ORDERED CYCLE LENGTHS IN A RANDOM PERMUTATION

V. Balakrishnan, G. Sankaranarayanan and C. Suyambulingom

Let $x(t)$ denote the number of jumps occurring in the time interval $[0, t)$ and $v_{k}(t)=P\{x(t)=k\}$. The generating function of $v_{k}(t)$ is given by

$$
\exp \{\lambda t[\phi(x)-1]\}, \phi(x)=\sum_{k=1}^{\infty} p_{k} x^{k}, \sum_{k=1}^{\infty} p_{k}=1 .
$$

Lay off to the right of the origin successive intervals of length $z^{j} / j^{\alpha}, j=1,2, \cdots$. Explicitly the end points are

$$
\begin{aligned}
& t_{1}(z)=0 \\
& t_{j}(z)=\sum_{k=1}^{j-1} z^{k} / k^{\alpha}, j=2,3, \cdots, \alpha>0,
\end{aligned}
$$

and

$$
t_{\infty}(z)=\sum_{k=1}^{\infty} z^{k} / k^{\alpha} .
$$

Following Shepp and Lloyd L_{r}, the length of the r th longest cycle and S_{r}, the length of the r th shortest cycle have been defined for our choice of $x(t)$ and $t_{j}, j=1,2, \cdots$. This paper obtains the asymptotics for the m th moments of L_{r} and S_{r} suitably normalized by a new technique of generating functions. It is further shown that the results of Shepp and Lloyd are particular cases of these more general results.

Here we consider a problem involving a random permutation which is closely linked with the cycle structure of the permutation. Let S_{n} be the n ! permutation operators on n numbered places. Let $\alpha(\pi)=$ $\left\{\alpha_{1}(\pi), \alpha_{2}(\pi), \cdots, \alpha_{n}(\pi)\right\}$ be the cycle class of $\pi \in S_{n}$. In this permutation π, there are $\alpha_{1}(\pi)$ cycles of length one, $\alpha_{2}(\pi)$ cycles of length two, etc. Usually the elements of S_{n} are assigned a probability $1 / n$! each. John Riordan has considered a model where he has assigned the probability
1.1

$$
\begin{aligned}
P\left\{\alpha_{1}=a_{1}, \alpha_{2}=a_{2}, \cdots, \alpha_{n}=a_{n}\right\} & =\prod_{j=1}^{n}(1 / j)^{a_{j}} / \alpha_{j}!\text { if } \sum_{j=1}^{n} j a_{j}=n \\
& =0 \text { otherwise }
\end{aligned}
$$

for the cycle class $\alpha(\pi)$, the a 's being nonnegative integers. Here α 's would be independent if it were not for the condition $\sum j a_{j}=n$. Shepp and Lloyd has considered a sequence $\alpha=\left\{\alpha_{1}, \alpha_{2}, \cdots\right\}$ of mutually independent nonnegative integral valued random variables where for $j=1,2, \cdots$ the random variable α_{j} follows the Poisson distribution
with mean $z^{j} / j, 0<z<1, z$ being same for all values of j. Accordingly
1.2

$$
\begin{aligned}
P_{z}\left\{\alpha_{1}=a_{1}, \alpha_{2}=a_{2}, \cdots\right\}= & (1-z) z^{\Sigma_{j=1}^{\infty} \alpha_{j}} \prod_{j=1}^{\infty}(1 / j)^{a_{j}} / a_{j}! \\
& a_{j}>0, j=1,2, \cdots
\end{aligned}
$$

From this it can be seen that the probability distribution of the random variable $\nu(\alpha)=\sum_{j=1}^{\infty} j \alpha_{j}$ is
1.3

$$
P\{\nu(\alpha)=n\}=(1-z) z^{n}, n=0,1,2, \cdots
$$

Also
1.4

$$
\begin{aligned}
P_{z}\left\{\alpha_{1}=a_{1}, \alpha_{2}=a_{2}, \cdots \mid \nu(\alpha)=n\right\} & =\prod_{j=1}^{n}(1 / j)^{a_{j}} / a_{j}!, \sum_{j=1}^{\infty} j a_{j}=n \\
& =0 \text { otherwise }
\end{aligned}
$$

Thus Shepp and Lloyd were able to recover 1.1 assumed in the model. In this paper, for the cycle class $\alpha(\pi)$ we have assigned the probability

$$
\begin{aligned}
1.5 \quad P_{z}\left(\alpha_{1}=a_{1}, \alpha_{2}=a_{2}, \cdots, \alpha_{n}=a_{n}\right) & =\mathrm{I} / \mathrm{II}, 0<z<1, \sum_{j=1}^{n} j a_{j}=n \\
& =0 \text { otherwise }
\end{aligned}
$$

