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ON THE NUMBER OF NON-ALMOST ISOMORPHIC
MODELS OF Γ IN A POWER

SAHARON SHELAH

Let T be a first order theory. Two models are almost
isomorphic if they are elementarily equivalent in the language
Loo,ω. We investigate the number of non almost-isomorphic
models of T of power 2 as a function of λ, I(T, λ). We prove
μ > λ ^ I TI, I(T, λ) ^ λ implies I(T, μ) ^ I(T, λ). In fact, we
generalize the downward Skolem-Lowenheim theorem for in-
finitary languages. Th. (1, 4, 5).

Let L be a set of predicates with finite number of places and
sufficient number of variables. (We assume there are no function
symbols in L for simplicity only.) \L\ will denote the number of
predicates in L plus ^ 0 . Models will be denoted by M, N. The set
of elements of M will be \M\, the cardinality of a set A by \A\ and
so the cardinality of M by ||M"||. Unless specified otherwise, every
model is an L-model. Cardinals will be denoted by λ, μ, tcy χ ordinals
h39oί9β. Twill denote a theory, i.e., set of sentences. We define
^ = Σc<*μ* For cardinals λ, μ we define the language L(X, μ) i.e.,
a set of formulas. This set is defined as the well known first-order
language where we adjoin to its operations conjunction and disjunction
on a set of < λ formulas (i.e., AieiΦn where | / | < λ) and existential
or universal quantifications over a sequence of <μ variables. L*(λ, μ)
will be defined as L(λ, μ) where in addition we permit quantification
of the form

if

\{xl, x[, •••, yl y\, •••, Xo" •••}!< μ .

RL*(X, μ) will denote the subset of Z/*(λ, μ) consisting of the formulas
Φ of L*(λ, μ) such that for every subformula φ of Φ, if φ = [(Vxι)
(3^) -]ψ, then h ^ -> 7[{lxι)(Vyι) •] 7 -f. Clearly i?L*(λ, ^) 3
L(λ, /^). i ί will denote any of those languages. Satisfaction (i.e., if
φ = φ(x), and a is a sequence from \M\, then Λf |= ψ[a\) is defined
naturally. (See Hanf [2] and Henkin [3].) The only nontotally tri-
vial case is

*(?) = [(v&wyw&KΦ) -w,«°, »s % °̂, r •)

M \= ψ[a] if and only if there are functions f"{x\ •• ,xw) such that
for every sequence α°, a\ from I , I N φ[a, α°, αι, , δ°, ft1, •]
where 6W = <• -,fin{a\ a\ , αw), •>. For a sentence ^, f=α/r if for
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every M, M \= ψ. (Such languages were first defined in Henkin [3].)

If Γ is a set of formulas (for example one of the languages defined
above), M is a Γ elementary submodel of N, if the set of elements
of M, \M\ is included in the set of elements of N, \N\, and for every
formula φ(x), φ(x) e Γ, and sequence a from \M\, M \= φ[a] if and only
if N 1= Φ[a], M, N are .F-elementarily equivalent if for every sentence
ΦeΓ, M^ φ if and only if N N φ.

THEOREM 1. LetX > μ, λ regular and T be a theory in RL*(X, μ)
[i.e., TciϋL*(λ, μ)\ and Γ be the set of subformulas of the formulas
in T. Then for every model M we can add < λ + \T\+ functions of
<μ places such that: If A a M, and A is closed under those functions,
then there exists a Γ-elementary submodel N of M, \N\ = A. So if
K Ξ> λ + \T\ (or £^> the number of those functions) and /ciμ) = tz, and
T has a model of power ^K, then T has a model of power it.

Proof. This theorem is proved in [9], and is a straight-forward
generalization of a theorem of Hanf in [2].

DEFINITION 1.

L(co, μ)=\j L(k, μ), L*(oo, μ) = \J L*(\, μ),
x λ

BL*(oo,μ) = \JRL*(X,μ) .
λ

DEFINITION 2. (1) M and N are //-almost isomorphic, M~μN
if M9 N are L(°o, /^-elementarily equivalent. We say M and N are
almost isomorphic if M ~*QN, and we write M ~ N.

(2) I(T, λ, μ), is the number of non-μ-almost-isomorphic models of
T of power λ. We assume always λ is Ξ> then \T\.

See footnote 1.

