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SPECIALITY OF QUADRATIC JORDAN ALGEBRAS

KEVIN MCCRIMMON

In this paper we extend to quadratic Jordan algebras
certain results due to P. M. Cohn giving conditions under
which a Jordan algebra is special, the most important of
these being the Shirshov-Cohn Theorem that a Jordan algebra
with two generators and no extreme radical is always special.
We also prove that the free algebra on two generators x, y
modulo polynomial relations p(x) — 0, q(y) = 0 is special, and
hy taking a particular p(x) we show that most of the properties
of the Peirce decomposition of a Jordan algebra relative to
a supplementary family of orthogonal idempotents follow im-
mediately from the analogous properties of Peirce decomposi-
tions in associative algebras.

Throughout we will work with algebras over an arbitrary (com-
mutative, associative) ring of scalars Φ. A (unital) quadratic Jordan
algebra is defined axiomatically in terms of a product Uxy linear in y
and quadratic in x [4, p. 1072]. We can introduce a quadratic Jordan
structure 2t+ in any unital associative algebra Sί by taking

Uxy = xyx .

Any (Jordan) subalgebra of such an algebra 2I+ is called a special
Jordan algebra. A specialization of a quadratic Jordan algebra S is
a homomorphism of $ into an algebra of the form 3ί+.

With any quadratic Jordan algebra $ we can associate its special
universal envelope, consisting of a unital associative algebra suffi) and
a (universal) specialization σu: £5 —•> st6(^)+ such that any specialization
σ: $ —»SX+ factors uniquely through an associative homomorphism su(σ):

21,

carries a unique involution, the main involution π, such that
the elements of $σ% are [symmetric: x°uZ = xa%. This association is
functorial—if φ: ^y—>^ is a homomorphism of quadratic Jordan algebras
there is induced an associative homomorphism su{φ) making

F»
su(φ)
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commutative. An algebra £5 is special if and only if it is imbedded
in suffi) via σu.

For any set X we have a free quadratic Jordan algebra FJ(X),
a free special Jordan algebra FS(X), and a free associative algebra
F(X) on the set X (over the ring Φ). We have FS(X) imbedded in
F(X) as the (Jordan) subalgebra of F(X)+ generated by X, and F(X)
with this inclusion map serves as special universal envelope for FS(X)..
When X consists of just two elements X — {x, y} we know FJ(x, y) =
FS(Xj y) by Shirshov's Theorem. For all these see [3].

l Cohn's theorem and criterion. We consider a set X = {Xi}iei
where the indices are linearly ordered. The free associative algebra
F(X) carries a reversal involution, whose action on a typical monomial is,

(xh xinY = xin xh .

The subspace Q(F(X)9 *) of ^-symmetric elements is a Jordan sub-
algebra of F(X)+ containing X, hence containing FS(X). Cohn's
Theorem measures how far FS(X) is from being all of Q(F(X), *).

COHN'S THEOREM [1, p. 257; 2, ex. 2 p. 9]. Q(F(X), *) is the
Jordan subalgebra of F(X)+ generated by 1, X, and all the n-tads

K *« J = XH ' * * Xin + Xin * * 3<i

ίL < i2 < < in.

Proof. Clearly φ = ^( i^X), *) contains X and all w-tads. Con-
versely, to show the subalgebra & generated by such elements is alL
of & we must show & contains all {x{ί xin} = xiχ xin -f xi% .τ^
and all x^ %ίny%in x^ (where y is either 1 or one of the x{) since=
these clearly span £ . Now the xh ••• xinyxin ••• a?4l = ϋ ^ ^»ίΛ2/"
are generated by X alone, so we need only generate the {x{l ••• x{j.
We do this by induction on n. The result is trivial for n — 2, 3 since
{a^ί j = a?̂  o aji2, {a;<1α;ί2αjί8} = Uxii,xixh where a on and J7β,β2/ are the-
linearizations of x2(— Uxl) and Uxy. We assume n ;> 4 and that alL
{̂ ή *'# χί<J ^or m < n are in ^ .

Our first task is to show

( 3 ) K ( 1 ) xiπ{j = ±K Xin] (mod $>

for any permutation π. It suffices to do this for the generators
(12 n) and (In) of the symmetric group Sn. For the transposition.
(In) we have

K Xin) + {VinXi2 ' ^ - ^ J = ^.ίr i K * ' * *inj = 0
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by our induction hypothesis, and for the cycle (12 n)

{xh xin} + {xh . . . xinxh] = xh o {xh . . . χ.n} = 0 .

