
PACIFIC JOURNAL OF MATHEMATICS
Vol. 36, No. 3, 1971

DIFFERENTIAL SIMPLICITY AND COMPLETE
INTEGRAL CLOSURE

YVES LEQUAIN

Let R be an integral domain containing the rational num-
bers, and let Rι denote the complete integral closure of R.
It is shown that if R is differentiably simple, then R need
not be equal to R'', even when R is Noetherian, and then
the relationship between R and Rf is studied.

Let gf be any set of derivations of R. Seidenberg has shown
that the conductor C = {x e R \ xRf c R) is a £^-ideal of R, so that
when R is ^-simple and C Φ 0, then R = Rf. We investigate here
the situation when C — 0.

The first observation that one must make is that it is no longer
true that R = Rf when R is differentiably simple, even when R is
Noetherian. We show this in Example 2.2 where we construct a 1-
dimensional local domain containing the rational numbers which is
differentiably simple but not integrally closed. This counterexamples
a conjecture of Posner [4, p. 1421] and also answers affirmatively a
question of Vasconcelos [6, p. 230].

Thus, it is not a redundant task to study the relationship between
a differentiably simple ring R and its complete integral closure. An
important tool in this study is the technique of § 3 which associates
to any prime ideal P of R containing no ZMdeal a rank-1, discrete
valuation ring centered on P; by means of this, we show in Theorem
3.2 that over such a prime ideal P of R there lies a unique prime
ideal of R\ When R is a Noetherian ϋ^-simple ring with {Pa}aeΛ as
set of minimal prime ideals, Theorem 3.3 asserts that R' = f\aeA {Ra \ Ra

is the valuation ring associated with the minimal prime ideal Pa};
Corollary 3.5 asserts that Rf is the largest ^-simple overring of R
having a prime ideal lying over every minimal prime ideal of R.

1* Preliminaries. Our notation and terminology adhere to that
of Zariski-Samuel [7] and [8]. Throughout the paper we use R to
denote a commutative ring with 1, K to denote the total quotient
ring of R, and A to denote an ideal of R; A is proper if A Φ R. A
derivation D of R is a map of R into R such that

D(a + b) = D(a) + D(b) and D(άb) - aD(b) + bD(a)

for all a,beR.
Such a derivation can be uniquely extended to if, and we shall
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also denote the extended derivation by D. D is said to be regular
on a subring S of K if D(S) czS. If ^ is a family of derivations
of R, A is called a ^-ideal if D(A) c A for every D e ̂  when &r =
{Z)}, we merely say ZMdeal. If i? has no ϋ^-ideal different from (0)
and (1), R is said to be ^-simple. We use D{o)(x) to denote x, and
for n^l D{n)(x) to denote D{D^~1]{x)), i.e. the wth derivative of x;
by induction one proves Leibnitz's rule:

We assume henceforth that &r is a family of derivations of R
and that De Ξf. Let φ: R—+ S be a homomorphism onto; then

2T(9>(r)) - φ(D(r))

defines a derivation D' on S if and only if the kernel I of φ is a D-
ideal. Suppose that I is a ϋ^-ideal, and write ϋ^ ' to denote the set
of derivations of S thus induced by £2f\ if A is a ^-ideal of R, then
9>(A) is a £^'-ideal of 5, and conversely if 5 is a ϋ^'-ideal of S, then
φ^iB) is a ϋ^-ideal of J? containing /. Thus, in particular, if A is
a maximal proper ^"-ideal of i?, then i?/A is ^'-simple.

LEMMA 1.1. Let D be a derivation of R, M a multiplicative
system of Ry and h: R —> RM the canonical homomorphism. ThenΫ

we can define a derivation on RM, which we also call D, by

D{h{r){h(m))-1) - [h(m)h(D(r)) - h(r)h(D(m))](h(m2))-' .

Furthermore, if A is a D-ideal of R, then h(A)RM is a D-ideal of
RM, and if B is a D-ideal of RM, then h~~ι(B) is a D-ideal of R.

Proof, ker h — {x e R \ xm — 0 for some m e M) is a D-ideal of
R since 0 = D(xm) — xD(m) + mD(x) = xmD(m) + m2D(x) — m2D(x).
Hence D induces a derivation on R/ker h, a derivation which can be
then extended to RM. The remainder of the lemma is straightforward.