Here
$1.6 \quad I=\prod_{j=1}^{\infty} v_{a_{j}}\left(z^{j} / j^{\alpha}\right), \sum_{j=1}^{n} j a_{j}=n, a_{n+1}=a_{n+2}=\cdots=0,\left(\sum_{j=1}^{\infty} j a_{j}=n\right)$
where $v_{a_{j}}\left(z^{j} / j^{\alpha}\right)$ is the coefficient of $x^{a_{j}}$ in $\exp \left\{\lambda\left(z^{j} / j^{\alpha}\right)[\phi(x)-1]\right\}$,

$$
\phi(x)=\sum_{k=1}^{\infty} p_{k} x^{k} \quad \text { and } \quad \sum_{k=1}^{\infty} p_{k}=1
$$

On detailed computation
$1.8 \quad v_{a_{j}}\left(z^{j} / j^{\alpha}\right)=e^{-\lambda z^{j} / j^{\alpha}} \sum_{n_{1}+2 n_{2}+3 n_{3}+\cdots=a_{j}} \frac{\left(p_{1} z^{j} / j^{\alpha}\right)^{n_{1}}\left(p_{2} z^{j} / j^{\alpha}\right)^{n_{2}} \cdots}{n_{1}!n_{2}!\cdots}$.
In the special case when $\lambda=1, p_{1}=1, p_{2}=p_{3}=\cdots=0$ and $\alpha=1$, $\exp \left\{\lambda\left(z^{j} / j^{\alpha}\right)[\phi(x)-1]\right\}$ reduces to the generating function of the Poisson process with the time parameter equals to z^{j} / j, which has been considered by Shepp and Lloyd. Also the generating function of II which represents the distribution of $P\{\nu(\alpha)=n\}$, where for our choice of the sequence α_{j} 's defined by 1.14

$$
\nu(\alpha)=\sum_{j=1}^{\infty} j \alpha_{\jmath}
$$

is given by
1.10

$$
\sum_{n=1}^{\infty} P\{\nu(\alpha)=n\} x^{n}=\prod_{j=1}^{\infty} \exp \left\{\lambda\left(z^{j} / j^{\alpha}\right)\left[\phi\left(x^{j}\right)-1\right]\right\}
$$

On detailed computation we note that
1.11

$$
\begin{aligned}
& P\{\nu(\alpha)=n\}=\exp \left\{-\lambda \sum_{j=1}^{\infty} z^{j} / j^{\alpha}\right\} \times \\
& \sum_{\substack{\left.n_{1}+2 n_{2}+3 n_{n}+\cdots \\
\text { and } \\
+3 n_{1}^{2}+2 n_{2}+\cdots \\
+3 n_{1}^{\prime}+2 n_{2}^{\prime}+\cdots\right) \\
+\cdots=n}}\left\{\begin{array}{l}
{\left[\frac{\left(\frac{p_{1} \lambda z}{1^{\alpha}}\right)^{n_{1}}\left(\frac{p_{1} \lambda z^{2}}{2^{\alpha}}\right)^{n_{2}} \cdots}{n_{1}!n_{2}!\cdots}\right] \times} \\
{\left[\frac{\left(\frac{p_{2} \lambda z}{1^{\alpha}}\right)^{n_{1}}\left(\frac{p_{2} \lambda z^{2}}{2^{\alpha}}\right)^{n_{2}^{\prime}} \cdots}{n_{1}^{\prime}!n_{2}^{\prime}!\cdots}\right] \times}
\end{array}\right. \\
& \left.\left[\frac{\left(\frac{p_{3} \lambda z}{1^{\alpha}}\right)^{n_{1}^{\prime \prime}}\left(\frac{p_{3} \lambda z^{2}}{2^{\alpha}}\right)^{n_{2}^{\prime \prime}} \cdots}{n_{1}^{\prime \prime}!n_{2}^{\prime \prime}!\cdots}\right] \times \cdots\right) .
\end{aligned}
$$

In particular when $\lambda=1, \alpha=1$ and $p_{1}=1, p_{2}=p_{3}=\cdots=0$, the generating function of the distribution of 1.9 reduces to
1.12

$$
\exp \left[-\sum\left(z^{j} / j\right)+\sum\left(x^{j} z^{j} / j\right)\right]=(1-z) /(1-z x)
$$

Hence

$$
P\{\nu(\alpha)=n\}=(1-z) z^{n}
$$

which is in agreement with that considered by Shepp and Lloyd. In the special case mentioned above
1.13

$$
\begin{aligned}
\mathrm{I} / \mathrm{II} & =\prod_{j=1}^{n}(1 / j)^{a_{j}} / a_{j}!\quad \text { if } \quad \sum_{j=1}^{n} j a_{\jmath}=n, \\
& =0 \quad \text { otherwise } .
\end{aligned}
$$