If all the indices are distinct then (3) shows that {xiι xίp} is
congruent to ± an %-tad, which belongs to B by hypothesis, so
{x^ xin} also belongs to B. If two indices coincide, (3) shows
{xh — α; — a? — xin} = ±{xxh Xinx) = Ux{xh xin} Ξ 0 by induc-
tion. In either case, {xiL xin} e Si.

Since there are no %-tads for n ^ 4 if there are only three vari-
ables, we have the following useful corollary.

COROLLARY. For m ^ 3, the suhalgehra of F(xiy , xm)+ generated
by xλ, - ,xm is all of $(F{xu , xm), *).

The next result gives a criterion for when a homomorphic image
of a special Jordan algebra is again special.

COHN'S CRITERION [1, p. 255; 2, p. 10]. If £5 is a special Jordan
algebra and & an ideal in $ then Ϊ^/Si is special if and only if $ Π
$ — $ where ^ is the ideal in su(^s) generated by &.

Proof. A standard functorial argument shows that the algebra
k and the specialization of ^/St induced from ^ —>
by passage to the quotient serve as special universal

envelope for £$/$) (i.e., satisfy the universal property (1)). The kernel
of this specialization is 5̂ Π $)/$, so the specialization is injective (i.e.,
$/& is special) if and only if 3 n ! = <$.

In particular, for % = FS(X) and su($) = F{X) we obtain

COROLLARY. FS(X)/St is special if and only if Si n FS(X) = B
where ίk is the associative ideal in F(X) generated by the Jordan ideal
B in FS(X).

2. Shirshov-Cohn theorem* The extreme radical of a unital
quadratic Jordan algebra $ is the set of elements z such that Uz =
ϋZtX = 0 for all x in $; this always forms an ideal. Since 2z = z o 1 = 0
for such elements, the extreme radical is always zero when J e Φ.

PROPOSITION [I, p. 260]. // B is an ideal in FS(x, y, z) having a
set of generators {k} such that all tetrads {xyzk} belong to Si, and if
FS(x, y, z)/B has zero extreme radical, then FS(x, y, z)/B is special.

Proof. _By the Corollary to Cohn's Criterion FS(x, y, z)/B will_be
special if B Π FS(x, y, z) c B. To prove that any p(x, y, z) in B Π



764 KEVIN McCRIMMON

FS(x, y, z) belongs to $ it will suffice to show it is in the extreme
radical modulo ®,

( i ) Upr = prp e ffi
( i i ) UPίQr = p r g + qrp e® {q,re FS(x, y , z))

since we are assuming FS(x, y, z)/& has no extreme radical.
It will be enough to prove the stronger results
( i ) ' prp* 6 β
(ii)' p + p*e® (pe®,reFS(x,y,z))

since p ~ p* if p e ® Π jPS(α?, 2/, 2;) and then ^rg e $ has prq + (prq)* —

We tackle (ii)' first. The proof is the standard one [2, p. 11].
It suffices to consider p = skt for s, t monomials in x, y, z and k a
generator of $, since such elements span $. As sw£ + t*ws* is a.
symmetric element of the free algebra F(x, y, z, w), by Cohn's Theo-
rem it is a sum of Jordan products of x, y, z, w and the tetred {xyzw}
where each term in the sum has a factor w or {xyzw}. But then
(applying the homomorphism F(x, y, z, w) —> F(x, y, z) sending x —• x,
V —+ V, z —> z, w ~+ k) we see p + p* = skt + t*ks* is a sum of Jordan
products of x, y, z, k and the tetrad {xyzk} where each term has a
factor ke& or {xyzk}e& (by our hypothesis), so p + p* falls in the
ideal Si.

Since (i)' is not linear in p we must first consider a general p —
Σp{ = Js^iίi. Here prp* = Σ^rpf + J^iίPirp; + Pjrpf). By (ii)'
the latter sum is in $ since the ^ r p / belong to $ if 2̂  does, so once
again we need only consider an individual p{\ to consider prp* for
p — skt. Now 2>rp* — sktrt*ks* = skhks* for

Λ = ίrί* e ©(^(a?, y, «), *) = ΉS(*τ, 2/, «)

by the Corollary to Cohn's Theorem. But since S is an ideal in
FS(x, y, z) this yields kf = A M = Z7*Λ e β, and if s = st sm where
each Si is a n x , y , or z t h e n s&'s* = U$ι ••• USmk' e$t. Thus prp* e&
in all cases, finishing (i)' and the Proposition.

