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MONOTONE DECOMPOSITIONS OF IRREDUCIBLE
HAUSDORFF CONTINUA

G. R. GOrDH, JR.

It is shown that a number of important results concern-
ing irreducible metric continua can be generalized to (non-
metric) irreducible continua. For example, if M is a (non-
metric) continuum which is irreducible between a pair of
points and which contains no indecomposable subcontinuum
with interior, then there exists a monotone continuous map
of M onto a generalized arc, such that each point inverse has
void interior. This result is applied to a study of hereditarily
unicoherent, hereditarily decomposable continua, Certain pro-
perties of trees follow as corollaries, Also, trees are charac-
terized as inverse limits of monotone inverse systems of den-
drites.

In recent years there has been a growing interest in the study
of (nonmetric) continua. It is well known (e.g., [6]) that some of
the most useful and important properties of metric continua do not
hold for (nonmetric) continua. It is the purpose of this paper to in-
dicate that a substantial number of theorems concerning irreducible
metric continua can be generalized to irreducible continua. These
results are then applied to a study of certain hereditarily unicoherent
continua.

In particular, § 2 contains generalizations of many of the results
about irreducible metric continua appearing in Chapter 1 of [11].
These results are applied in § 3 to obtain generalizations of a number
of theorems due to Miller [8] concerning hereditarily unicoherent con-
tinua. Section 4 contains several results about trees which follow as
corollaries of theorems in §3. Also, it is proved that every tree can
be written as a monotone inverse limit of dendrites. In Chapter 2 of
[11], Thomas discusses metric continua which are hereditarily of type A’.
His definition is extended, in § 5, to (nonmetric) continua and several
characterizations of such continua are obtained.

The reader is referred to [3], [5], and [14] for general results
concerning continua (i.e., compact, connected Hausdorff spaces). It
will be necessary to refer to results which are stated in the literature
for metric continua; however, this will be done only when the proof
for continua is essentially the same as that for metric continua.

The author is indebted to Professor F. Burton Jones for his advice
and encouragement in the preparation of this paper.
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2. Continua of type A. We observe that Theorem 1 and
Theorem 7 of [11, Chapter 1] are true, as stated, for (non-metric)
continua. To prove Theorem 1, apply [9, Theorem 47, page 16] to
the proof as given in [11].

Let M be a continuum which is irreducible between a pair of
points © and y. A decomposition & of M is said to be admissible in
case each element of & is a nonvoid proper subcontinuum of M, and
each element of &7 which does not contain x or y separates M. Notice
that an admissible decomposition is not required by definition to be
upper semi-continuous. However, we will show that an admissible
decomposition must, in fact, be upper semi-continuous. Thus, for
metric continua, our definition is equivalent to the definition in [11].

A generalized arc is a continuum A with precisely two non-
separating points. It is well known that A can be totally ordered in
such a way that the order topology and the original topology coincide.
We will frequently denote A by [a, b] where a and b are the non-
separating points of A.

THEOREM 2.1. Let M denote a continuum. Let <& = {D(x)} be a
decomposition of M such that (1) for each xe M, D(x) is a proper
subcontinuum of M, and (2) there exist elements D(a) and D(b) of &
such that every element D(x) of = distinct from D(a) and D(b) sep-
arates D(a) from D(Ob). Then < 1is an upper semi-continuous de-
composition, and M/ is a generalized arc.

Proof. For each x in M — [D(a) + D(Ob)], M — D(x) = A, + B,
where ac A,,be B,, and A, and B, are connected. If x and v are
in M — [D(a) + D(b)] and D(x) == D(y), then D(y) < A, if and only if
A,c A,; also D(y) © B, if and only if B, B,. Define D(x) < (D(y)
whenever A, 4, and let D(a) < D(z) < D(b) for all z in

M — [D(a) + D®)] .

Then < is a total order on =. If f: M — < denotes the natural
map, then it is readily seen that f is continuous with respect to the
order topology on <. The conclusion of the theorem now follows.