This is also in agreement with the model discussed by Shepp and Lloyd.
If we take $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots\right)$ to be a sequence of mutually independent nonnegative integral valued random variables where for $j=1,2, \ldots$

$$
P_{z}\left\{\alpha_{\jmath}=a_{j}\right\}=v_{a_{j}}\left(z^{j} / j^{\alpha}\right), a_{j}=0,1,2, \cdots,
$$

by using the Borel-Cantelli lemma, we can easily show that $\nu(\alpha)=$ $\sum_{j=1}^{\infty} j \alpha_{j}$ is finite with probability one. Hence the joint distribution $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots, \nu(\alpha)\right)$ can be written as

$$
\begin{align*}
P_{z}\left\{\alpha_{1}=a_{1}, \alpha_{2}=a_{2}, \cdots, \nu(\alpha)=n\right\} & =\prod_{j=1}^{\infty} v_{a_{j}}\left(z^{j} / j^{\alpha}\right) \text { if } \sum_{j=1}^{\infty} j a_{j}=n \\
& =0 \quad \text { otherwise }
\end{align*}
$$

From this we can see that
1.16

$$
P_{z}\left\{\alpha_{1}=a_{1}, \alpha_{2}=a_{2}, \cdots, \mid \nu(\alpha)=n\right\}=\mathrm{I} / \mathrm{II},
$$

which we have assumed for the model.
Shepp and Lloyd have considered a Poisson process which takes place on $T=\{-\infty<t<+\infty\}$ at unit rate. That is, for any interval of length $I \subset T$, the probability that p jumps occur in I is

$$
\exp [-|I|]|I|^{p} / p!, p=0,1,2, \cdots
$$

independently of any conditions on the process on $T-I$. They have taken the following end points for the time intervals

$$
\begin{align*}
t_{1}(z) & =0, \\
t_{j}(z) & =\sum_{k=1}^{j-1} z^{k} / k, j=2,3, \cdots, \\
t_{\infty}(z) & =\sum_{k=1}^{\infty} z^{k} / k=\log (1-z)^{-1},
\end{align*}
$$

so that the j th interval is

$$
t_{j}(z)<t<t_{j+1}(z), j=1,2, \cdots .
$$

They define $\lambda_{z}(t) ;-\infty<t<\infty$, to be a function whose value is ' j ' on the j th interval, $j=1,2, \cdots$ and is zero if $t<0$ or $t>t_{\infty}(z)$. Then for each $j=1,2, \cdots$ the interval $\left\{t ; \lambda_{z}(t)=j\right\}$ has length z^{j} / j, the probability that a_{j} jumps of the Poisson process occur in this interval is
1.18

$$
\exp \left(-z^{j} / j\right) \cdot\left(z^{j} / j\right)^{a_{j}} / a_{j}!, a_{j}=0,1,2, \cdots
$$

and that these various events for $j=1,2, \cdots$ are mutually independent. They have taken a sample function of the Poisson process, with jumps in the interval $\left[0, t_{\infty}(z)\right)$, which are finite in number with probability one, occurring at times $\tau_{1} \leqq \tau_{2} \leqq \cdots \leqq \tau_{\sigma}(\sigma$, random). They take the positive integers $\lambda_{z}\left(\tau_{1}\right) \leqq \lambda_{z}\left(\tau_{2}\right) \leqq \cdots \leqq \lambda_{z}\left(\tau_{0}\right)$ as the lengths of the σ cycles of a permutation on $\nu=\sum_{s=1}^{\sigma} \lambda_{z}\left(\tau_{s}\right)$ places, and in this class S_{ν}, they choose a permutation at random with uniform distribution. For any given $r=1,2, \cdots$ let $S_{r}=S_{r}(\alpha)$ be the length of the r th shortest cycle in a permutation of the cycle class $\alpha \cdot S_{r}(\alpha)=0$ if $\sum \alpha_{j}<r$. If the r th jump of the Poisson process occur at ' t ', then $S_{r}=\lambda_{z}(t)$ according to their model. Hence they have obtained the distribution of S_{r}. Similarly they have obtained the distribution of $L_{r}=L_{r}(\alpha)$, the length of the r th longest cycle. They have given asymptotics for the distribution and to all moments of the length of the r th longest and r th shortest cycles.