Shirshov-Cohn Theorem [1, p. 261; 2, p. 48]. Any united quadratic
Jordan algebra on two generators without extreme radical is special.

Proof. By universal properties, any quadratic Jordan algebra $
on two generators is a homomorphic image of the free quadratic Jordan
algebra FJ(x, y) on two generators, hence (by Shirshov's Theorem) of
FS(x, y): $ ~ FS(x, y)/B for some ideal SI. We now apply the Propo-
sition; we can forget about tetrads, since we are not concerned with
the variable z.

More precisely, let {k} be a set of generators for β, let 3 be the



SPECIALITY OF QUADRATIC JORDAN ALGEBRAS 765

ideal in FS(x, y, z) generated by z, and let 8 be the ideal generated
by z together with the k's. Then FS(x, y) = FS(x, y, z)/3 and

FS{x, y)/B ~ (FS(x, y, s)/3)/(S/3) = FS(x, y, z)/2 .

Each {xyzk(x, y)} or {xyzz} belongs to 2—the latter is {xyz2} — Ux>zty
and the former is a sum of Jordan products of x, y, z each term of
which has a factor z, so in fact the tetrads belong to 3 c: 8. Since
FS(x, y, z)/ί& ~ %$ has no extreme radical, we apply the Proposition to
conclude $ is special.

Note that if J 6 Φ then the extreme radical is automatically zero,
so in that case we obtain the usual Shirshov-Cohn Theorem that any
Jordan algebra on two generators is special. A standard example [2,
ex. 3 p. 12] shows that this stronger form does not hold in general:
if & is the ideal spanned by x2, x\ x\ xe in the free algebra

FJ(x) - FS(x) = F{x)

on a single generator over a field Φ of characteristic 2 then the coset
x in FS(x)/St has x2 = 0 but x3 Φ 0 so FS(x)/$t cannot be special. (Of
course, x3 is in the extreme radical).

An algebra Qf is power-associative if each subalgebra Φ[z] generated
by a single element forms an associative algebra under the natural
structure induced from Qf [5, p. 293], and strictly power-associative
if it remains power-associative under all scalar extensions. Power-
associativity amounts to the condition that a polynomial relation
p(z) — 0 implies zp(z) = 0. In the previous example it was the failure
of this condition which led to trouble. However, the following example
shows that imposing power-associativity is not by itself enough to
guarantee speciality; the condition is necessary but not sufficient.

EXAMPLE. If ίϊ is the ideal in FJ(x, y) over a field Φ of charac-
teristic 2 generated by Uty and all monomials of degree ^>6, then
$ — FJ(x, y)/St is a strictly power-associative algebra generated by
two elements which is not special.

Proof. ££= FJ(x, y)/$t = FS(x, y)/B is not special by Cohn's Cri-
terion since $ Π FS(x, y) > $£; indeed, UxUyx = xyxyx = xy(Uxy) be-
longs to S and to FS(x, y), yet not to St. To see this, recall that
the ideal generated by Uxy is spanned by all Mι Mn{ Uxy) and
M, . . . Mlz(UU{X)y)m for meFS(x, y) and M, - Ux, Uy, UXtV, Vx, Vy, or
/. The part of the homogeneous ideal St of ^-degree 3 and /̂-degree
2 is spanned by Ux,y(Uxy), VxVy{Uxy), VyVx{Uxy), i.e., by

x2yxy + yxyx2, 2xyxyx + x2yxy + yxyx2, yx2yx

+ xyx2y + x2yxy + yxyx2 ,
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hence by x2yxy + yxyx2 and yx2yx + xyx2y in characteristic 2, so that
xyxyx is not in $ .

We will show $ is power-associative; since any extension $Q has
the same form over Ω that $ does over Φ, the same argument will
apply to all Ϊ$Ω, and consequently $ will be strictly power-associative.
We must show that if p(z) e $1 for some polynomial p then also zp(z) e ft.

