.1,
W= Bn (N C,w)

has finite index in 4. Since B/B’ is abelian it then follows that
WB’/B’ is a central subgroup of finite index in 4/B’ and hence by
Lemma I. 2.1, (4/B’)’ is finite. Since B’ is finite and (4/B’) = 4'/B’
we have | 4’| < « and the theorem is proved.

It is interesting to note that, in contrast to Theorem I. 9.4, the
degree of the weak polynomial indentity does not play an important
role here. For example, in the proof of (i)=(ii) above a weak
polynomial was obtained whose degree was independent of | 4’|. Thus
| 4| cannot be bounded by a function of the degree. The same is true
of the index [G: 4] as the following example indicates.

Suppose that G = 4H where 4 is abelian, H is finite and |H | # 0
in K. For example, we could take G = Z( Z, where Z is infinite
cyclic and Z, is cyclic of order n. Set

1
| H |

so that e is an idempotent in K[G]. If he H then e = e and thus
¢K|[G]e is spanned by the terms eye with y€ 4. Now

7

1
eye = ——e¢ Zyx———e S xy?
lHi zeH ! ‘ sel
:___1_3 Zy’”

Since 4 is abelian and G = 4H it follows easily that X,y” is central in
K[G]. This shows that ¢K[Gle is commutative and hence satisfies a
polynomial identity of degree 2. Thus K[G] satisfies a nondegenerate
weak polynomial identity of degree 2 independent of the index [G: 4].

5. Miscellany. Let P be a nonabelian p-group of order p®. If
K is a field of characteristic » then it is easy to see that K[P] is Lie
nilpotent of class p. Thus K[P] satisfies a polynomial identity of
degree p + 1. Now it would be interesting to find the minimal degree



500 D. S. PASSMAN

of the polynomial identities satisfied by K[P] and the following a mild
step in that direction.

THEOREM 5.1. Let K be a field and let P be a finite nonabelian
p-group. If K|[P] satisfies a polynomial of degree n, then n > /6p.

Proof. Since P’ =+ {1) we can choose N normal in P with
[P’ N] = p. If P= P/N, then K[P] also satisfies a polynomial iden-
tity of degree n and P’ is central of order p. Thus it suffices to
assume that P= P or equivalently that P’ is central of order p.
Choose 2, y € P which do not commute and let z = xyx~'y' = 1. Then
P’ = (> and z is central of order p. We have xy = zyx and hence
by induction xy’ = z'y'x.

We may assume by Lemma I. 5.3 that K|[P] satisfies the multi-
linear identity

f(cu Czy tty Cn) - 101 oo pzpn + glaoCa(l)Ca@) M Ca(n)
and we set {; = ay’. Consider the ¢ monomial evaluated here. We
have
{“o — xyo(l)xya@) cee xya(n) .

Now shift all the y’s to the left starting with %°“. Since %°*” must
pass precisely ¢ x’s we have, using xy’ = 27y’x

Uy = zz{%’a@)yzfo(i)xn — zzfc‘omynmﬂ)/z’xn .
For each ¢ we define the integral vector v, by
v, = <o(1), 0(2), +++, o(m)))
so that », = 1,2, .-+, n>> and
L, = 2 yn(n+1)12xn

where v, - v, is the usual dot product of vectors.
We consider the values », - »,. By the Cauchy-Schwarz inequality

v v)' = (00 v) (v, - v,)

with equality if and only if v, is a scalar times v, and hence in our
case if and only if ¢ = 1. Since clearly v, - v, = v, - v, we have for
all 01, (v, - v,) < (v, » v)” s0

Ve, < Ve = D= nm+1) 2n+1)/6

since these are all positive quantities.
Clearly zero is a lower bound for all w, -v,. A better bound is
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obtained as follows. For each ¢ define ¢’ by ¢’(s) =n + 1 — a(3).
Then ¢’ is clearly also a permutation and v, = v — v, where

v=Ln+1, n+1, oo, n+1>>.
By the above
VsV, =V oV =0, » (V—0,) =V, + ¥ — ¥+,
and thus
VW=V 0 — V0= (R+1) M — DM =nn+1l) (n+2)/6.

Returning to the polynomial identity we have

0 — f(xyl, xyz’ oo, xyn) — {z”l‘”l + Z a,gzvlmg} y%(n+l)/2xn .
gFL
It therefore follows that the z»" terms must be cancelled by other
terms in the sum and thus for some ¢ %=1 we have z1"1 = z%1%,
Hence »|(v, - v,—w, - v,). Now by the above

0<v v — v+ v =nm+1) Er+1)/6 — n(n+l) (n+2)/6
=nn—1) (n+1)/6

and since p divides v, + v, — v, - v, we must have n(rn—1) (n+1)/6 = p.
Thus »° > n{n*—1) = 6p and » > ¥ 6p. This completes the proof.