COROLLARY 2.1. Let M be a continuum which 1is irreducible from
x to y. If &r is an admissible decomposition for M, then < is upper
semi-continuous and M/<r is a generalized arc.

A continuum M is of type A provided that it is irreducible be-
tween a pair of points and has an admissible decomposition; M is of
type A’ if it is of type A and has an admissible decomposition each
of whose elements has void interior.
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THEOREM 2.2. Let M be a continuum irreducible from x to y.
If M has an admissible decomposition, them it has one which 1is
minimal (with respect to partial order by refinement).

Proof. See the proof of [11, Theorem 3, page 8]. Notice that
we are not required to prove the upper semi-continuity of the decom-
position.

Suppose that M is a continuum irreducible between two points.
If M is of type A, let 4 denote the collection of all admissible de-
compositions of M. For each = ed, let fi: M— M/<=r denote the
natural map. Thus f is a continuous monotone function from M onto
a generalized arc. Observe that every monotone map from 3/ onto
a generalized arc is obtained in this manner.

THEOREM 2.3. Let M be a continuum of type A, < ed, and
P M— M/<2. Suppose that K is a subcontinuuwm of M such that
AK) = [r, s] where [r, s] 15 @ nondegenerate subinterval of M/ =2. Then
N K and f7(s)N K are continua, and for r <t <s, f7'(t) s
contained in and separates K. In particular f|x is a monotone map
of K onto [r, s]; thus, if K is irreducible, K is of type A.

Proof. Suppose that M is irreducible from x to y and M/<=r =
[a,b]. If »r <t <s, then f'(t) c K; for if p is in f7'(¢) — K then
f(la, r]) + K + f([s, b]) is a proper subcontinuum containing x and
y. Clearly f~'(t) separates K, since it separates M. To see that
S7(r) N K is connected, let K’ = N{cl[f((r, w))]; we(r,s)}. Then K’
is a subcontinuum of f~'(r) N K which is easily seen to intersect each
component of f~'(r)N K. Thus f~'(r)N K, as well as f(s) N K, is
connected.

THEOREM 2.4. Let M be a continuum of type A; then 4 contains
a vnique minimal element.

Proof. The proof of [11, Theorem 6, page 10] is valid, since we
are not concerned with proving the upper semi-continuity of the de-
composition.

COROLLARY 2.2. Let M be a continuum of type A'. If e dis
such that each element of < has void interior, then <7 is the minimal
element of 4.

Proof. Suppose that <2’ € 4 such that &2’ < & Let D(a) and
D(b) denote the nonseparating elements of <. Then M — D(a) is
connected, and since D(a)’ = @, [M — D(a)] + D'(a) is connected. Thus
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D(a) = D'(a) and D(b) = D'(b). Given ¢ in M — iD(a) + D(b)], write
M — D(x) = A, + B, uniquely. Then M = A, + B, and

@ # A,NB,c D) .

Given 2 in D(x), D’(z) must separate D(a) from D(b); thus 4,N B,
D'(z). Consequently, D'(x) = D(z) and 2’ = 2.

The following useful result is a generalization of [11, Theorem 8,
page 14].

THEOREM 2.5. Let M be a continuum of type A, < e€d, and
iM—>M< =]a,bl. Then for a <r<s<b, c[f(r,s)]=K 1s
a subcontinuum of M which is irreducible from every point of

Kn f7(r) = K,

to every point of KN f~(s) = K,. Also K, and K, are subcontinua
of K with void interior relative to K.

Proof. Since K,c K — f~((r, s)), K = @. By Theorem 2.3, K,
and K, are subcontinua of K. That K is irreducible from K, to K,
follows from the proof of [11, Theorem 8, page 14].

THEOREM 2.6. Let M denote a continuum which 1is trreducible
between two closed subsets H and K such that every subcontinuum of
M with nonvoid interior is decomposable. Then the following hold.
(a) There is a decomposition of M, M = My + My, where HC My,
Kc My and cl[My — Mgl N My is connected. (b) If U and V are
open subsets of M such that HCc Uc Uc VcM — K and both 0U and
0V are comnmected, then there is an open set W of M such that Uc Wc
Wc Vand W is connected.