First we get rid of the constant terms. Let z = aol + w where w
contains the homogeneous parts of z of degree ^>1. Then the degree
zero part of p(z) eft is p(a0), and since ft is homogeneous and contains
only terms of degree ^ 3 we have p(a0) = 0. Thus, if q(h) = p(λ + α0)
we have g(0) = p(a0) = 0, so q has zero constant term, and

p(z) = q(z - αol) = q(w) .

Therefore

= aop(z) + wp(jδ)' = ^o^(^) + wq(w) ,

and it will be enough if wq(w) lies in ft.
This shows we may assume (after replacing p, z by q, w) that

p(X) and z have no constant term:

for Zi homogeneous of degree i. We next get rid of the degree one
term zι — ax + βy. If 7t = = 7r_i = 0 but yr Φ 0 then the degree
r term of p(z)e& is 7rzΓ> so by the homogeneity of ft

z[ = (<x̂  + /Sl/)r = αraf + /3r2/r + •

lies in ft. Since all elements of ft have #-degree ^ 2 and ^/-degree ^ 1
we see ar = βr — 0. Thus a = /3 = 0 and ^ = 0 as desired.

We are reduced to considering z = z2 + zz + £4 + z5 (modulo terms
of degree ^6) ; in this case zk for k ^ 3 consists entirely of terms of
degree :>6, so p(z) = Ίλz + 72^

2 and «j>(2) = ΊXZ
% mod ft. If 7χ = 0 tri-

vially zp(z) e ft, while if Ίx Φ 0 then 7 ^ + y2z
2 = 7^2 + 7^3 + ( 7 A +

72^) + (7i36 + 72^2 ° «β) e ft implies «2, ^3 e ft by homogeneity, so 7i22 =
7i(^ + 2̂ ° «s) € ft. In all cases «p(«) belongs to ft, and $ is power-
associative.

We can improve slightly on the theorem. In dealing with asso-
ciative algebras Sί with involution * in situations where J g Φ it is
sometimes more convenient to work with certain "ample" subalgebras
of φ(St, *) rather than just with #(3t, *) itself. A subspace ft of £(2C, *)
is ample if & contains 1 and all aka* for a e 2t and ^ e S . (In parti-
cular, ft contains all norms αα* and traces a + α*, so if i e Φ then
ft = φ). We will say a Jordan algebra is reflexive if ^σ M is an ample
subspace of #(«%($), π ) (and strongly reflexive if $ σ " = ^(su(^), π)).



SPECIALITY OF QUADRATIC JORDAN ALGEBRAS 767

By the Corollary to Cohn's Theorem $ = FJ(xu , xm) is strongly
reflexive for m ^ 3, but its homomorphic images may not be. How-
ever, they do inherit reflexivity:

THEOREM [2, p. 77] Ifί~$ is reflexive so is any homomorphic image.

Proof. Let φ: $ —• $ be an epimorphism. To see that 3°u is

ample in §(su(!3), it) we use (2) to see that (setting f = su(φ)) any

axa7 for a = ψ(a) e su($) = ψ(sw(S))f x = ψ(a?) e §'• - φ($γ* = ψ($σ")

has the form φ(a)φ(x)ψ(a)π = ψ(axaπ) e ir(^°u) = Sσ% and hence belongs

to ST .

COROLLARY. A ?̂/ quadratic Jordan algebra with three or fewer
generators is reflexive.

Since any algebra $ which is both special and reflexive has Qf =
c£*« ample in §(su(!3), π) we have the improved result

SHIRSHOV-COHN THEOREM [2, p. 77]. Any quadratic Jordan algebra
on two generators without extreme radical is isomorphic to an ample
subalgebra of £>(5Ϊ, *) for some associative algebra SI with involution.

Again, if J e Φ the only ample subspace of φ(3ί, *) is φ(2ί, *) itself.

