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QUASI-COMPACTNESS AND DECOMPOSITIONS
FOR ARBITRARY RELATIONS

STANLEY WERTHEIMER

If T is a relation, X the set of first elements and Y a
set containing all the second elements, T(x) = {yeY\(xfy)e T]
and T~\y) = {x e X | (a?, y) e T}. If T(x) n T(y) is nonempty
implies that T(x) ~ T(y), the relation T is semi-single-valued
(ssv). Every ssv surjection defines a decomposition of X into
point inverses and a decomposition of Y into point images.
G. T. Whyburn has analyzed the ssv surjection T on X to Y
in terms of these decomposition spaces and the natural map-
pings onto these spaces. He discusses quasi-compactness for
ssv relations. It is the purpose of this paper to extend
Whyburn's analysis to include all relations.

2* Decompositions* Let P(X) denote the power set of X.

DEFINITION 2.1. Let T on X to Y be a relation. Define AT on
P(X) to P(Y) by ΔT(A) = T{A) Γ) T(X - A), A* the collection of non-
empty subsets of X for which AT(A) is empty, and A the collection
of all minimal members of J* with respect to the partial ordering
defined by set inclusion.

The elements of J* are the nonempty subsets A of X having the
property that if T"\y) Π A is nonempty then T~ι(y) is contained in A.

THEOREM 2.2. Let T on X to Y be a relation, I an indexing set
and A, At in A* for all iel. Then (a) X — A e J* if A is not X,
(b) T~ιT{A) = A, (c) T(X-A) = T(X) - T(A), (d) Π^eA* if f l Λ
is not empty, (e) \JA{ e A*, and (f) A — A{ e Δ* if A — A{ is not empty.

Proof, (a) Since A e Δ*, AT(X - A) = T{A) Π T(X - A) = AT(A)
which is empty; thus X — AeA*.

(b) Let xeT'ιT(A); then T(x) Π T(A) is not empty and, since
T(A) Π T(X - A) = 0 (the empty set), x g X - A; i.e., £ 6 A. Thus
T~ιT(A) c A. The reverse inclusion is always true, proving (b).

(c) Since A e J * ,

T(X - A) - {ye Y\ T~ι(y) 0 (X - A) Φ 0 }

- T(X) -{yeY\ T~ι(y) a A} = T(X) - T(A) .

(d) Suppose that B = f| Λ ί Δ*\ then for some X G I - 5 , T(X) Π
0 . Also xe X ~ Aj for some j el and so
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τ(x) n τ(B) c τ(x - Aj) n T(AJ)

since T{B) c T(Ai\ for all iel. This contradicts the fact that A, e Δ*.
(e) L e t C = \JAi a n d ye T(C). T h e n ye T(Ak) f o r s o m e k e l

and hence #g T(X - Ak) since JT(Afc) = 0 . Therefore #g Γ(X - C),
since Γ(X - C) c r(X - Ak), and JΓ(C) = 0 .

(f) Since both A and A, e A*, so is A Π (-3Γ — At) = A — Ai9 from
(d) and (a).

THEOREM 2.3. A is a decomposition of X.

Proof. For A', A"eJ*, if A' n A" ^ 0, A' n A"e Z/* and also
contained in A' and A". By the minimality of A' and A", A' = A' Γi
A" = A". It is now necessary to show that \J A = X. Let x e X
and A be the intersection of all members of J* which contain &; then
A e J * from (2.2) (d). Let £ezί*. If xeB,AaB; if xeX- B, A c
X — B and A Π J5 = 0 . Thus A is minimal and hence in A.

REMARK 2.4. If T is sst> the elements of A are point inverses,
which are the members of the natural decomposition for such relations.

DEFINITION 2.5. A will be called the natural decomposition of X
induced by T. Let Γ = {ΰe A} have the quotient topology and P be
the projection of X onto X'.

It is well known [4, p. 345] that the decomposition A is upper
semicontinuous (use) if and only if the mapping P is closed. For the
ssv case an equivalent condition for the decomposition to be use is
that T be reflexive closed, i.e., T~ιT(C) is closed for all closed sets
C in X [2, p. 690]. This is not true for arbitrary relations, as is
shown in the following example.