We will need the following few facts on locally finite groups.

LEMMA 5.2. Let G be an arbitrary group.

(i) Let N be a normal subgroup of G and suppose that both N
and G/N are locally finite. Then G s locally finite.

(ii) Let M be the subgroup of G generated by all locally finite
normal subgroups of G. Then M 1is locally finite and G/M has no
nonidentity finite normal subgroup.

Proof. (i) Let H be a finitely generated subgroup of G. Then
HNJ/N is a finitely generated subgroup of G/N and thus

HN|N = H/(H N)

is finite. Since H is finitely generated and [H: HN N] < « we see
that HN N is finitely generated by Lemma I.7.1. Thus HN N is
finite and this result follows.

(ii) Suppose N, and N, are locally finite normal subgroups of G.
Then N,N, is normal in G and N,N,/N, = N,/(N,N N,) is clearly a locally
finite group. Thus by (i) above N,N, is locally finite. By induction we
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see that any finite number of locally finite normal subgroups of G
generate a locally finite group. Since any finitely generated subgroup
of M is contained in the group generated by a finite number of locally
finite normal subgroups we see that M is locally finite. Let H/M be
a normal subgroup of finite order in G/M. Then H is normal in G
and H is locally finite by (i) so H= M and H/M = {1 ).

There are a number of interesting characteristic subgroups of G
which are related to the question of K[G] being prime or semiprime.

Let .&¥ be the set of normal subgroups N of G such that K[G/N]
is prime. By Theorem I. 2.5 this condition is independent of the field
K and in fact Ne.&” if and only if 4(G/N) is torsion free abelian.
Set

Q=02G =N N.
New
Then 2 is clearly a characteristic subgroup of G.

Let p be a prime and let .4 be the set of normal subgroups N
of G such that K[G/N] is semiprime for some field K of characteristic
p. By Theorem I. 8.6 this condition is independent of the field K and
in fact Ne .94 if and only if 4(G/N) has no elements of order p. Set

2,=2,6=NN.
A’er

Then 2, is clearly a characteristic subgroup of G.
Let 07(G) denote the subgroup of G generated by all elements
of order a power of p.

Theorem 5.3. With the above notatron we have

(1) KI[G/Q] is prime for any field K and hence 2 is the unique
minimal member of .

(ii) KI[G/2,] is semiprime for any field K of characteristic p
and hence 2, is the unique minitmal member of 5.

(iii) 2 1s a characteristic locally finite subgroup of G.

(iv) 2, s a characteristic locally finite subgroup of G.
Furthermore 2, = 0"(2,) S 07(2).

Proof. We start with a simple observation. Let N 2 H be nor-
mal subgroups of G. Let T = xH be an element of order % in 4(G/H).
Then 2*e¢ H & N and all conjugates of 2 in G are contained in finitely
many cosets of H and hence of N. Thus % = «Ne 4(G/N) and & =1
so the order of ¥ divides k.

(i) Let T = a2 be an element of finite order in 4(&/Q) and let
Ne.&”. Then by the above % = xN is an element of finite order in
A(G/N) so T =1 by Theorem I. 2.5. Thus ze().N =2 and % = 1.
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Hence K[G/Q?] is prime by Lemma I. 2.2 and Theorem I. 2.5.

(ii) The proof here is the same as (i) except that we let ¥
have order a power of p and we apply Theorem I. 3.1.

(ili) Let M be the subgroup of G given in Lemma 5.2. ii. Then
G/M has no nonidentity finite normal subgroups so by Theorem I. 2.5.,
Me 5. Since 2 & M and M is locally finite, this result follows.

(iv) Since any prime ring is also semiprime we have & & .5
and hence 2, S 2. Thus by (iii) 2, is locally finite. Let N = 0%(2,)
so that N is also normal in G. Since 2, is periodic we see that 2,/N
has no elements of order p. Let zN be an element of order p in
4(G/N). Then 2, is an element of order p or 1 in 4[G/2,]. Since
K[G/2,] is semi-prime for any field K of characteristic p by (ii),
Theorem I. 3.6 implies that x2, has order 1 so xe@2,. Since e N
and 2,/N has no elements of order p we conclude that xe N and N
has order 1, a contradiction. Thus 4(G/N) has no elements of order p
and Ne.% by Theorem I.3.6. Hence 2, = N so 2, = N = 07(2,).
Finally 2, & 2 implies 07'(2,) < 0?(2) and the result follows.