LEMMA 1.2. Let & be a family of derivations of R, and sup-
pose that R contains the rational numbers. Then, the radical of a

of R is a ^

Proof. See [2, Lemma 1.8, p. 12].

COROLLARY 1.3. If P is a minimal prime divisor of a S)-ideal
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A, and P does not contain an integer Φθ, then P is a &-ideal.

Proof. Localize at P and apply 1.1 and 1.2.

THEOREM 1.4. Let A be a maximal proper ^f-ideal of R, then
( i ) A is primary.
(ii) If R/A has characteristic p Φ 0, then V~A is a maximal

ideal.
(iii) If R/A has characteristic 0, then A is prime.

Proof. ( i ) Suppose x, y e R, x g A and xy e A; then, U?=o (A:
yn) ZD A: y > A. But U~=o (A: y%) is a ^-ideal; hence, by the maxi-
mality of A, U~=o 04.: yn) = R and there exists n such that yn e A.

(ii) Let P be a maximal ideal of R containing A. Consider the
ideal B = (A, {xp \ x e P}) c P; since i?/A has characteristic pr B is a
^-ideal; hence, by the maximality of A, 5 = A and P = l/A

(iii) Since 22/A has characteristic 0, A contains no integer other
than 0, hence the prime ideal P = V~A contains no integer either, and
by 1.3 P is a ^-ideal. Then, by the maximality of A, P = A.

COROLLARY 1.5. Let R be of characteristic 0. Then R is £&-
simple if R contains the rational numbers and has no prime 3f-
ideal different from (0) and (1). If R is ^-simple, then R is a
domain.

One should note that a ^"-simple ring R always contains a field,
namely F — {x e R \ D(x) = 0 for all D e i^}; moreover, if the charac-
teristic of R is p Φ 0, 1.4 shows that R is a primary ring and hence
is equal to its total quotient ring; so this case will not be of interest
in our further considerations, and throughout the remainder of this
section we shall be dealing with a ^-simple ring of characteristic 0,
which is then a domain containing the rational numbers.

DEFINITION 1.6. Let R be a domain with quotient field K. An
element x e K is said to be quasi-integral over R if there exists an
element d e R, d Φ 0, such that dxn eR for all n*>l. The set Rr of
all elements of K that are quasi-integral over R is a ring, called the
complete integral closure of R. R is said to be completely integrally
closed if R = R'. Note that if R is Noetherian, the concepts of in-
tegral dependence and quasi-integral dependence over R for elements
of K become the same.

LEMMA 1.7. Let R be a domain with quotient field K, S a ring
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such that Rcz SdK, and & a family of derivations of R regular
on S. Then S is ^-simple if R is Sf-simple.

Proof. If B is any ^-ideal of S, then B Π R is a ^-ideal of
R, and if B is different from (0) then B Π R is also different from
(0) since SczK.

THEOREM 1.8. Let R be a domain of characteristic 0 and Rf its
complete integral closure. Then Rf is &simple if R is ^-simple.

Proof. By [5, p. 168], any De& is regular on R', hence the
theorem follows from 1.7.

2* Example of a l^dimensional local ring which is D-simple
but not integrally closed* First, in this section, we modify an idea
of Akizuki in [1] to construct some 1-dimensional local ring R of
arbitrary characteristic such that the integral closure R is not a
finite ϋ?-module.

THEOREM 2.1. Let k be a field of arbitrary characteristic, Y
an indeterminate over k, π = axY + a2Y

3 + + arY
2r~ι + an

element of k[[Y]] which is transcendental over k[Yf. Set

θx = πY~\ θr = (θ^ - dr-dY-*"1

for r ^ 2 (alternatively θr = ar + ar+1Y
2r + + asY

28~2r +•--); for
r ^ 1, set

tr = (θr - ar)
2 and πr = TΓ - (a,Y + + α^Γ21"-1).