EXAMPLE 2.6. Let {â } be any sequence of distinct real numbers
converging to the real number p, and let X= Y = U xζ U {p}. Define
T on X to Y by T{x,) = {xi9 xί+ι} for all ϊ = 1, 2, and T(p) = p.
Let C be a closed subset of X; then C is finite, or infinite containing
p and T~~ιT(C) is then finite, or infinite containing p so that T is re-
flexive closed. However, A = {(J â , {p}} and, for any i, P~ιP(xi) =
X — p, which is not closed, so that A is not use.

It will be shown that there is an analogous condition which re-
duces to that of being reflexive closed in the ssv case. Some prelim-
inary ideas must be considered before stating the condition.

The relation T~ι on T(X) to X defines sets corresponding to J*
and A, say TΓ* and π. It turns out, as one would expect by consider-
ing the ssv case, that
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THEOREM 2.7. If T on X to Z is a relation, then π* = T(d*)
and π = T{A).

Proof. Let Y= T(X). Since \J A covers X and T on X to Y
is a surjection, U T(A) covers Y. Now

AT~I{T(A)) = T - ^ A ) n r-^y - τ{A)) = A n (x - τ~ιτ(A))
= Af)(X-A)=0

for 4 e J * , where the necessary algebra comes from (2.2); thus T(A) e
π*. Now let AT~ι{B) be empty and A = T~\By, then T(A) Π T(X -
A) = TT-\B) Π T(X - T~\B)) = Bn(Y- B) = 0 , so that A e A*.
Also Γ(A) = TT-\B) = B, and 2\J*) = TΓ*.

Now let S = T(A), AeA; it will be shown that B is minimal.
Let £'eτr*. Then 5' - T(A') for some A ' G J * . If

B Π -B' ̂  0, T(A) Π Γ(A') ̂  0 .

Let i/e Γ(A) Π Γ(A'); then T-1^/) c i π A ' and, by the minimality of
A, A d A' and B = T(A) c Γ(A') - Bf.

To see that any B e π is the image of something in A, let A =
Γ-'CB), then T(A) = TT~ι{B) = JB from (2.2) (b) applied to T~\ Since
Beπ*, AeA* from the previous paragraphs. Let A ' e J * and An
A ' ^ 0 ; then T(A) n Γ(A') ^ 0 and, by the minimality of Γ(A),
2\A) c Γ(A') and A = Γ " 1 ^ ) c Γ " 1 ^ ' ) - A'. Therefore Ae J,
proving the theorem.

DEFINITION 2.8. Let Γ be a relation on X to Y. For any
xeX, the order of x, O(x), is the smallest positive integer n so that
(TT~ιY~ιT(x) e π. If there is no such integer then O(x) is infinite.

The order of T, 0{T) is the smallest positive integer n so that
0{x) S n for all xeX. If there is no such integer then the order of
T is infinite.

THEOREM 2.9. Let T on X to Y be a relation and A a nonempty
subset of X. Then A is in A* if and only if T~ιT(A) ~ A.

Proof. If Ae J*, T~lT(A) = A, from (2.2)(b). Now suppose
T~ιT{A) - A. Then T~ιT{A) Π (X - A) = A Π (X - A) = 0 ; but

T-1T(il)n(-X'- A) = 0

if and only if T(A)f]T(X- A) = 0 , and so JT(A) = 0 ; thus Aezί*.

COROLLARY 2.10. // p is in X and B = {TT-ι)n-ιT{p), B =
TT~\B) if and only if O(p) ̂  n.
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An immediate consequence of the definition is that a relation T
is ssv if and only if 0{T) = 1. The corollary to the next theorem
gives a condition which ensures that the decomposition A is use.

THEOREM 2.11. Let T on X to Y be a relation and O(T) = n.
Then A is use if and only if Sn = (T"1T)n is closed.