In this paper, instead of the Poisson process considered by Shepp and Lloyd, we consider a more general process which can have $k(k>1)$
jumps at any moment. Let $x(t)$ denote the number of jumps in the interval $[0, t)$ and let

$$
v_{k}(t)=P\{x(t)=k\}
$$

Let p_{k} be the probability of having k jumps at a chosen moment, if it is certain that jumps do occur generally at that moment. It has been shown in Khintchine that

$$
F(t, x)=\sum_{k=0}^{\infty} v_{k}(t) x^{k}=\exp \{\lambda t[\phi(x)-1]\}
$$

where $\phi(x)$ is given by (1.7) and $\lambda>0$. In our model, we take the end points of the time intervals to be
1.21

$$
t_{1}(z)=0
$$

$$
t_{j}(z)=\sum_{k=1}^{j-1} z^{k} / k^{\alpha}, j=2,3, \cdots, \alpha>0
$$

and

$$
t_{\infty}(z)=\sum_{k=1}^{\infty} z^{k} / k^{\alpha} .
$$

Here the probability that L_{r}, the length of the r th longest cycle is ' j ' is given by
1.22

$$
\begin{aligned}
P_{z}\left\{L_{r}=j\right\} & =\frac{\lambda}{\sum_{k=1}^{r} p_{k}} \int_{t_{j}}^{t_{j+1}}\left\{\sum_{k=1}^{r} p_{k} v_{r-k}\left(t_{\infty}-t\right)\right\} d t \\
& =\frac{\lambda}{P_{r}} \int_{t_{j}}^{t_{j+1}}\left\{\sum_{k=1}^{r} p_{k} v_{r-k}\left(t_{\infty}-t\right)\right\} d t
\end{aligned}
$$

where

$$
P_{r}=\sum_{k=1}^{r} p_{k}
$$

Also the probability that S_{r}, the length of the r th shortest cycle is ' j ' is given by

$$
P_{z}\left\{S_{r}=j\right\}=\frac{\lambda}{P_{r}} \int_{t_{j}}^{t_{j+1}}\left\{\sum_{k=\leq}^{r} p_{k} v_{r-k}(t)\right\} d t
$$

Here we use the technique of generating functions to estimate the asymptotics of $E\left\{L_{r}\right\}^{m}$ and $E\left\{S_{r}\right\}^{m}$ suitably normalized in a way different from that used by Shepp and Lloyd. While they have considered the case where the jumps occur according to Poisson law, we have considered a more general system of which Poisson process is a special case. By assuming the Poisson law for jumps they were able to recover the model based on the uniform distribution. By assuming a more general law for
jumps we obtain a generalised probability model for the cycle class of which that derived on the basis of the uniform distribution is a special case. Thus we have in this paper discussed a generalization of the one given by Shepp and Lloyd with the help of the new technique.
2. A lemma. We now prove a lemma which we use extensively.

Lemma. Let
2.1

$$
A(z, x)=\sum_{r=1}^{\infty} a_{r}(z) x^{r}
$$

and
2.2

$$
A(x)=\sum_{r=1}^{\infty} a_{r} x^{r},
$$

with $a_{r}(z)>0$, satisfying

$$
\sum_{r=1}^{\infty} a_{r}(z)=c, 0<z<1,
$$

c, a constant. Then for
2.4

$$
a_{r}(z) \longrightarrow a_{r}, z \longrightarrow 1^{-},
$$

it is necessary and sufficient that for $0<x<1$
2.5

$$
A(z, x) \longrightarrow A(x), z \longrightarrow 1^{-} .
$$

Proof of the lemma. First let us suppose that (2.4) holds. Then for fixed $x,(0<x<1)$ and ε, we can choose a number n_{0} such that $\left\{x^{n_{0}} /(1-x)\right\}<\varepsilon$. Then,
2.6

$$
|A(z, x)-A(x)|<\sum_{r=0}^{n_{0}}\left|a_{r}(z)-a_{r}\right| x^{r}+2 c \varepsilon .
$$

Now each term in the right hand side tends to zero. Hence the necessary part. Now suppose that (2.5) holds. Since $\left\{a_{r}(z)\right\}$ is bounded it is always possible to find a converging subsequence. If (2.4) is not true then we can extract two subsequences converging to two different sequences $\left\{a_{r}^{*}\right\}$ and $\left\{a_{r}^{* *}\right\}$ and the corresponding subsequences of $\{A(z, x)\}$ would converge to $A^{*}(x)=\sum a_{r}^{*} x^{r}$ and $A^{* *}(x)=\sum a_{r}^{* *} x^{r}$ which contradicts the assumption that (2.5) holds. Hence $\left\{a_{r}^{*}\right\}=\left\{a_{r}^{* *}\right\}=\left\{a_{r}\right\}$. This proves the sufficiency part.
3. The r th longest cycle. The m th raw moment of the r th longest cycle is
3.1

$$
E_{z}\left\{L_{r}\right\}^{m}=\lambda \sum_{j=1}^{\infty} \frac{j^{m}}{P_{r}} \int_{t_{j}}^{t_{j+1}} \sum_{k=1}^{r} p_{k} v_{r-k}\left(t_{\infty}-t\right) d t
$$