αiso Γ = Λ[Γ, π, tγ, ί2, , ίr •] α^ώ P = (Γ, π)T.
Tczk[[Y]] and that Pa Yk[[Y]]. Then,

( i ) For r > 1, ̂  = Y2r(a2

r + £r) + 2αrY7Γr and P is a maximal
ideal of T.

(ii) For r :> 1, π\ — F2 r + 1~2tr and k(Y,π) is the quotient field
of T.

(iii) The ring R = TP is a 1-dimensional local domain.
(iv) The integral closure R of R is not a finite R-module.

Proof. ( i ) For r > 1, we have

t^ = (θ^ - ar^)2 = (Y2*-1^)2 = Y2\a\ + tr) + 2arY
2r(θr - ar) .

But

Y2\θr - ar) = Y[π - (a,Y + . . . + arY
2r^)] = Γτrr ,

1 Such an element exists; take for example π = aiY'+ α^F3 + +
with αr 3F 0 for every r ^ 1.
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hence tr_x = Yir{a\ + tr) + 2arYπr. Since furthermore P(zYk[[Y]\,
l&P, and P is a maximal ideal of T.

(ϋ)

πr = π - {a,Y + ••• + arY
2r~')

= y-Hα^r2 ' + . . . + α^F"*'- 2 ' + ...)

= Yίr-\θr - ar)

thus π\ = F 2 r + t" 2ί r and fc(F, π) is the quotient field of T.
(iii) Let us show that F belongs to every nonzero prime ideal

of R. Since k(Y, π) is the quotient field of R it suffices to show that
R[Y-Ί = k(Y, π). Let βek[Y, π]; then β = E?=oS^ with s^klY].
For any integer r ^ 1, set fr = Σ?=o s^a.Y + • + α rF

! Γ-') ;; then

fr+ί = Σ βίίαxΓ + + α.Γ2"-1 + α ^ ^ * ^ 1 - 1 ) ' = /, + Y2r+1-%+ί

with hr+1 eA;[Γ], and since 2r+1 - 1 > r, we have / r = δ0 + b,Y +
+ &rF

r + Γ'+'i/,. and

/ r + 1 = b0 + b,Y + + brY
r + br+1Y

r+ί + Yτ+tgr+1

with b0, '•', br, br+ίe k and gr, gr+ιe & [Y]. Now, since

Tr = πr + ( o ^ + + arY
ϊr-1), β = Σ βίJr* = M r + Λ

t = 0

w i t h 8r e T. H e n c e , t h e r e e x i s t s 60, δ x , •••,&,., e fc, δj, •••,<?,., e T
a n d flTi, , gr, € fc[ Γ ] s u c h t h a t

() Σ i

Note that πre P and therefore that πr is a nonunit in R.
If 60 ̂  0, with r = 1, the relation (*) gives that β = &0 + (δx Y" +

π Λ + ΓVi) is a unit in 12 and thus that β-1 e Ra R[Y~1].
If δ0 = bx = = δr_! = 0 and δ r ̂  0, the relation (*) gives β =

F r (δ r + Fgfr) + τcr8r where wr = br + F# r is a unit in R; then

r - TΓA) - F2rw2

r - τr2

rδ
2

r - Y2r(w2

r - Y2r+1-2r~%δ2

r)

where w\ - Y2r+1-2r-%§2

r is a unit in 12, so that β^
If br = 0 for every r >̂ 0, then by the relation (*) we have

βe Π (τrr, F + 1 ) Γ c ή F^fc[[Γ]] - (0) .
r=l r=l

Thus, if β e fc[ F, π], either β-1 e Λ[ F-1] or β = 0. If 37 e fc(F, π),
then 77 = v\-1 with y, λe A;[F, π], λ ^ 0, so that ^e-RfF"1]; hence
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Now,

π2 = (Yθ,)2 =[a,Y+ (θ, - a,)Yf = (t, - a\)Y2 + 2a,Yπ

so that Y-1 e R[π~ι], k(Y, π) = R[Y~ι] a R[π~ι], and π belongs also to
every nonzero prime ideal of R. Thus PR = (Y,π)R, which is the
unique maximal ideal of R and which is contained in every nonzero
prime ideal of iϋ, is the only nonzero prime ideal of R. As further-
more PR is finitely generated, R is a 1-dimensional local ring.