Proof. For any x e X, (TT~l)n~lT{x) e π since O(T) = n and thus,
by (2.7), Sn(x) = T-1(TT-1)n-ιT(x)eΔ. Also, for any Ae A and subset
C of X so that A n C Φ 0 , for a? e A Π C, A = Sn(a?) c SΛ(A n C ) c
S"(A) = A; i.e., A = S*(A nC) = S"(Λ). Therefore

G Z / , i n c ^ 0}]

G/ί,4nc^ 0}

C ^ 0} = P-ιP(C) ,

where P is the projection mapping.
Thus, if A is use, P~ιP(C) is closed for C closed and hence Sn is

closed. If Sn is closed then P~ιP{C) is closed for C closed and A is use.

Note that in Example (2.6), O(T) is infinite since for any x{ and
any n, (TT"1)*-1 T(Xi) is not equal to X - p.

3. Quasi-compact relations* A ssv relation is quasi-compact if
and only if the image of any closed inverse set is closed. This is
equivalent to requiring that the image of any open inverse set be
open for such relations, a situation which is not true in general for
relations which are not ssv, as in shown by the next example.

EXAMPLE 3.1. Let X = Y = [0, 1] with the usual topology; let
ί),g,re (0, 1), p < q < r. Define T on X to Y by T(x) = Y - q for
x Φ q and T(q) = (p, r). For q e Y, T~ι{q) = q, which is closed, while
TT~ι(q) = (p, r) which is not closed. The only open inverse sets are
X and X — q and the image of both of these sets is open.

The next definition extends the concept of quasi-compactness to
all relations in such a way as to be consistent with the definition for
ssv relations. In addition, all of Whyburn's results relating to de-
compositions for ssv relations [4] remain valid for arbitrary relations
with the extended concept of a natural decomposition as discussed in
the previous section.

DEFINITION 3.2. The relation T on X to Y is quasi-compact if
and only if T(A) is closed in T(X) for each closed A in Δ*.
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THEOREM 3.3. The relation T is quasi-compact if and only if
T(A) is open in T(X) for each open A in A*.

Proof, Suppose T is quasi-compact and A (not X) in Δ* is open;
then X - A e A* by (2.2) (a) and X - A is closed. Thus T(X - A) =
T(X) - T(A) from (2.2) (c). Since T(X - A) is closed in T(X), T(A)
is open in T(X).

To prove the converse replace open with closed and closed with
open in the above.

DEFINITION 3.4. Let T on X to Y be a relation, xeX, and A(x)
the element in A containing x. The relation t on X to Y is defined
by t(x) - T(A(x)).

Note that T(X) = t(X), T(A) = t(A) for A in Δ, and, if T is ssv,
T=t.

THEOREM 3.5. For any subset A of X, A is a member of Δ* if
and only if it is the union of the members of some subset of A. In
particular, if A is in A*, A is the union of all members of A which
intersect A non-vacuously.

Proof. Suppose AeΔ*; then for each xeA, xeA(x) c A by the
minimality of A(x). Therefore A c U {De A\A Π D Φ 0}. The re-
verse inclusion is always true by the minimality condition. If A is
the union of the members of some subset of Δ, AeA* by (2.2) (e).

THEOREM 3.6. Let T on X to Y be a relation. Then t is ssvf

and T is quasi-compact if and only if t is quasi-compact.

Proof. Let x, x' e X\ then t~ιt(x), t~ιt(x') e A. Since A is a decom-
position either t(x) = t(x') or t(x) Π t(x') = 0 ; i.e., t is ssv.

Since t is ssv, the natural decomposition of X induced by t is
δ = {t~H{x) \x e X). To prove the second assertion it will be shown
that 8 coincides with A and hence, from (3.5), <ϊ* will equal Δ*. It
will then be shown that t(A) = T(A) for A e A* and thus for any
closed AeA*.

Note that for p,qeX, if T(A{p)) = T(A(q)) then

A(p) - T-*T{A(p)) = T^T(A(q)) = A(q) .

Then

t-H(p) = {qeX\ t(p) Π t(q) Φ 0} - {q e X \ t(p) = t(q)}
= {qeX\ T(A{p)) = T(A(q))} = {qeX\ A(p) = A(q)} = A(p) ,
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SO δ = A.

Since t(A) = T(A) for every Ae A and every member of zί* is the
union of a subset of the elements of A, t(A') = T(Af) for every Af e A*.
This proves the assertion.