Hence
3.2

$$
\begin{aligned}
\sum_{r=1}^{\infty} P_{r} x^{r-1} E_{z}\left\{L_{r}\right\}^{m} & =\lambda \sum_{r=1}^{\infty} x^{r-1} \sum_{j=1}^{\infty} j^{m} \int_{t_{j}}^{t_{j+1}} \sum_{k=1}^{r} p_{k} v_{r-k}\left(t_{\infty}-t\right) d t \\
& =\lambda \sum_{j=1}^{\infty} j^{m} \int_{t_{j}}^{t_{j+1}} \sum_{r=1}^{\infty} x^{r-1}\left\{\sum_{k=1}^{r} v_{r-k}\left(t_{\infty}-t\right) p_{k}\right\} d t \\
& =\lambda \sum_{j=1}^{\infty} j^{m} \int_{t_{j}}^{t_{j+1}} e^{\lambda[\phi(x)-1]\left(t_{\infty}-t\right)}\{\dot{\phi}(x) / x\} d t
\end{aligned}
$$

Let $F=F(\lambda)$ denotes the left hand side of (3.2) and $F^{\prime}=F\left(\lambda s^{1-\alpha}\right)$.
3.3

$$
\begin{aligned}
F^{\prime} & =s^{1-\alpha} \lambda \sum_{j=1}^{\infty} j^{m} \int_{t_{j}}^{t_{j+1}} e^{\lambda s^{\left.1-\alpha_{[\phi}(x)-1\right]\left(t_{\infty}-t\right)}\{\dot{\rho}(x) / x\}} d t \\
& =\sum_{r=1}^{\infty} P_{r} x^{r-1} E_{z}\left(L_{r}^{\prime}\right)^{m}
\end{aligned}
$$

where L_{r}^{\prime} is the same as L_{r} with λ replaced by $\lambda s^{1-\alpha}$.
Let us now consider some analytical preliminaries regarding $t_{j}(z)$. With $z=e^{-s}, 0<s<\infty$. We have

3.4

$$
t_{\infty}\left(e^{-s}\right)-t_{j}\left(e^{-s}\right)=\sum_{k=j}^{\infty}\left\{e^{-k s} / k^{\alpha}\right\}
$$

In the interval $\{y: k s<y<(k+1) s\}$, we have

$$
\frac{e^{-k s}}{k^{\alpha} s^{\alpha}}>\frac{e^{-y}}{y^{\alpha}}>\frac{e^{-(k+1) s}}{(k+1)^{\alpha} s^{\alpha}}
$$

and
3.5

$$
\frac{e^{-k s} s^{1-a}}{k^{\alpha}}>\int_{k s}^{(k+1) s} \frac{e^{-y}}{y^{\alpha}} d y>\frac{s^{1-\alpha} e^{-(k+1) s}}{(k+1)^{\alpha}}
$$

Summing with respect to k, we have,

$$
s^{1-\alpha} \sum_{k=j}^{\infty}\left(e^{-k s} / k^{\alpha}\right)>\int_{j s}^{\infty}\left(e^{-y} / y^{\alpha}\right) d y
$$

Let
3.7

$$
E(\theta)=\int_{\theta}^{\infty}\left(e^{-y} / y^{\alpha}\right) d y
$$

Then from (3.6) $E(j s)<s^{1-\alpha} \sum_{k=j}^{\infty} e^{-k s} / k^{\alpha}$. Also

$$
\int_{(j-1) s}^{\infty}\left(e^{-y} / y^{\alpha}\right) d y>s^{1-\alpha} \sum_{k=j}^{\infty}\left\{e^{-k s} / k^{\alpha}\right\}
$$

Combining the two
3.8

$$
E(j s)<s^{1-\alpha} \sum_{k=j}^{\infty}\left\{e^{-k s} / k^{\alpha}\right\}<E\{(j-1) s\}
$$

Now consider the equation
3.9

$$
s^{1-\alpha} \sum_{k=j}^{\infty}\left\{e^{-k s} / k^{\alpha}\right\}=E(X) .
$$

If $X_{j}(s)$ is the root of the equation (3.9), we have
3.10 and (i) $(j-1) s<X_{j}(s)<j s$
(ii) $X_{j}(s)$ is unique.