(iv) First, let us show that θλ = π Y~ι £ T. Suppose that θ, e T =
k[ Y, π, t19 , tr, •]; then θ1 — f(π, tly , t/) where / is a polynomial
in ^ + 1 indeterminates over k[Y]. For r < s, by (i), tr can be ex-
pressed as a linear combination of 1, ί/and π with coefficients in k[Y],
hence θ1 = /(TΓ, ίx, , V) = F{π, t/) = F(YΘ19 {θ/- a/γ) where F is a
polynomial in two indeterminates over k[Y], Furthermore, by defini-
tion θr-x = Y2r~ιθr + α r _ n hence ^ = Γ2^26>^+ ^ with β/e k[Y] and
we have

(* *) Y*'-*θ, = G( Y^θs, (θ, - a/f)

where G is a polynomial in two indeterminates over &[F]; but π being
transcendental over &[F], θ/ is transcendental over k[Y] also, and the
relation (**) has to be an identity, which is absurd. Thus, θί g T.

Now, let i2* be the completion of R with the (PR)-adic topology;
{πr}r^0 is a Cauchy sequence in R. Suppose that πr e P2R for some
T ^ 1; since P 2 is a primary ideal of Γ, we have πr e P2R Γ\ T = P2aYT,
and π = πr + {aJΓ + + ^Γ27*-1) e Γ Γ which is absurd since θι £ T.
Thus, for every r ^ 0, πrgP2R and /S = lim rτr r is ^ 0 . However, we
also have β2 = limr 7Γ2 = limr Y2r+1~% = 0; hence J?* has a nonzero
nilpotent element and R is not a finite ϋ?-module [1, p. 330].

EXAMPLE 2.2. Let Q be the rational numbers, (Xlf •••, Xr, •••)

a set of indeterminates over Q and fc = Q(Xίf •'•> Xn •••)• Let

π = b.X.Y + + 5 J J 2 M + •

be transcendental over k[Y] with b{eQ - {0} for every i ^ I 2 . Con-
struct the rings T = fe[Γ, TΓ, ίx, , ίr, •] and i? = T P as in 2.1. On
the quotient field k(Y, π) = Q(Xi, , X r, Y,π) define a derivation
D by

D(q) = 0 for every q e Q

D(Y) = 1

d = 0
2 There exists such a π since & is countable.
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D(X2) - -Ίb^X.Y*

Then,
( i ) D is regular on R
(ii) R is a 1-dimensional local D-simple ring which is not inte-

grally closed.

Proof. ( i ) Since R = TP, it suffices to show that D(T) c R.
By definition of D we already have D(&) aR, D(Y) e R and D(ττ) e R;
hence it remains to show that D(tr) e R for every r ^> 1. Differentiat-
ing τr2 - Γ2r+1-2έr, we get 2πrD(πr) = Γ2r+1~2D(£r) + (2r+1 - 2) Γ2 r + 1-%;
but tre YR by 2.1, hence D(tr) e R if and only if πrD(πr)e Y2r+1~2R.
Let us show that in fact we have D(πr) e Y2r+1~2R. From πt = TΓ —
δ ^ Γ we get Dfo) = D(π) - bLX, = 362X2Γ

2; by induction, if we
suppose that D(πr^) = (2r — l)brXrY

2r~2 and if we differentiate the
relation τrr = TΓ^, - brXrY

2r~ι, wegetD(τr r) = (2 r+1 - l)brhlXr+1Y
2rΛ1~2e

Y^^^R. Hence D is regular on R.
(ii) The only prime ideal of R which is not (0) or (1) is PR =

(Y, π)R; it is not a D-ideal since D(Y) = 1; thus by 1.5, R is D-simple.
Furthermore by 2.1. R is a 1-dimensional local, not integrally closed,
domain.

3* On the complete integral closure of a ^ - s i m p l e ring* We
have seen in the preliminaries that a ϋ^-simple ring of characteristic
p Φ 0 is equal to it total quotient ring. In this section we are con-
cerned with rings of characteristic 0. Henceforth, R will denote a
ring containing the integers.