THEOREM 2. If T is a theory in J?L*(λ, μ), μ = ^ 0 or μ — μf,

tc>X = X{*} + λ + \T\ and I(T,χ,μ)£χ then I(T, ic, μ) £ I(T,χ, μ).

The proof is broken into a series of lemmas.

REMARKS. (1) It is not hard to show that if Γ c L ( λ , ^ 0 ) ,
I(T, χ, Ko) ^ χ, then for every κu κ2 ^ n(ίi+z,+, I(Γ, κlf « 0 ) - I(T, fc2,
«o). (See Makkai [7] and Eklof [15].)

1 The results here appear in the notices [10] Th. 5 [11] Th. 3. The lemma has other
uses: see [12] Th. 2.5 and Remark (4): in [11] their consequences are better formulated.
In Th. 2 we can replace T a RT*(λ, μ) by T<zRL*(λ+,μ) and similarly in other cases.
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(2) Let λ = μ = ^ 0 and suppose | T | ^ tc0. Then as the class of
such theories is a set, there is a number K — HAIKQ (Hanf number of
almost isomorphism) such that: for all T, | T | <£ κQ, I(T, K, y^0) <̂  tc if
and only if there is a χ, Z(T, χ, y$0) ^ %> and Λ: is the first such car-
dinality. (The existence of such numbers for a wide class of cases
was proved by Hanf in [2].)

Question 1. What is HAI^Ί (Clearly if λ-»(Λ;0

+)2

<^ then HAIKQ <λ) .

(3) It is known that ilf ~ N, « 0 = \\M\\ = ||i\Γ|| implies that AT,
JV are isomorphic (see Scott [8]).

(4) Ehrenfeucht in [1] defined a model to be rigid if it has no
nontrivial automorphisms and tried to investigate what can be the
class of cardinals in which a certain theory has a rigid model. He
gives some examples, but does not prove any theorem of the form:
If T has a rigid model of one power, then it has a rigid model in
another power.

DEFINITION. M is μ-rigid if there do not exist two different se-
quences of length <μ,a,b, such that (M,a)~μ(M,b). ((M, a) is
the model M when we adjoin the α's as individual constants.) See
footnote 2. Clearly

THEOREM. If μ < λ, and M is μ-rigid, then it is X-rigid and also
rigid. By a proof similar to that of Theorem 2, we can prove:

THEOREM. If a first-order theory T has a μ-rigid model of power
λ, I T\ + y 0̂ <£ K — tc{μ) ^ λ, μ — μi or μ = #0J then T has a μ-rigid
model of power fc.

Proof of Theorem 2.

DEFINITION 3. (1) Let Lx be L where we adjoin to it one two-
place predicate E and variables y, yQy yu we assume E, y, y0 ΦL.
We shall write xEy instead E(x, y).

(2) If R e L then RM will denote the relation of M corresponding
to R.

(3) Let {Mil ie 1} be a set of L-models and we define their sum
N — (BieiMi, (or ®{Mϊ.ieI}). For simplicity we assume that the
sets I Mi I are pairwise disjoint. N will be an I^-model | JV| — \Jiei\Mi\,
RN = UieiRMi for every ReL, and EN = {<α, 6>: (3i)[α, be \Mi\]}.

(4) For every formula φ of any language, we define by induction

2 Barwise [14] suggests a similar definition and argues its naturality.
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φ: if φ is atomic φ = φ; 7φ = 7Φ, φ\f ψ = φ\f ψ, (likewise for the
o t h e r c o n n e c t i v e s ) , 3(3#)0 = {lx)[φ A A ; XiEy], ( w h e r e # = <•••&{•••»

iEy—> φ], and

. \φ = [(V^1)(3^1) '](A xfEy -+ φ A A yΐEy)

if the language contains such formulas. Clearly for any language
K, φe K=>φe K. Also, if ψ is a sentence (yy)φ is a sentence.

(5) Define

f = {(Vy)φ: φ e T} (j {(V^cc^, (Vcco^x^^o^i Λ ^ 0 ^ 2 —* a?i^2)}

LEMMA 3. Each Mi is an L-rnodel of T if and only if ®ieIMi
is an Lrmodel of T.

Proof. Immediate

DEFINITION 4.