In (3.3) put $E(\theta)=s^{1-\alpha}\left(t_{\infty}-t\right)$ so that

$$
s^{1-\alpha} d t=\left\{e^{-\theta} / \theta^{\alpha}\right\} d \theta .
$$

Hence
3.11

$$
F^{\prime}=\lambda \sum_{j=1}^{\infty} j^{m} \int_{X_{j}(s)}^{x_{j+1}(s)}\{\phi(x) / x\} \frac{e^{\lambda[\phi(x)-1] E(\theta)-\theta}}{\theta^{\alpha}} d \theta .
$$

Let

$$
\mu_{j}=\int_{X_{j}(s)}^{X_{j+1^{(s)}}} d \mu(\theta),
$$

where
3.12

$$
d \mu(\theta)=\left\{e^{\lambda[\phi(x)-1] E(\theta)-\theta} / \theta^{\alpha}\right\} d \theta .
$$

But
3.13

$$
(j-1) s<X_{j}(s)<j s \quad \text { and } \quad j s<X_{j+1}(s)<(j+1) s
$$

This implies that

$$
X_{j}(s)<j s<X_{j+1}^{(s)} .
$$

Thus

$$
s^{m} F^{\prime}=\frac{\lambda \phi(x)}{x} \sum_{j=1}^{\infty}(j s)^{m} \int_{X_{j}(s)}^{x_{j+1}(s)} d \mu(\theta) .
$$

Now
$3.14 \quad \frac{\lambda \phi(x)}{x} \sum_{j=1}^{\infty} X_{j}^{m}(s) \mu_{j} \leqq F^{\prime} s^{m} \leqq \frac{\lambda \phi(x)}{x} \sum_{j=1}^{\infty} X_{j+1}^{m}(s) \mu_{j}$.
Consider
3.15

$$
\int_{X_{1}(s)}^{\infty} \theta^{m} d \mu(\theta)=\sum_{j=1}^{\infty} \int_{X_{j}(s)}^{X_{j+1}(s)} \theta^{m} d \mu(\theta) .
$$

We have
3.16

$$
\sum_{j=1}^{\infty} X_{j}^{m}(s) \mu_{j} \leqq \int_{X_{1}(s)}^{\infty} \theta^{m} d \mu(\theta) \leqq \sum_{j=1}^{\infty} X_{j+1}^{m}(s) \mu_{j}
$$

i.e.,

$$
I_{1} \leqq I \leqq I_{2} \quad(\text { say }),
$$

where

$$
I_{1}=\sum_{j=1}^{\infty} X_{j}^{m}(s) \mu_{j}, I_{2}=\sum_{j=1}^{\infty} X_{j+1}^{m}(s) \mu_{j}
$$

and

$$
I=\int_{X_{1}(s)}^{\infty} \theta^{m} d \mu(\theta)
$$

I_{1} and I_{2} are the Darboux sums for the Stieltjes integral based on the above meshes. Also $X_{1}(s) \rightarrow 0$ as $s \rightarrow 0^{+}$. Hence
3.17

$$
\begin{aligned}
s^{m} F^{\prime} & \sim\{\phi(x) / x\} \lambda \int_{0}^{\infty} \theta^{m-\alpha} e^{\lambda[\phi(x)-1] E(\theta)-\theta} d \theta, s \rightarrow 0^{+}, m \geqq \alpha \\
& \sim \lambda \int_{0}^{\infty} \theta^{m-\alpha} e^{-\theta} d \theta \sum_{r=1}^{\infty} x^{r-1}\left\{\sum_{k=1}^{r} v_{r-k}[E(\theta)] p_{k}\right\}, s \rightarrow 0^{+}
\end{aligned}
$$

Now
3.18

$$
\begin{aligned}
s^{m} \sum_{r=1}^{\infty} P_{r} E_{z}\left(L_{r}^{\prime}\right)^{m} & =\lambda s^{m+1-\alpha} \sum_{j=1}^{\infty} j^{m} \int_{t_{j}}^{t_{j}+1} d t=\lambda s^{m+1-\alpha} \sum_{j=1}^{\infty} j^{m}\left(t_{j+1}-t_{j}\right) \\
& =\lambda s^{m+1-\alpha} \sum_{j=1}^{\infty} j^{m}\left\{e^{-j s} / j^{\alpha}\right\}=\lambda s^{m+1-\alpha} \sum_{j=1}^{\infty}\left\{e^{-j s} / j^{\alpha-m}\right\}<\infty
\end{aligned}
$$

Hence using the lemma
3.19

$$
s^{m} P_{r} E_{z}\left(L_{r}^{\prime}\right)^{m} \sim \lambda \int_{0}^{\infty}\left[\sum_{k=1}^{r} v_{r-k}[E(\theta)] p_{k}\right] e^{-\theta} \theta^{m-\alpha} d \theta, s \rightarrow 0^{+}
$$