Proof. The proof in [11, Theorem 9, page 14] is valid. Note
that we have added the hypothesis that dU is connected in part (b).

TEEOREM 2.7. Let M be a continuum irreducible between a pair
of points ¢ and y. A mecessary and sufficient condition that M be of
type A’ s that every subcontinuum of M with nonvoid interior be
decomposable.

Proof of sufficiency. Using the construction in [11, Theorem 10,
page 15] we define a monotone function f: M — [0, 1]. According to
[4, Lemma 3, page 114] f is continuous. Thus {f~'(¢); t€[0, 1]} is an
admissible decomposition for M. According to Theorem 2.2 there ex-
ists a minimal admissible decomposition for M, say =. If some ele-
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ment De <7 has nonvoid interior then ¢l(D°) is of type A. Let <&’
denote an admissible decomposition for ¢l(D°). By combining <& and
&’ in the natural way, one obtains an admissible decomposition which
refines &7 properly. Thus no element of < has nonvoid interior, and
M is of type A'.

Proof of mecessity. See [11, Theorem 10, page 16].

By making the obvious necessary modifications, one can also gener-
alize Theorems 17 through 22 of Chapter 1 of [11]. As in [11] we
define K(z) = {y € M; M is nonaposyndetic at z with respect to y} and
L(z) = {ye M; M is nonaposyndetic at y with respect to z}. Observe
that L(z) = T(z) where T denotes the set function in [2]. The state-
ments and proofs of Theorems 18 and 19 can be shortened by observ-
ing that K(z) = L(z) for any point z of an irreducible continuum [2,
Theorem 2, page 116]. Since Theorem 19 provides a concise topological
characterization for continua of type A’, we include its statement as
Theorem 2.8.

THEOREM 2.8. Let M denote a continuum irreducible from x to
Y. Then M is of type A’ if and only if K()° = @ for each z in M.

3. Hereditarily unicoherent, hereditarily decomposable con-
tinua. In [8] Miller proves that every irreducible, hereditarily decom-
posable metric continuum is of type A (this is a corollary of our Theorem
2.7). By applying this result she obtains a number of conditions which
imply that a hereditarily decomposable metric continuum is heredit-
arily unicoherent, and she also shows that hereditarily unicoherent,
hereditarily decomposable metric continua have certain properties an-
alogous to properties of acyclic continuous curves (i.e., dendrites). In
this section we will apply Theorem 2.7 to show that most (but not
all) of Miller’s results can be generalized to (nonmetric) continua.

It is easy to see that a continuum M is hereditarily unicoherent
if and only if for each pair of distinct points z and y of M there ex-
ists exactly one subcontinuum of M which is irreducible from z to y.

By a generalized simple closed curve we mean a continuum which
is separated by the omission of any two of its points. A point p is
said to cut the continuum M in case there exist points  and ¥ in M
such that each subcontinuum of M containing % and ¥ also contains
p. Such a point, p, is said to cut « from y in M, or to cut between
x and ¥y in M.

The theorems that follow extend and generalize (to nonmetric
continua) Theorems 2.4 through 2.9 of [8].

THEOREM 3.1. Let M be a continuum of type A, and = e d. If
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each element of < is unicoherent them M 1is umnicoherent.

Proof. Let fi M — M/<r = [a, b] denote the natural map. Sup-
pose that H and K are proper subcontinua of M such that M = H +
K. 1If f(H) = [a, ¢] and f(K) = [¢, b] then HN K< f'(¢). Now

[HN STl +[KN )] = F7e) .

Since HN f~'(c¢) and KN f~'(¢) are continua (Theorem 2.3), and f~'(¢)
is unicoherent, HN K = [HN f~()] N [KN f(c)] is connected. The
other cases are handled in a similar manner, although they do not
depend on the unicoherence of the elements of <.