3* An example* In this section we consider the free special
algebra FS(x, y, z) on three generators, together with three relations
p(x) = 0, q(y) = 0, r(z) = 0 where p(λ), g(λ), r(λ) are monic polynomials
of degree n, m, I respectively. (We allow any of these to be zero, in
which case we take the degree to be oo),

By singling out powers of x, y, z greater than or equal to n, m, I
we can write any monomial in F(x, yy z) uniquely as a word

w = a1w1a2w2 '' wkak+1

where (i) each wa is an x\ y', or zk for i ^ n, j ^ m, k ;> I; (ii) each
aa is a monomial containing only powers x\ y\ zh for i <n, j <rn, k <l;
(iii) there is no coalescing between the wa'& and the ajs in the sense
that if wa — xi then aa cannot end nor aa+1 begin with a factor x
(similarly if wa is y3' or zk). Since p, q, r are monic it is easy to see
( w r i t i n g i^>n a s i = ε + ne, j ^ m a s j = η + mf, k ^ l a s k = y + lg
for 0 ^ ε < m, 0 g 77 < n, 0 ̂  7 < I and e,/, ̂ r ^ 1) that i^>, 2/, ̂ ) has
a basis consisting of the

{ 4) m — aιmιa2m2 mkak+1
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where the aa satisfy (ii) and (iii) and the ma are either xεp(x)% yvq(y)f,
or zrr{z)9. We say ma has weight co(ma) = e,f, or g and m has weight
ω(m) = Σω(ma).

THEOREM. If Si is the (Jordan) ideal in FS(x, y, z) generated by
the elements p(x), xp(x), q(y), yq(y), r(z), zr(z) for some monic p(λ), g(λ)r

r(λ) then FS(x, y, z)/Sfc is special.

Proof. By the Corollary to Cohn's Criterion it suffices to show
Ul Π FS(x, y, z) c $. So suppose f(x, y, z)e® is symmetric. It is easy
to see that the elements m (as in (4)) of weight Ξ> 1 form a basis for
U (they are all contained in $, and they span an associative ideal
containing p, xp, q, yq, r, zr which are the Jordan generators for $ and
associative generators of $). Since the reverse m* of an element m
again has the form (4), f(xf y, z) is a linear combination of elements
m + m* and of symmetric elements m = m*.

Consider the homomorphism of the free algebra F(x, y, z, p, q, r)
on[6 free generators onto F(x, y, z) sending x —>x, y—»y, z —>zf p —• p(x)f

q—*q{y)iT-+r(z). Each m + m* has a pre-image of the form n + n*
where if m is as in (4) then n — ajb^n^ nkak+1 for aa as before
and na either xεp% yvqf, or zrrg; such n + n* is symmetric in F(x, y,
z, P, q, r), hence by Cohn's Theorem a Jordan product of x, y, z, p, q, r
and ^-tads {xh xin} for 4 g n ^ 6, where we order the variables
%<p<y<q<z<r. Applying the homomorphism, m + m* is a
sum of Jordan products of x, y, z, p(x), q(y), r(z) and w-tads. But all
the w-tads reduce to Jordan products of a?, y, z, p(x), q(y), r(z) together
with xp(x), yq(y), zr(z)—for example, the 6-tad

{x p(x) y q(y) z r(z)} = {xp(x) yq(y) zr(z)} .

Thus m + m* is a sum of Jordan products at least one factor of
which is a p(x)9 q(y), r(z) or xp(x), yq(y), zr(z) (since m is of weight ^ 1
and so has at least one factor p(x), q(y), or r(z)). This means that
m + m* falls in the Jordan ideal $.

A similar but more involved argument works for the symmetric
m = m*. Consider the homomorphism of the free algebra on 9 gen-
erators F(x, y, z, p, q, r, pf, q\ r') to F(x, y, z) sending x-*x,y-+yr

z->z,p-* p(x), q -• q(y), r -* φ ) , p' -> xp(x), q9 -> yq(y), rf -> zr{z). We
claim m = m* has a pre-image π = n* which is symmetric in F(x, y,
z$ P, QJ ri P\ Q'J r') (Once we have this we argue as before; we have
to worry about w-tads for 4 <£ n ^ 9 now, where we order the varia-
bles x<p<.p'<y<q<q'<z<r<r', but again all %-tads reduce
to ordinary Jordan products in FS(x, y, z) since xppf —* xp(xf%, xp —*
xp(x), PPr —+ p(x)xp(x) etc.—for example, the 7-tad {xyqq'zr r'} reduces
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to {x y q(y) yq(y) z r(z) zr(z)} = {x yqiyfy zr{zfz\—and thus again m = m*
falls in &). If m = ajn^ mkak+ί = m* = ak+1mk afπi^f we
have aγ = α£+1, α2 = α?, , α/c41 = α? and mx = mk, m2 == m ^ , by
uniqueness of the representation (4). Therefore n — α ^ c ^ nkak+ί