Since $s \sim(1-z)$,

$$
(1-z)^{m} E_{z}\left(L_{r}^{\prime}\right)^{m} \sim\left(\lambda / P_{r}\right) \int_{0}^{\infty}\left[\sum_{k=1}^{r} v_{r-k}[E(\theta)] p_{k}\right] e^{-\theta} \theta^{m-\alpha} d \theta, z \rightarrow 1^{-}
$$

Taking $\lambda=1, \alpha=1, p_{1}=1, p_{2}=p_{3} \cdots=0$, we now have

$$
\begin{align*}
(1-z)^{m} E_{z}\left\{L_{r}\right\}^{m} & \sim \int_{0}^{\infty} v_{r-1}[E(\theta)] e^{-\theta} \theta^{m-1} d \theta, z \rightarrow 1^{-} \\
& \sim \int_{0}^{\infty} e^{-E(\theta)-\theta}[E(\theta)]^{r-1}\left\{\theta^{m-1} /(r-1)!\right\} d \theta, z \rightarrow 1^{-}
\end{align*}
$$

This is in agreement with Shepp and Lloyd.
4. The r th shortest cycle. Let S_{r} be the length of the r th shortest cycle. Then
4.1

$$
P\left\{S_{r}=j\right\}=\left(\lambda / P_{r}\right) \int_{t_{j}}^{t_{j+1}} \sum_{k=1}^{r} p_{k} v_{r-k}(t) d t
$$

Let

$$
F_{1}=F_{1}(\lambda)=\sum_{r=1}^{\infty} P_{r} x^{r-1} E_{z}\left\{S_{r}\right\}^{m}
$$

Then
4.2

$$
\begin{aligned}
F_{1} & =\lambda \sum_{r=1}^{\infty} x^{r-1} \sum_{j=1}^{\infty} j^{m} \int_{t_{j}}^{t_{j+1}} \sum_{k=1}^{r} p_{k} v_{r-k}(t) d t, \\
& =\lambda \sum_{j=1}^{\infty} j^{m} \int_{t_{j}}^{t_{j+1}} e^{\lambda[\phi(x)-1] t}\{\phi(x) / x\} d t .
\end{aligned}
$$

Also

$$
F_{1}^{\prime}=F_{1}\left(\lambda s^{1-\alpha}\right)=\sum P_{r} x^{r-1} E_{z}\left(S_{r}^{\prime}\right)^{m}
$$

where S_{r}^{\prime} is the same as S_{r} with λ replaced by $\lambda s^{1-\alpha}$. Put $\left(t_{\infty}-t\right) s^{1-\alpha}=$ $E(\theta)$ in $F_{1}^{\prime \prime}$.
$4.3 \quad F_{1}^{\prime}=\lambda \sum_{j=1}^{\infty} j^{m} \int_{X_{j}(s)}^{x_{j+1}(s)}\left\{\phi(x) /\left(x \theta^{\alpha}\right)\right\} e^{\lambda\left[s^{\left.1-\alpha_{t_{\infty}}-E(\theta)\right][\phi(x)-1]-\theta}\right.} d \theta$.
Let

$$
\mu_{j}=\int_{X_{j}(\mathrm{~s})}^{x_{j+1}(\mathrm{~s})} d \mu(\theta)
$$

where
4.4

$$
d \mu(\theta)=\left\{\dot{\phi}(x) / x \theta^{\alpha}\right\} e^{\left.\lambda\left[s^{1-\alpha} t_{\infty}-E(\theta)\right] l \phi(x)-1\right]-\theta} d \theta .
$$

Hence
$4.5 \quad s^{m} F_{1}^{\prime}=\lambda \sum_{j=1}^{\infty}(j s)^{m} \int_{X_{j}(s)}^{x_{j+1}(s)}\left\{\phi(x) / x \theta^{\alpha}\right\} e^{\lambda\left[s^{\left.1-\alpha t_{t_{\infty}}-E(\theta)\right][\phi(x)-1]-\theta}\right.} d \theta$.
Since $(j-1) s<X_{j}(s)<j s<X_{j+1}(s)<(j+1) s$,
4.6

$$
\lambda \sum_{j=1}^{\infty} X_{j}^{m}(s) \mu_{j}<F_{1}^{\prime} s^{m}<\lambda \sum_{j=1}^{\infty} X_{j+1}^{m}(s) \mu_{j}
$$

Also

$$
\sum_{j=1}^{\infty} X_{j}^{m}(s) \mu_{j}<\sum_{j=1}^{\infty} \int_{X_{j}(s)}^{X_{j+1}^{(s)}} \theta^{m} d \mu(\theta)<\sum_{j=1}^{\infty} X_{j+1}^{m}(s) \mu_{j}
$$

That is
4.7 $\quad \sum_{j=1}^{\infty} X_{j}^{m}(s) \mu_{j}<\int_{X_{1}(s)}^{\infty} \theta^{m} d \mu(\theta)<\sum_{j=1}^{\infty} X_{j+1}^{m}(s) \mu_{j}$.