THEOREM 3.2. Let M be a continuum of type A, and e d. If
fM— M= = [a, b] is an open map, then M is unicoherent.

Proof. Let H and K be proper subcontinua of M such that M =
H+ K. If f(H) = [a, ¢] and f(K) = [e¢, b] then

HNO f™e) = () = KN ()

since f is open. Thus HN K = f~*(¢) which is connected. The other
cases are handled as in Theorem 3.1.

THEOREM 3.3. If M s a hereditarily decomposable continuum
which 1s not unicoherent, then M contains a continuum N which is o
generalized simple closed curve with vrespect to the elements of «
monotone upper semi-continuous decomposition D. Furthermore, if
D, and D, are n & then N — (D, + D,) = U+ V where U and V
are disjoint connected open sets such that (1) N=U+ V, (2) Uand V
are trreducible from D, to D,, and (3) any subcontinuum of D, + D, +
U which intersects D, and D, contains U.

Proof. Apply Theorem 2.7 to the proof of [8, Theorem 2.6, page
187].

THEOREM 3.4. Let M be a hereditarily decomposable continuum.
M 1is hereditarily unicoherent if and only +f M contains no subcon-
tinuum N which is a generalized simple closed curve with respect to
the elements of a monotone upper semi-continuous decomposition.

Proof. If M is not hereditarily unicoherent, apply Theorem 3.3.
Conversely, suppose that f: N— C, where N is a subcontinuum of M,
f is monotone and onto, and C is a generalized simple closed curve.
Write C = A+ B where A and B are generalized arcs. Then
S7(A4) N f7(B) is not connected.
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THEOREM 3.5. Let M be a hereditarily decomposable continuum.
Suppose that there exists a cardinal number k < ¢ such that given k
points of M there exists one of them which cuts between some pair of
them. Then M 1is hereditarily wnicoherent.

Proof. Suppose M is not hereditarily unicoherent. According to
Theorem 3.4 there exists a subcontinuum N of M, a generalized sim-
ple closed curve C, and a monotone map f from N onto C. Choosing
k distinct points of C it is clear that no one cuts between any pair
of them. The theorem follows.

THEOREM 3.6. If M s a hereditarily decomposable continuum
every subcontinuum of which 1s irreducible about a closed proper
subset having only countably many components, then M is hereditarily
unicoherent.

Proof. Apply [5, Theorem 6, page 173] to the proof of [8, Theorem
2.9].

Theorem 3.6 does not remain true if “countably many components”
is replaced by “c components”. A simple modification of Example 2
[11, page 12] produces a metric continuum which is irreducible about
a closed set with uncountably many components and is not unicoherent.

In order to obtain generalizations of theorems in [8, Section 3,
page 190] we prove a generalization of a theorem due to R. L. Moore
[10].

THEOREM 8.7. Let M denote a hereditarily unicoherent continuum,
and suppose that each indecomposable subcontinuum of M 1is irreduci-
ble. If H is an irreducible subcontinuum of M then H 1is contained
wm a maximal trreducible subcontinuum.

Proof. Throughout this proof {x, > denotes the unique irreduci-
ble continuum from a to y.

Suppose that H is irreducible from a to b. Let {H,} be a maximal
monotonic collection of continua such that Hc H, for each «, and
H, = {a, h,y for some h, in M. Let K = cl(J.H,). We will prove
that the continuum K is irreducible from @ to some point k. Assume
not. Observe that if A is a proper subcontinuum of K which contains
a, then K — A is connected. There are two cases to consider.

Case 1. Suppose that cl(K — A) is indecomposable for some sub-
continuum A of K which contains a. Let T = ¢l(K — A). Then TN
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A is a proper subeontinuum of T; hence TN A is contained in a com-
posant C of T. Since T is irreducible, it contains at least two com-
posants. Choose ke T — C. Then {a, k) = K. To see this, suppose
that {a, k) + K. Then <a, k>N T is a continuum which intersects two
composants of T% thus T c<a, k). Choose h,ec A —<a, k), hye K — A.
Then H,¢ H, and H;¢ H,, which is a contradiction.