will be a symmetric pre-image of m if the wα are symmetric pre-images
of mn_. So consider mα = af£>(#)e. Now # εpe is not symmetric when
x, p are free variables, so we must find an alternate representation.
If ε = 2ε' is even then xεp(x)e = #ε'p(#)eαrc' has the symmetric pre-image
xe'pexε'9 similarly if e ~ 2er is even then xεp(x)e = p(x)e'χ-p(x)e' has
pre-image pe'xεp\ while if ε = 2ε' + 1 and e = 2er + 1 are both odd
xεp(x)e — xε'p(x)ef(xp(x))p(xy'xε' has symmetric pre-image xε'pe'p'pe'xε'
(here we need the extra free variables p', q', r'). We also note that
since m is of weight Ξ>1, π contains at least one factor p,q,r or
p'y <?', r'. As we said above, this is enough to allow us to complete
the proof that m — m* falls in SI.

Since FJ(x, y) = FS(x, y) by Shirshov's Theorem, specializing z—>0
gives

COROLLARY. If p(x), g(λ) are monic polynomials then FJ(x, y)/B
is special for $t the ideal generated by p(x), xp(x), q(y), yq(y).

It is essential (in the general case where \^.Φ) that we take xp(x)
and yq{y) along with p(x) and q(y) Indeed, in our pathological one-
generator example we divided out by x2 but not .τ3, and it was this
x°° that came back to haunt us. However, the Example of § 2 shows
that the condition p(z) e ̂  => zp(z) eSt is not by itself enough to
guarantee speciality.

It is also essential that the relations involve only one variable at
a time. The situation becomes much more complex when the variables
are intermixed. For example, if £ in FS(x, y, z) is generated by
x2 — y2 then FS(x, y, z)/$t is not special, but it 5Ϊ is generated by
Uxy — x, Uxy

2 — 1 then F/$t is special. Thus speciality depends very
much on the particular relations chosen.

4* Applications to Peirce decompositions* We define the free
Jordan algebra on X ivith n (supplementary, orthogonal) idempotents
FJ(X; e19 , en) to be the quotient FJ(X U Y)/B where Y = {ylt , yn}
is disjoint from X and ^ is the ideal generated by 1 — Σyif y\ — yί9

Vy.Vs, Vi ° y3{i Φ j). The cosets β̂  = y{: + S are supplementary ortho-
gonal idempotents in FJ(X; eu , en) = FJ(X U F)/β, and one has
the universal property that any map I - ^ S of 1 into a Jordan alge-
bra 3 with n supplementary orthogonal idempotents flf •••,/« extends
uniquely to a homomorphism FJ(X; eu , en) —> Jy sending e{ —>f{.
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Consider the following properties of the Peirce decomposition of
an arbitrary Jordan algebra $5 relative to a supplementary family of
orthogonal idempotents e19 •• ,en [2, p. 120-1; 4, p. 1074-5].

(PD 0) En = Ue. and E{j = Ue.,e. = E3i form a supplementary
family of orthogonal projections on $, so ̂  — φ . ^ y for

and for elements xpg of the Peirce spaces Q^ and distinct indices
i, j, k, I,

(PD 1) ^ e ^ , so X c ^
(PD 2) a% e $ „ + 3;;, so 3fo c $ „ + &,•
(PD 3) ffϋ o 7/-,. G &,•, so $ „ o $.,. c Q^.

(PD 4) α^ o τ/yfc G ̂ ί & , so %j o $J/C c $ik

(PD 5) α^ o Vrs = 0, so S, g o 3 r β = 0 if {p, g} Π {r, s} = 0
(PD 6) E7β..2/iίe&-ί, so t7 3 .^« c » „
(PD 7) [ / ^ G S , , SO ̂ 3 f«ca y