THEOREM 3.1. Let R be a ring, D a derivation on R, P a prime
ideal of R containing no D-ideal other than (0). Define v: R\{0} —>
{nonnegative integers} by v(x) — n if D{i)(x) e P for i — 0, , n — 1
and D{n(x) g P. Then,

( i ) R is domain.
(ii) v is rankΛ-discrete valuation whose valuation ring Rv con-

tains R and whose maximal ideal Mυ lies over P.
(iii) D is regular on Rv and Rv is D-simple.

Proof. ( i ) If n is any integer, D{n) = 0 and nR is a D-ideal
of R; hence 0 is the only integer contained in P. Now, (0) is a D-
ideal, hence by 1.3 any minimal prime divisor Q of (0) is a D-ideal
also; then, by the hypothesis made on P, we have (0) = Q and R is
a domain.
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(ii) Let x and y be two nonzero elements of R, and let v(x) = n,
v(y) = m,n ^ m. For every i such that 0 <̂  i <Ξ w — 1, both Da)(x)
and D(ί)(?/) belong to P, hence Z)(ί)(# + y)eP and

tf(α + #) ^ w = inf M#), v(y)} .

Let & be such that O^k^n + m — 1. For 0 ^ ΐ ^ inf {&, w — 1}
we have D{i)(x)eP, hence also CiD{i){x)D{k-i]{y)eP) for w ^ fc and
n ^ i ^ k we have 0 ^ & — i <^ k — n ^ m — 1, hence D{k~i](y) e P
and CiD{i)(x)D{k-i)(y)eP; thus

Σ CiD^(x)D^i\y) e P .
4 = 0

Now,

whereas C:+mDin)(x)Dim)(y) $ P since C; + m , D ( w )(^), Z)(w)(τ/) ί P; thus

Din+m)(xy) £ P , v(a?i/) = % + m = v(α?) + v(y)

and v is a valuation, rank-1-discrete since its value group is the group
of integers. Furthermore, we obviously have R c Rυ and Mv Π R = P.

(iii) Let ab~~ι be any element of Rv with α, δ e R, b Φ 0, v(α) ^
v(6); then ^(αδ-1) = [bD(a) - αD(δ)]6-2. If v(a) > v(b), then v(D(α)) =
v(a) - 1 ^ v(6) and v(D(b)) ^ v(6) - 1 so that

v(bD(a) - aD(b)) ^ inf {v(b) + v(-D(α)), v(α) + v(D(b))} ^

and ^(αδ-1) e Rv. If v(α) = v(b) = 0, then v(δjD(α) - αD(δ)) ^ 0 = 2v(b)
and ^(αδ-1) e J?,. If v(a) = v(b) = n > 0, then v(bD(ά)) = v(aD(b)) =
2n - 1, so that D{k)φD(a) - aDφ)) e P for every fc ^ 2 w - 2; further-
more we have

with ^ e P , and similarly D^^ (aDφ)) = α2 + C^D^icήD^φ) with
α 2 e P, so that D^-^φDia) - aDφ)) = aλ- a2eP; hence, ^(δί)(α) -
aDφ)) ^ 2w and Dfab-1) e ϋ?v. Thus Z) is regular on i^ . Moreover,
β v is D-simple since if A ^ (0) were a ZMdeal of i2v, then AC] R ^ (0)
would be a D-ideal of R contained in P, which would be absurd.

THEOREM 3.2. Let R be a domain with quotient field K, S a
ring such that R a S a K and D a derivation of R regular on S.
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Let P be a prime ideal of R such that RP is D-simple. Then,
( i ) There is at most one prime ideal Q of S lying over P, Q

being a minimal prime ideal when P is.
(ii) If S is the complete integral closure Rf of R there is ex-

actly one prime ideal P ' of Rr lying over P.

Proof. ( i ) Let Q be a prime ideal of S such that Q D R = P.
Being regular on S, D is also regular on SQ, and SQ is D-simple since
Sρ Z) RP. Define v: R\{0} —> {nonnegative integers} by v(x) = n if

Dw(x), , D[n-1](x) e P and D{n){x) $ P ,

and w: S\{0} —> {nonnegative integers} by

w(y) = m if Dw{y), . , D(7Ά~1](y) e Q

and D{m)(y)£Q. By 3.1, v and w extend to valuations of K; further-
more, for xeR we have D{k)(x)eP if and only if D{k)(x)eQ since
Q Π R = P; hence v = iv, and ζ) = ikf7 Π S where Mv is the maximal
ideal of the valuation ring Rv of v.