Case 2. cl(K — A) is decomposable for each subcontinuum A of
K containing a. If

(WK—A)=E+F

is any decomposition of c¢l(K — A), then AN F= Qg or ANE= Q.
Using this fact it is easy to verify that there exists an H; such that
A c H}. In particular, given an H,, there exists an H, such that
H,c Hj. Choosing &k in N, cl(K — H,) it follows that <{a, k) = K.

In either case, K is “maximally irreducible” from a to some point
k. If <{x,y) contains K = <a, k) properly, then {z, y) =<, k> or
{x, y> =<y, k). For suppose not and let x ¢ K. Then k ¢ {a, «)>; hence
ye<a, x). Since {x, k) is properly contained in {z, >, y ¢z, k). But
Kc<{a,x) + <z, ky; thus y¢ K. Now <z, yyC<a, z) + <{a, y» which
misses k. This is a contradiction.

Let L be a continuum containing K which is “maximally irreduci-
ble” from % to some point. Then L is a maximal irreducible subcon-
tinuum containing H. For if Lc <z, y» then K<z, y)>. According
to the argument above we can assume that {z, y> =<z, k>. It follows
immediately that <z, yp> = L.

COROLLARY 3.1. Let M denote a hereditarily unticoherent, heredi-
tarily decomposable continuum. If H is an irreducible subcontinuum
of M, then H s contained in a maximal irreducible subcontinuum.

COROLLARY 3.2 (Moore). Let M denote a hereditarily wnicoherent
metric continuum. If H is an irreducible subcontinuum of M, then
H is contained in a maximal irreducible subcontinuum.

Proof. Every indecomposable metric continuum is irreducible.

As in [8], we define a point p to be a terminal point of the
continuum M in case every irreducible subcontinuum of M which
contains p is irreducible from p to some point. By making use of
Theorem 2.7 and Corollary 3.1 we obtain the following generalizations
of theorems in [8, §3, page 190].

THEOREM 3.8. Ewvery point of a hereditarily unicoherent continuum
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M 1is either a terminal point or a cut point of M.

THEOREM 3.9. A continuum which is hereditarily wunicoherent
and hereditarily decomposable has at least two terminal points.

THEOREM 3.10. A continuum which s hereditarily unmicoherent
and hereditarily decomposable is irreducible about the set of all its
terminal points.

THEOREM 3.11. If the continuum M 1is hereditarily decomposable
and K is a subset of M consisting of some of the terminal points of
M, then M — K s connected.

In §4 we will see that Theorem 3.7 of [8] does not generalize to
nonmetric continua.

4. Some properties of trees. A continuum M is said to be a
tree [12] if and only if given two distinct points p and q of M, there
exists a third point which separates p from ¢. The point p of a tree
M is said to be an end point of M if and only if p is a nonseparat-
ing point of every generalized arc containing p. It is known [12]
that a continuum M is a tree if and only if M is locally connected
and hereditarily unicoherent. If M is a metric continuum then M is
a tree if and only if M is a dendrite [13, (1.1), page 88]. In Theorem
4.1 we show that a number of familiar properties of dendrites are
also shared by trees.

THEOREM 4.1. Let M denote a tree. Then (1) M 1is connected by
generalized arcs, (2) each point of M is a separating point or an end
point, (3) each generalized arc in M 1is contained in a maximal gener-
alized arc, (4) M has at least two end points, (5) M 1is irreducible
about the set of all its end points, (6) if K is a subset of the end
points of M, then M — K 1is connected.

Proof. Let A be a subcontinuum of M irreducible from p to gq.
Since M is hereditarily unicoherent, each point of A — (p + q) cuts »
from ¢ in M; thus, since M is locally connected, each point of A —
(p + q) actually separates » from ¢ in M. Consequently, A is a
generalized arc. Since M is hereditarily decomposable, properties (2)
through (6) follow from Theorems 3.7 through 3.11.