Ψl = ψl(χ\ χ\ , χ\ y\ , Ψ) = A {Λ(a?Ji, , xh •)

~R(VΪ\, % ί/iί •): ii, •> i* e {0, , n],

ReL,jlf •• ,iJfc ••• < α}

where

^ = < . . . x*.. .yi<aj ψ = < . . . y*.. .yi<a.
Also let

Φa = [ A ^ Γ ^ Λ A 2/r+1#2/] -> [ A xT+1Ex A A VfEy
i<a i<a i<a i<a

2n<m 2n + l<m 2n+l<m 2n<m

Λ A l ί ( ϋ ° , •• , « " , » ° , " ,Vn)]:

Φω

a = AΦa = ΨWA%, y, χ°, y°, χ\ Ψ, •)

For even n

Φl = ΦUx, y, χ°, y°, ", χn~\ Ψ~ι) = [(v^)(ar)(vr+ 1)(3r+ 1) ]Φa

For odd n

Φl(χ, y, χ°, y°,- , χn~ι, v*-1) = [(vp)(a»-)(VsB»+1)(a»-+1)(vf"+1). >\φ»a.

LEMMA 4. If

ae\M\, be\N\,M, iVe {Λf,: ΐe/}, M* = ®isIMi ,

and μ = κ+ or μ = ^ 0 , and K is finite, then M ~μN if and only if
M* N Φl[a, b].
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REMARK. Keisler in [5] used sentences similar to φn

a. These sen-
tences can be seen as asserting something about an appropriate game
(between a player choosing x\ y\ x2, ••• and a player choosing y\
x\ •••). In this presentation a similar theorem appears in Karp [4].

Added in proof. See also Benda [13].

Proof.

Part A- Suppose M ~ μN.

For every two sequences α, b of elements of M, either there is a
formula fc&(^) of L(°o, μ) such that M 1= Φa,τ[ΰ]> M t= 7 Φa,τ[b]i or there
is no such ψ and in this case, we let Φι,τ(x) = (x0 = xQ)

Let φ-(x) = Aτ Φa,τ(%) e L(oo, μ). Let φ-(x) = Φi(y, x). Let a < μ.
We define the functions

f2n(^;0 77-O ,771 ^ l ^ 2 ,772%—! ^2u—1 ^2w\

/ i {Λ,y,y,%,%, ' ,y , x , x ) >
/*2w + l / ^ 0 77O 771 X l̂ ^T2 ^ 2 % 772% 772w + l\

for i < α such that: If α°, 6°, α1, 6' are sequences of length a, a2n

a sequence of elements of M, and b2n+1 a sequence of elements of N,
and for every n

then M* \= φΐ[a, b, α°, 6°, •••].

Suppose we have defined fn for w < 2 m , and let us define f2m for
i < a. (f2m+ι are defined similarly.)

If for some n < 2m, i < α &J1 £ | iV |, or for some ΐ < α, n ^ 2m α? ί
ikf|, then//m(ά°, « ,α2 m) is defined as an arbitrary element of M*.

Also if there exists a formula ψ(z\ , zn) G.L(C^? /i) such that

M |= τ/r[ά°, α1, , a2m~ι]N \= 7 ψ[b°, , δ"^-1] ,

we define f2m{a°f a2m) arbitrarily.

So assume none of the previous cases occur. Define a[n] = d° ^
a1 ^ ^ an (the concatenation of alf , α%) and b[n] = b° ̂  ^ 6W.
Clearly

As M~μN,N also satisfies the above sentence; so there exists b2m

such that for every φ e L(co, μ)y M \= φ[a\ , a2m] if and only if
N N 0[6°, , ζ52m]. Let /?m(α°, 6°, , α2m) = bf.



816 SAHARON SHELAH

Clearly [this shows that Λf * |= Φa[a, b] for every a < μ, and in
particular for fc.

Part B. We now assume that M* h Φl[a, 6], and μ = ^ 0 The
proof in the case μ — κ+ or 1 < tc < ^ 0 is similar. For simplicity, we
shall not distinguish between a = <(aoy and α0.

Two sequences, α from M" and 6 from N, of length w, % < ω, will
be called equivalent if M* t= ̂ ί[α, &, α, 6]. If w = 2m, clearly for
every δw + 1e|JV| there exists anJrle\M\ such that a^(a%JrΫy and 6 ^
<δ%+1> are equivalent, and similarly for n = 2m + 1.