If P is a minimal prime ideal of i?, suppose that Qr is a prime
ideal of S such that 0 < Q ' c Q . We have 0<Q'Γ\Rc:QC}R = P
and Q' Π i? = P by the minimality of P; then Q' = Q since Q is the
only prime ideal of S lying over P.

(ii) By [5, p. 168] every derivation of R is regular on R'. Being
a rank-1 valuation ring, Rv is completely integrally closed and contains
R\ Then, Pf = M, Π J?' is a prime ideal of Rf lying over P; of
course, by (i), P' is unique.

THEOREM 3.3. Lβί R be a Noetherian ^-simple ring and R its
integral closure. Let {Pa)aeΛ be the set all the minimal prime ideals
of R. Then,

( i ) For every ae Λ, there exists D e & such that RPa is D-
simple, and there exists a unique prime ideal Pa of R lying over Pa.

(ii) {Pa}aeΛ is the set of all the minimal prime ideals of R.
(iii) Let D e & such that D(Pa) (£ Pa, wa the valuation associated

by 3.1, and Ra its valuation ring. Then Ra = RP(x {hence, any two
derivations D and Π such that D(Pa) ςt Pa and D (Pa) ςt Pa give rise
to the same valuation wa).

(iv) R = Γ l - X

Proof. ( i ) Being ^-simple, R is a domain containing the
rational numbers, and for any aeΛ, there exists ΰ e S such that
D(Pa) ςt Pa, and by 1.3, RPa is D-simple. Then, by 3.2, there exists
a unique prime ideal Pa of R lying over Pa.
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(ii) That every Pa is a minimal prime ideal of R is given by 3.2.
Now, let P be a minimal prime ideal of R, and let P = P Π iϋ; let M
be a minimal prime ideal of R contained in P; by [3, (10.8), p. 30]
there exists a prime ideal M of R lying over M; since P is the only
prime ideal of R lying over P, we have MaP by [3, (10.9), p. 30],
hence M = P, and P = P Π i 2 = i W is a minimal prime ideal of P.

(iii) Since R is Noetherian, 5 is a Krull ring [3, (33.10), p. 118],
and Rpa is a rank-1-discrete valuation ring. As furthermore RPacz Ra

we get Rpe = Ra.
(iv) β is a Krull ring and {Pα}β6il is the set of all the minimal

prime ideals of R; thus R — Γ\asΛR?a — Π«e^i?«.

COROLLARY 3.4. Let R be a Noetherian ^-simple ring with
quotient field K. Let S be a ring such that R c S c K and such that
every De £^ is regular on S. Then, the following statements are
equivalent:

(i) For every minimal prime ideal P of R there exists a
(unique) prime ideal Q of S lying over P.

(ii) S is integral over R.
(iii) For every prime ideal M of R there exists a (unique) prime

ideal N of S lying over M.

Proof. That (ii) => (iii) is a consequence of [3, (10.7), p. 30] and
3.2; that (iii) ==> (i) is obvious. Now, let {Pa}aeA be the set of the
minimal prime ideals of R, {wa}aeΛ the associated valuations and {Ra}aeΛ

the valuation rings of the wa'&. For any aeΛ, let fle ^ be such
that D(Pa) <t Pa, and let Qa be a prime ideal of S lying over Pa; SQa

is Z)-simple, the valuation associated to Qa is equal to wa and S c Ra.
Hence, S c R = ΓUΛ Ra*

COROLLARY 3.5. Let R be a Noetherian ^-simple ring with
quotient field K, and R its integral closure. Then,

( i ) R is the largest ^-simple overring of R in K having a
prime ideal lying over every prime ideal of R.

(ii) R is the largest 3$-simple overring of R in K having a
prime ideal lying over every minimal prime ideal of R.

Proof. Apply 3.4.

The author wishes to acknowledge the many helpful discussions
on the topics of this paper he had with Professor Ohm.
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