For a metric continuum M the following properties are equivalent
[13, (1.1), page 88]: (a) M is a tree, (b) M is locally connected and
contains no (generalized) simple closed curve, (c) every subcontinuum
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of M contains uncountably many separating points of M.

For (nonmetric) continua we have seen that condition (a) implies
conditions (b) and (c). However, neither of these implications can be
reversed. Mardesié has shown [6] that there exists a locally connected
continuum which contains no proper locally connected subcontinuum.
This example clearly satisfies condition (b), but is not a tree. The
following example satisfies condition (¢) but not (a); and also shows
that [8, Theorem 3.7, page 193] does not generalize to (nonmetric)
continua.

ExaMPLE. Let C denote a circle, and let M = C x [0,1]. We
define a basis <& for the topology on M as follows: V is in <& if
and only if (1) V=2p x (r,8), (2) V=12 x(r,1], or (3)

V= (U x [0, 1])—9{@ X g, 11}

where U is open in the usual topology for C, p; is in U, and 0 <
q; < 1. If 7 denotes the topology generated by <& then (M, 97)
is seen to be a (compact Hausdorff) continuum with the desired pro-
perties.

Finally, we give a characterization of trees in terms of inverse
limits. For a discussion of inverse limits systems, see [1].

THEOREM 4.2. The continuum M 1is a tree if and only if M s
homeomorphic to the imverse limit of a monotone inverse system (D,,
a0, A) where each D, is a (metric) dendrite.

Proof. According to [12] we must show that M is locally con-
nected and hereditarily unicoherent. M is locally connected by [1,
Theorem 4.3, page 241]. A simple application of [1, page 235, 2.9]
shows that M is hereditarily unicoherent. On the other hand, since
M is locally connected, M can be written as the inverse limit of a
monotone inverse system (D,, 7.5, 4) where each D, is a locally con-
nected metric continuum [7]. According to [1], 7,: M — D, is mono-
tone. It follows easily that D, is a tree, hence a dendrite.

5. Continua hereditarily of type A’. As in Chapter 2 of [11],
we define a continuum M to be hereditarily of type A’ if and only if
every nondegenerate subcontinuum of M is of type A’. If M is a
hereditarily decomposable metric continuum then M is hereditarily of
type A’ if and only if M is snake-like [11, Theorem 13, page 50]. In
this section we obtain several topological characterizations of (non-
metric) continua which are hereditarily of type A’.
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THEOREM 5.1. If the continuum M 1is hereditarily of type A’,
then M s hereditarily unicoherent and atriodic.

Proof. The proof of [11, Theorem 6, page 41] is valid for (non-
metric) continua.

LemMmA 5.1. If the continuum M is hereditarily umicoherent and
atriodic, then given three points of M, one cuts between the other two.

THEOREM 5.2. The continuum M 1s hereditarily of type A’ if and
only if M s hereditarily unicoherent, hereditarily decomposable, and
atriodic.

Proof. Suppose that M is hereditarily unicoherent, hereditarily
decomposable, and atriodic. According to Theorem 2.7 it suffices to
show that every subcontinuum N of M is irreducible. Let A be a
maximal irreducible subcontinuum of N (Theorem 38.7) which is ir-
reducible from p to q. If there exists a point » in N — A then, since
A is maximal irreducible, it follows that none of p, ¢, and » cuts
between the other two. This contradicts Lemma 5.1; hence N = A.
The converse follows from Theorem 5.1.

THEOREM 5.3. Let M denote a hereditarily decomposable continuum.
Then M s hereditarily of type A’ if and only if given any three
points of M one cuts between the other two.

Proof. If M is hereditarity of type A’ apply Theorem 5.1 and
Lemma 5.1. If given any three points one cuts between the other
two then M is hereditarily unicoherent (Theorem 3.5). Clearly M
contains no triods. Thus, by Theorem 5.2, M is hereditarily of type
A,
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