Let φ(x) e L(oo, ̂ ) , » a finite sequence of variables. We shall prove
that if α, b are equivalent then M N ^[α] if and only if N |= ̂ [6]. As
subformulas of formulas with < ^ 0 free variables have < ^ 0 free
variables we can prove it by induction. For atomic formulas it follows
from the definition of <ft. For yφ, φ V ψ, it is immediate, and so
also for the other connectives. For quantification it follows by the
fact mentioned above after the definition of equivalent sequences.

So we have proved that if α, b are equivalent sequences, φ(x) e
L(oo, μ), then M f= φ[a] if and only if N N Φ[b]. Since the sequences
of length zero from M and N are equivalent (by our hypotheses M* \=
φ\(a, b))y we get our conclusion that M ~ N. This proves Lemma 4.

LEMMA 5. φ°a(x, y) e u?L*(oo, μ). See footnote 3.

Proof. It is easily seen that the only thing we have to prove is:

h[(Vtf°)(3^)(V^W) •••] A Φl~ 7[(3^0)(V^0)(3^)(V^) . . . ] V 7 « .

For simplicity, let a — 1.

It is not hard to see that if M N [(V °̂)(3?/0) . .]Aw<ω Φΐ, then
M 1= 7[(3x°)(Vί/°) . . - ] y n < ω 7 φ?. (See, for example, Keisler [6].)

So suppose I N 7 [(3^0)(Vτ/°) . . . ] \f n<ω y φ?m It is not hard to see
that for every n < ω, and formula φ

7 [(Vί2;1)(3^2)(Vί2?3) \φ <—> (3^) 7

7 [(^22X^3) ] ^ <—» (3^i)(V^2) 7 [ ( ^ 3 ) * * *]Φ 9 e t c .

Now let us define functions gn(x\ y°, y\ , xi yj
 )Ϊ,J<Λ Let

θn(x, y, x°, y°, x1, yι, , xn, yn) = 7 [Vα;%)(3z/w)(V7/w+1)(3^+1) •] V 7 9

3 This lemma is, in fact, a translation of a well known theorem from game theory.
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(This is for even n, the definition for odd n is clear.) The functions
will be such t h a t if α°, , ane \M|, 6°, •••, δ n e |JVΊ, and for every
2m £ nb2m = #2w(α°, h\ •)> and for every 2m + 1 ^ na2m+1 = gim+ι(a°,
6°, . . . ) ; then M* \= θn[a, 6, α°, b° •]. The definition is self-evident.
Let α° ••• an ••• e \M\, b° ••• δ% ••• e \N\ be such t h a t for every
2mb2m = gim(a\ b° •) and for every 2m + 1 α 2 m + 1 - ^2 m + 1(α°, 6° •) and
let w < ω. A s M ' N 0»+i[α, 6, α°, 6° αΛ, δw], clearly M * N ^Γ(α, δ, α°,
δ° an, bn).

So M * 1= An<ω φΐ(a, δ, α°, δ°, , α%δ%), and hence M * N ^r[α, 6, °̂»
δ° •]. So ikf* N ^;[α, δ] (as this is t rue for every α°, δ1, α2, δ3 •) and
this is the desired conclusion.

LEMMA 6. Let μ = fc+ or μ = y$0, « = 1, IT α theory in RL*(X, μ),
χ = χ(̂ ) + x + I r I , α ^ /(Γ, χy μ) ^ χ. Γ^β^ for every model N of T
of power > χ , there exists a model M of T of power χ such that M ~ μN.

REMARK. This clearly proves Theorem 2.

Proof. Let {M^ i e /} be a maximal set of non-^-almost-isomorphic
models of T of power χ, and let N be a model of T of power > χ
such that for no ie I, N ~μ M^

Let M* = 0 ({iV}{M,: i e /}). Clearly M* is a model of 2\ = f U
{(Vaj, y)[7xEy-+ 7 ^ϊ(», 1/)]}. Let ae \N\, and A - {α} U U {\Mi\iieI}.
Clearly, |A| = χ.

Let Γ1 be the set of subformulas of formulas e 7\. By Theorem 1, it
follows that Λf* has a .Γ-elementary submodel JV*, | iSΓ* | ID A, Z =
[| JV* || = (the power of N*), such that every equivalence class (of E) in
iV* has exactly 1 elements. Clearly, iV* = φ ({iVJ U {M*: i G I}), and for
every i, Nu Mi are models of T, and they are non~μ-almost-isomorphic.
So N1 contradicts the definition of {M{: ie I}, thus proving Lemma 6.

This ends the proof of Theorem 2.
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