(PD 8) Ux..yis = xiά o t/βχa;ii o ̂ , ) ~ Vij o ίΓβ j(^.), so E7S..&, c 3fo-
(PD 9) UXpqyrs = 0, so t/3M3fr. = 0 if {r, s} £ {p, }̂
(PD 10) {α ίίi/ii^} = ( .τ^°^)oz j j = xiio{yi5o^), so { ^ ^ . ^ ^ j c ^ , -
(PD 11) {xiiyi3zjk} = (xiioyij)ozJk = xiio(yiJozjk), so { S ^ i S ^ c i ^
(PD 12) {xijyjjzjk} = (xiJoyj3)oZjk = xijo(yjjoz3k), so { ^ i S ϋ S . J c : ^
(PD 13) {XiJyjkzkl} = (xijoyjk)ozkl = xijo(yJkozkl), so { ^ i ^ i ^ u l c i S ^
(PD 14) {Xijyjkzki} = Ue.{(Xij o yjk) o ̂ .} = ^.{^y o (yjk o ̂ ,)}, so

(PD 17) {»„!/„««} = «„ o (2/« o zu), so {^ί^α^o } c S«
(PD 18) {xi3yHzik} = xu o (yH o Zik), so {$„&<$«} c ^ ί f c

(PD 19) {xpqyrsztv} = 0, so {^^^^i j = 0 unless the indices may-
be linked

(PD 20) Um.,et = C/.^y

(PD 21) e{ o 2/i3 = 1/«, xL ° ί/i; = x« ° (a;« ° 2/Sj), C/αrί̂ ϋ ° Vn = Xu °
(z» ° (a?« o Ϊ/,,)) so that VH = I, Vx>{ = V^, Vσir,r),tί =
VXiΎHΎXii on %,.

It is an easy matter to verify these for special Jordan algebras, since
if 31 = Σijϊlij is the Peirce decomposition of the associative algebra Sΐ
then 3 = Σig^ij f° r $ ϋ = %J + %•* ^ the Peirce decomposition of the
Jordan algebra $5 = 2ί+.

We claim that if these relations hold in 5̂ = FJ(x; ely •••, ĝ )
(taking X = {£} to consist of one element) they hold in any $ . (This
is why there are two "missing" relations

(PD 15) {XijVjjZji} = ϋe-{(^i o Vjj) o ̂ -J = t/ejαji; o ( % i o ^.)}, so

(PD 16) {xuVijZii} = UH{(xu o Vij) o Zji} so {Sf«3fίŷ -«} c %%i;

these do not seem to follow from £$, and must be verified directly).

The reason for this is that for any collection of elements xid from
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distinct Peirce spaces $< y there is an element x = Σxi3 having the xi3

as its Peirce ίi-compoments; there is a homomorphism 3ί—+3> sending
x—* % and βi—+ eiy so the Peirce components xi3 of x map into the
Peirce components xi3 of x. Hence any relation holding among the
xi3 will also hold for the xi3 . That is, any relation involving elements

from distinct Peirce spaces will hold in $ if it holds in $. This im-
mediately applies to (PD 1-5), (PD 7), (PD 9-14), (PD 19-20), and the
first two parts of (PD 21). The same argument works for (PD 0): if
I = ΣEijy E!3 = Eih EpqErs = 0 on x then I = ΣEi3J E2

3 = Eih EpqErs = 0

an any x, so the Eί3 are supplementary orthogonal idempotents).
The remaining formulas can be derived from the previous ones

by various stratagems. For (PD 17-18) we use the relation

{abb} = a o b2 {abc} + {acb} = a o (6 o c)

valid in any Jordan algebra. In (PD 18) {xi3y3izik} = xi3 o (yH o zik) —
{XifiikVίi} = B»i ° (Va ° «ijfe) since U^.βik = 0 by (PD 9), and similarly
in (PD 17) since 1/%.$^ = 0. (This argument also shows either one
of (PD 15), (PD 16) implies the other).

For (PD 6), (PD 8), and the last part of (PD 21) we use

dy{nB}\χ = U9y + UXfyX = Uxy + {xxy} = Uxy + x2 <> y .

Now the relations
(PD 6/ */...&„ G&,
(PD 8)' UXi.xi3 - α?4i o UH{x\3)

(PD 21)' T^^, .^ = ViH on 3fiy

will be inherited from $, and this remains true over any scalar ex-
tension Ω of Φ, so we can linearize to get

yrr/ . + V2 — V V V + V2 V + V V2

The first of these implies (PD 6) via (PD 1), the second implies (PD 8)
via (PD 2), and the third implies (PD 21) since we already know
y 2 _ y 2 a m j S G y _ y y , y y

Thus the task of verifying Peirce relations for an arbitrary Jordan

algebra $ reduces to verifying them for the free Jordan algebra $ on
one generator with idempotents. The whole point of this reduction is

that $ is special, and we already remarked that the relations were
easily verified in any special algebra.