Hence
$4.8 \quad s^{m} F_{1}^{\prime} \sim \lambda \int_{0}^{\infty} \theta^{m-\alpha}\{\phi(x) / x\} e^{\lambda\left[s^{1-\alpha_{t}}-E(\theta)\right][\phi(x)-1]-\theta} d \theta, s \rightarrow 0^{+}, \quad m \geqq \alpha$.
Here also $s^{m} \sum_{r=1}^{\infty} P_{r} E_{z}\left(S_{r}^{\prime}\right)^{m}=s^{m+1-\alpha} \sum_{j=1}^{\infty} j^{m}\left(t_{j+1}-t_{j}\right)<\infty \quad$ \{by (3.18) $\}$.
Thus as in 3.17 by equating the coefficient of x^{r-1} on both sides we can obtain $\lim _{s \rightarrow 0} s^{m} P_{r} E_{z}\left(S_{r}^{\prime}\right)^{m}$.

Now let us consider the particular case of the above when $p_{1}=1$, $p_{2}=p_{3}=\cdots=0 \quad \lambda=1$ and $\alpha=1$. Here

$$
\begin{align*}
s^{m} \sum_{r=1}^{\infty} x^{r-1} E_{z}\left(S_{r}\right)^{m} & \sim \int_{0}^{\infty} \theta^{m-1} e^{(x-1)[\log (1-z)-1]-(x-1) E(\theta)-\theta} d \theta, z \rightarrow 1^{-}, \\
& \sim s \int_{0}^{\infty} \theta^{m-1} e^{-x[E(\theta)+\log s]+E(\theta)-\theta} d \theta, s \rightarrow 0^{+}
\end{align*}
$$

Hence

$$
s^{m-1} \sum_{r=1}^{\infty} x^{r-1} E_{z}\left(S_{r}\right)^{m} \sim e^{x \log \left(s^{-1}\right)} \int_{0}^{\infty} e^{-z E(\theta)+E(\theta)-\theta} \theta^{m-1} d \theta
$$

So
4.10

$$
\begin{aligned}
& \frac{(1-z)^{m-1}}{(m-1)!} \sum_{r=1}^{\infty} x^{r-1} E_{z}\left(S_{r}\right)^{m} \sim \frac{1}{(m-1)!} \times \\
& {\left[\int_{0}^{\infty} e^{E(\theta)-\theta_{\theta} m-1} \sum_{r=1}^{\infty} \frac{[-x E(\theta)]^{r-1}}{(r-1)!} d \theta\right] \times\left[\sum_{r=1}^{\infty} \frac{\left[x \log (1-z)^{-1}\right]^{r-1}}{(r-1)!}\right]}
\end{aligned}
$$

Equating coefficient of x^{r-1} on both sides of 4.10

$$
\begin{aligned}
\frac{(1-z)^{m-1}}{(m-1)} E_{z}\left(S_{r}\right)^{m} & \sim \frac{1}{(m-1)!} \sum_{p=0}^{r-1}\left[\left\{\left[\log (1-z)^{-1}\right]^{p} / p!\right\}\right. \\
& \left.\times\left\{\int_{0}^{\infty} \frac{[-E(\theta)]^{r-1-p} \theta^{m-1} e^{E(\theta)-\theta}}{(r-1-p)!} d \theta\right\}\right], s \rightarrow 0^{+}
\end{aligned}
$$

$4.11 \sim \sum_{p=0}^{r-1}(1 / p!)\left[\log (1-z)^{-1}\right]^{p} K(r-1-p, m), s \rightarrow 0^{+}$,
where
4.12

$$
K(q, m)=\int_{0}^{\infty} \frac{\theta^{m-1}[-E(\theta)]^{q} e^{E(\theta)-\theta}}{(m-1)!q!} d \theta
$$

which is in agreement with Shepp and Lloyd.

References

1. W. Feller, An Introduction to Probability Theory and Its Applications, Vol-1, Asia Pub. Co., 1969.
2. A. Y. Khintchine, Mathematical methods in the theory of Queueing, Griffin Statistical monographs, 7 (1960).
3. John Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958. 4. L. A. Shepp and S. P. Lloyd, Ordered lengths in a random permutation, Trans. Amer. Math. Soc. 121 (1966), 340-357.

Received October 23, 1969, and in revised form May 14, 1970.
Annamalai University
Annamalainagar (P.O),
Tamil Nadu, India