For two topological spaces, X and Y, let R(X, Y) be the collec-
tion of all relations on X to Y and S(X, Y) c R(X, Y) be the set of
all ssv relations on X to Y. Then p on R to S defined by p(T) = t
is a surjection. The function ,0 thus defines an equivalence relation
on the set of all relations given by Γ ~ T if and only if p(T) = <o(T').
From the last theorem either all of the members of any equivalence
class are quasi-compact or they are all not quasi-compact, depending
upon their representative in S. The function p is itself quasi-compact
since it is a retraction [4, Theorem (4.5), p. 346].

Now P on X to Xr and Q on Y to Yf are the natural mappings
for the decompositions of X and Y induced by the surjection T. Define
h on X' to Y' by h{D) = QtP-ι(D), g on X to F ' by flr(α) = hP(x),
and s o n F to X' by s(y) = h~ιQ(y)) then P, Q, /&, #, and s are onto
functions, as pointed out by Whyburn [4]. The following theorem is
a direct analogue of Theorem (6.1) in [4]; here the requirement that
T be ssv is not needed. The proof is exactly the same since T is
quasi-compact if and only if t is quasi-compact.

The following commutative diagram is useful for understanding
the functions h, g, and s and the theorem following.

x TΛ^γ
\ /

Γ
h

Xr > Yf

THEOREM 3.7. Let T on X to Y be a surjection. Then
(a) h is injective. Also h(hrι) is quasi-compact when T(T~ι) is

quasi-compact.
(b) h is a homeomorphism if and only if T and T~ι are quasi-

compact.
(c) g is quasi-compact when T is quasi-compact and continuous

when 77"1 is quasi-compact.
(d) s is quasi-compact when T~~ι is quasi-compact and continuous

when T is quasi-compact.

The following theorem of Whyburn [4, Theorem (6.2), p. 348]
analyzes the ssv representative t of T. A doubly quasi-compact rela-
tion is one for which both it and its inverse are quasi-compact. A
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relation is use (Isc) if the inverse of every closed (open) set in its
range is closed (open).

THEOREM 3.8. For any ssv doubly quasi-compact surjection t on
X to Y there is a topological space Z and a pair of continuous quasi-
compact single-valued surjections P on X to Z and Q on Y to Z
satisfying t = Q~ιP and t~ι = P~λQ. Thus t is closed (open) if and
Only if P is closed (open); equivalently, t is use (Isc) if and only if
Q is closed (open).

Conversely, any pair of quasi-compact single-valued continuous
surjections P on X to Z and Q on Y to Z define a ssv doubly quasi-
compact relation under the definition t(x) = Q~ιP(x), x in X, which in
turn generate a pair Pf and Qf equivalent to P and Q.

Theorems (3.9), (3.10), and (3.11) are generalizations of Theorems
(4.2), (4.4), and (4.5) in [4]. In every case Whyburn's results require
that the relations be ssv.

THEOREM 3.9. Every use compact-valued relation T on X to Y is
quasi-compact, for X compact and Y Hausdorff.

Proof. Let C be closed in X; then C is compact and T(C) is
compact since compactness is invariant under use compact-valued re-
lations [3, Corollary A2, p. 1497], Since Y is Hausdorff, T(C) is closed
and hence T is closed and so quasi-compact.

For any surjection T on X to Y, a set S c X is a cross-section
for T if T(S) = Y.

THEOREM 3.10. If T on X to Y is a surjection so that T\S is
quasi-compact for some cross-section S for T, then T is quasi-compact.

Proof. Since S is a cross-section for T, S is a cross-section for t
since T(S) c t(S). Thus t is quasi-compact on S by (3.6) and hence on
X by Whyburn's theorem. Again by (3.6), T is quasi-compact on X.

A surjection T on X to 7 c l i s retracting if y is in T(y) for
each y in Y.

THEOREM 3.11. Let T on X to Y = X be retracting; then T is
quasi-compact.