THEOREM. The free Jordan algebra FJ(x; e19 •• ,e Λ ) on one gen-

erator with n supplementary orthogonal idempotents is special.
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To show FJ(x; eu , en) = FJφ(x; eίy , en) is special it will be
enough if it is imbedded in a special algebra FJφ(x; el9 * -,en)Ω =
FJΩ(x;eί9 •• , e Λ ) . We choose Ω as follows. Consider t h e polynomial
ring φ[Xlf , Xn]. The element μ = Π;<; Pw — λ i ) is homogeneous in
the λ 's and the coefficient of λΓ~1λ2

%~2 λUi in μ is 1, so μ is not a
zero divisor in Φ[X19 •••, λ w ] . This guarantees Φ is imbedded in Ω —
Φ[Xl9 •• »λΛ][l/μ]; the important thing about £? is t h a t each X€ — λy is
invertible in Ω. Since μ is not a zero-divisor in

FJΦ(X; eu , O ® Φ[λx, , Xn] ,

FJΦ(X; elf , βΛ) is imbedded in FJΦ(X; e19 , β j^ = FJΩ(X; e19 , βΛ).

PROPOSITION, i^or αni/ X, FJΩ(X; el9 , βΛ) = FJΩ(X, y)β where Si

is the ideal generated by p(y) = Π (V ~~ ^1) and VP(v)'

Proof. Consider the polynomials p(X) = Π(X — λ«) and p^λ) —

Π ^ ί (λ - λ ViLvi (^ - λ^) i n fl W e h a v e ^( λ ^) = x> P*(λi) = ° i f

i Φ i. Therefore 1 — Σ ^(λ) is of degree ^n — 1 yet has w roots
λ1? , λΛ, so it must be identically zero, and similarly for X = ^Xipi(X):

(We always assume n > 1 since for n = l FJ(X; et) = FJ(X; 1) = FJ{X)
has only the trivial idempotent et = 1). Also

s(\), Pi(X) o

Pi(x) = Pi(xy - Σ

are all divisible by p(λ) and belong to the (Jordan) ideal generated
by p(x) and λp(λ).

These conditions imply that the elements e€ = Pi(y) in FJΩ(X, y)
satisfy Σ &< = 1» Σ ^%^% = 2/» ^ β y e $, ê  ° ^ e Sί, β? — 8i e ίB, so the
cosets βi = e'i + ^ in FJΩ(X, y)/St form a supplementary family of
orthogonal idempotents. (Note #;(?/) is defined since we are allowed
to divide by λ* — Xj in Ω). We show FJΩ(X, y)/® is isomorphic to
FJΩ(X; e19 , en) by showing it has the universal property of the
latter. Given any map φ of X into a Jordan algebra $ with idempo-
tents /i, •••,/» we have a homomorphism FJΩ(X, y)-+$> sending x —•
<£>(#), 2 / - * Σ \ / i T h e n β< = ί?«(2/) is mapped into

into p ( Σ λy/y) = Σ ί>(λi)/y = 0, and 2/ί>(2/) into Σ \P(^j)fj = 0. Since
and 2/?>(2/) generate ίδ we have an induced homomorphism

FJ0(X,v)/St >%
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sending β̂ —*fim The uniqueness follows since FJΩ(X, y)jR is generated

over Ω by X and the ^ (because Σ λ* β; ~ V)

Applying the Proposition when X = {a?}, we have

^ ( a ; ex, , en) = FJΩ{x,

where $ is generated by p(y) and ?/p(j/). By the Corollary to the
Theorem of the previous Section (with q(λ) = 0), FJΩ(x, #)/$ is special.
Therefore .Fe7(α;; et, , en) c FJΩ(x; eu , βn) is special too, completing
the proof of the theorem.

The algebra FJ(x, y; el9 « ,βn) on two generators is no longer
special, since it has the exceptional algebra φ((£3) as a homomorphic
image ((£ a Cay ley algebra); indeed, the exceptional algebra can be
generated by two elements x, y and the idempotents el9 e2, e3 [2, ex.
1 p. 51].
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