It is not necessarily true in (iv) above that 2, = 0”(Q). Let ¢
be a prime distinct from p and let A be an infinite elementary abelian
g group. Set G = A, Z,, the semidirect product of A by Z,, the
cyclic group of order p, where Z, acts on A by permuting a basis in
cycles of length p. Clearly A = 4(G) so by Theorem I. 3.6 we have
2,G =<)>. If N is normal in G with K[G/N] prime then by
Theorem I. 2.5 we must have N 2 A. Then G/N is finite so G = N.
This shows that 2(G) = G and hence 0”(Q) = 2, in this case.

6. Solvable subgroups. Probably the chief stumbling block in
obtaining characteristic p analogues of Theorem 5.3 of [7] has been
the use of Jordan’s theorem on complex linear groups in its proof.
In this section we offer a simple argument which can be used instead
of it in characteristic 0. In addition we announce an appropriate
analogue in characteristic » and we indicate some interesting conse-
quences. Proofs of the latter results require a complete reformulation
of the pertinent parts of [7] from a character-theoretic to a module-
theoretic point of view and they will appear elsewhere.

LEMMA 6.1. Let G be a finite group with r.b.n. (in the notation
of [71). If G #<1) then there exists an element xc G, x =+ 1 with
[G: C(x)] £ nh.

Proof. Say G has m irreducible characters and hence also m con-
jugacy classes. Since G # (1> we have m > 1. Let the degrees of
the characters be 1= #u, n,, *++, %, Where mu, corresponds to the
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principal character. Then
|Gl=n+ni+ e + 0% <1+ (m—1)n?

since G has r.b.n.. Let the conjugacy classes of G have sizes
1=¢,¢, +++, ¢, Wwhere ¢, corresponds to the identity class. If
¢ = min,.,c; then

IGl=c+¢+ ++++c, =21+ (m—1)c.

Taken together these two inequalities then yield %®= ¢ = [G: C(z)]
for some 2 =+ 1.

LEMMA 6.2. Let G be a finite group with r.b.n. If G =<1
then G has a mnormal subgroup N with [G: N ®)! and
C(N) = <{1).

Proof. Let x be as in Lemma 6.1 and let N be the core of C(z),
that is, N 1is the intersection of all conjugates of C(x). Then
[G: N] < (n?) ! since [G: C(x)] < n* and e C(N) so C(N) = {1).

Jordan’s theorem is used on page 896 of [7] to bound the order
of a group F satisfying

(1) E is nonabelian.

(2) All proper homomorphic images of E are abelian.

(8) FE has no nonidentity normal abelian subgroup.
We use Lemma 6.2 instead as follows.

LEMMA 6.3. Let E be a finite group with r.b.n. and let E satisfy
@), (2) and (3) above. Then |E| =< (n)!

Proof. Let N be the normal subgroup of E given by Lemma 6.2.
Suppose N = 1>. Then by (2), N2 E’. Since C(N) is normal
in £ and C(N) == (1> we have also C(N) 2 E'. Thus NN C(N) =
Z(N) 2 E’ and E’ is abelian, contradicting (1) and (3). Hence N = (1>
and |E|=[E: N] £ (n)!

The appropriate characteristic p analogue of bounded representa-
tion is of course that the group ring satisfy a polynomial identity.
Using a combinatorial argument similar to that of Theorem I. 6.2 we
can obtain

LEMMA 6.4. Let G be finite and nonabelian and let K be any
field. If K|[G] satisfies a polynomial tdentity of degree n then there
exists an element xe G — Z(G) with [G: C(x)] =< (n!)>
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Of course this immediately yields analogues of Lemmas 6.2 and
6.3. Define the integer valued function (n) as follows.

A(m) = (m1)»=*,

Then using the above argument instead of Jordan’s theorem we ob-
tain the following replacements for Theorem I. 8.2 and I. 9.4 respec-
tively.

THEOREM 6.5. Let G be a finite group and let K be a field with
|G| =0 in K. If K[G] satisfies a polynomial identity of degree m,
then G has an abelian subgroup A with [G: A] < A(n).

THEOREM 6.6. Let K[G] be a semiprime group ring which satis-
fies a polynomial identity of degree m. Then G has an abelian sub-
group A with [G: A] < n! An).

If K[G] is not semiprime we can still obtain results of interest.
Let G be an arbitrary group and let S(G) be the subgroup of G
generated by all normal solvable subgroups of G. It follows easily
that S(G) is a characteristic locally solvable subgroup of G. In par-
ticular, if G is finite, then S(G) is the unique maximal normal solvable
subgroup of G.

THEOREM 6.7. Let G be a finitely generated group and let K be
any field. If K|G] satisfies a polynomial identity of degree n then
S(G) 1s solvable and [G: S(G)] < A(n).

THEOREM 6.8. Let G be an arbitrary group and let K be any
field. If K|[G] satisfies a polynomial identity of degree m then
[G: S(] £ n! - An).
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