Proof. If T is retracting, t is retracting since T(y) a t(y) for
every y e Y. Thus t is quasi-compact, from Whyburn, and hence T
is quasi-compact from (3.6).
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4* Local //-connectedness* It is well known that every quotient
space of a locally connected space is locally connected [1, Proposition
12, p. 112]. Whyburn [4] defines a space Y to be locally connected
relative to the surjection T on X to Y provided that components of
open image sets in Y are open; he then proves that if T is a ssv
doubly-quasi-compact surjection which preserves connectedness, Y is
locally connected relative to T if X is locally connected relative to
T"1. Since every quotient mapping is quasi-compact, this theorem
contains the result in the first line of the section. It is the purpose
of this section to extend the known results to arbitrary relations; in
so doing, a theorem stronger than Whyburn's will be obtained for
ssv relations.

DEFINITION 4.1. Let X be a space, A a decomposition of X, and
A* the collection of subsets of X which are the union of the elements
of some subset of A. Then X is locally //-connected if the components
of open J* sets are open.

LEMMA 4.2. Let X be a topological space, A a decomposition of
X, X' the quotient space of X relative to A, and P the natural pro-
jection* If D, Dr are subsets of Xr so that D is a component of U,
then P~\D) is the union of components of P~\Df).

Proof. It is sufficient to show that any component of P~ι(Df)
intersecting P~\D) is contained in P~ι{D). Let xeP~ι{D) and C be
the component of P~ι{Dr) containing x; then P(C) is connected and
hence P(C) c D since P(x) e D. Therefore C e P-~ιP(C) c P-\D).

LEMMA 4.3. [1, Proposition 7, p. 110] Let X be a topological
space, A a decomposition of X, and Xr the quotient space of X relative
to A. If each element of A is connected, then X is connected when
Xr is connected.

The following theorem was suggested by Professor G. L. Cain, Jr-

THEOREM 4.4. Let X be a topological space, A a decomposition
of X with connected elements, and Xr the quotient space of X relative
to A. Then X is locally A-connected if and only if Xf is locally
connected.

Proof. Suppose that X is locally zf-connected. Let Όf c Xr be
open and D be a component of D'. Since U is open, P~ι{Df) is open;
also, from (4.2), P~ι(D) is the union of components of P~\Dr), each
of which is open since X is locally J-connected. Thus P~\D) is open
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and hence D is open, i.e., X' is locally connected.
Now suppose that Xr is locally connected. Let Ar be an open J*

set and A a component of A'. Since P is continuous P(A) is con-
nected; let Bf be the component of P(Af) containing P(A).

Let the subspace B = P~ι(Bf) of X be decomposed by Δ restricted
to B; then the subspace Bf of Xf is the quotient space of B relative
to Δ restricted to B. Since Br is connected, B is connected, by (4.3).
Also, since P(A) c B\ A c P~ιP{A) c P" 1 ^ ' ) = 5. However, A is a
component of A' and B is connected, so B a A; thus A = B.

Now J3' is open since X' is locally connected, so P~ι(Br) = A is
open; i.e., X is locally J-connected.

THEOREM 4.5. Let T on X to Y be a doubly quasi-compact sur-
jection, where π has connected elements. If X is locally Δ-connected,
Y is locally π-connected.

Proof. The function g in the diagram in § 3 is a quasi-compact
mapping, by (3.7). From Theorem (5.1) in [4], Y' is locally connected
relative to g since g is a doubly quasi-compact function which pre-
serves connectedness and X is locally connected relative to g~\ since
X is locally z/-connected. Since g is single-valued, Y1 is locally con-
nected and hence, by (4.4), Y is locally ττ-connected.

THEOREM 4.6. Let T on X to Y be a relation. If T has con-
nected point images, π has connected elements.

Proof. Let Geπ and G = A U B, where A f] cl{B) = B f] cl(A) =
0. Now let y e TT~ι{A) and x e T~\y) n T-ι(A); then T(x) is contained
wholly in A since T(x) is connected and, since y e T(x), ye A; i.e.,
TT~ι(A) c A. The reverse inclusion is always true so that TT~ι(A) = A
and hence A e π, by (2.9). But A c G, so A — G and 5 = 0 , proving
that G is connected.

COROLLARY 4.7. Let T on X to Y be a doubly quasi-compact
surjestion with connected point images. If X is locally Δ-connected,
Y is locally π-connected.

REMARK 4.8. (4.7) includes Theorem (5.1) in [4]. Also included
are the cases where T has connected point images and is (open, Isc),
(open, use), (closed, Isc), or (closed, use); in particular, the corollary
includes the cases when T is an open, closed, or quotient mapping.
Since any locally connected space is locally J-connected for any Δ, the
known results that local connectedness is preserved by open, closed,
retracting, or quotient mappings are also included in (4.7).
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5* Reflexive closed and reflexive compact relations* A relation
T on X to Y is reflexive closed (compact) if T~ι T(C) is closed (com-
pact) for every closed (compact) subset C of X. X is a fc-space if a
subset A of X is closed when its intersection with every closed com-
pact set in X is closed. Theorems (5.1) and (5.5) are generalizations-
of Theorems 1, 2, 3, and 5 of E. Duda [2]. Duda's results are stated
as corollaries to (5.1) and (5.5). Note that there are no continuity
conditions in the hypotheses of the theorems while the functions in
the corollaries are all assumed to be continuous.

THEOREM 5.1. Let X be a Hausdorff space and T on X to Y a
relation so that T~ι T(x) is compact for each x in X. Then (a) implies
(b); if X is a k-space (b) implies (a); if O(T) is finite (a) implies (c);
if X is a k-space and 0{T) is finite (b) implies (c); if X is a k-space
and T is ssv, (a), (b), and (c) are equivalent.

(a) T is reflexive closed.
(b) T is reflexive compact.
(c) The natural decomposition of X is use.

Proof, (a) — (b): Define S on X to X by S(x) = T~ιT{x). Then
xeS(y) if and only if T(x) Π T(y) Φ 0 if and only if y e S(x); i.e.,
S-'ix) = {y e XI x e S(y)} = {yeX\ye S(x)} = S(x), and so any property
of S is also a property of S~\ Since T is reflexive closed, S is closed
and hence use; S has compact point images and therefore [3, Corollary
A2, p. 1497] S preserves compactness and is thus compact.

(b) —> (a): The relation S now preserves compactness and is thus
compact; S(x) is closed for all xe X and so from Corollary Q on p.
1499 of [3] which states that if X and Y are Hausdorff and Y is a
A -space, any compact relation with closed point values is closed, S is
closed.

(a)->(c): This follows from (2.12).
(b) —(c): This follows from (b)-> (a) and (a)->(c).

COROLLARY 5.2. Let X be a Hausdorff k-space and f a mapping
of X onto Y. If f is reflexive compact then f generates an upper
semicontinuous decomposition.

COROLLARY 5.3. Let f be a mapping with compact point inverses
of a Hausdorff space X onto a spaoe Y. If f generates an use de-
composition then f is reflexive compact.

COROLLARY 5.4. Let f be a mapping with compact point inverses
of a Hausdorff k-space into a space Y. The mapping f generates an
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upper semicontinuous decomposition if and only if f is reflexive
compact.

A relation T on X to Y is semi-closed if the image of every
compact set in X is closed in Y; thus, any continuous function onto
a Hausdorff space is semi-closed with a semi-closed inverse.

THEOREM 5.5. If X is a Hausdorff k-space and T on X to Y is
a quasi-compact reflexive compact surjection of finite order with T~ι

semi-closed, then T is compact.

Proof. All relations referred to are those in the diagram pre-
ceding (3.7). Since T is reflexive compact, the decomposition A of
X is use, by (5.1). From (3.7) (d), s is continuous since T is quasi-
compact, and thus s preserves compactness.

For AeXr

fxeAfP"1(x) = (T-1T)n(x) for some n since 0{T) is
finite; since T is reflexive compact P has compact point inverses.
Moreover A is use and so P is closed and hence compact [3, Corollary
A3, p. 1497]. Thus t~\K) is compact for any compact subset K of Y
since t~ι = P^s.

Since T~ι is semi-closed, T~ι(K) is closed; therefore T~ι{K) is a
closed subset of the compact set t~ι(K) and is thus compact. This
proves the theorem.

COROLLARY 5.6. Let f on X to Y be an onto mapping, where
X is a Hausdorff k-space. If f is quasi-compact and reflexive com-
pact, then f is compact.
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