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AN INEQUALITY FOR THE HILBERT
TRANSFORM

RAY REDHEFFER

The purpose of this paper is to give a general inequality
for the Hubert transform that clearly distinguishes conditions
of global and local integrability. The former conditions are
associated with a certain product [/, g]m, the latter with
another product {/, g}p. The resulting statement contains, as
corollaries, a number of inequalities for the Hubert transform
that have not been hitherto noted. Presentation of these is
a second objective here. It turns out that the general theorem
also includes, in sharpened form, several classical inequalities
of Hardy and Littlewood, Babenko, and others. Proof of
these sharpened forms is a third objective.

By means of the theory of Calderon and Zygmund results
similar to those of this paper can be established for Hubert
transforms in n dimensions and for singular integrals of more
general types. However, this is not done here.

1* Definitions and notation* We use /, g, h and so on for
complex-valued functions of a real variable, u or x, on the domain

( - c o , 0 ) U ( 0 , oo).

All functions are assumed locally integrable, that is, integrable in
the sense of Lebesgue over each compact subinterval of the above
domain, and p and q are complementary Lebesgue exponents. Thus,

P^I, 1 + 1 = 1.
V Q

The statement feLp means that / is locally integrable and \f\p is
integrable on (— oo, oo), the omitted point 0 being irrelevant here.
Otherwise, our integrals are interpreted whenever possible as Cauchy
principal values near 0, x and ± oo. This applies, in particular, to
the Hubert transform

fa = r jM-du
•' °° X IΛJ

and to the modified Hubert transform fm introduced below .
We define, as usual, L = L\ and

G oo \ 1/p

I J\X) I CiX j , p ^ 1 .

Any inequality of form P ^ Q is considered to be vacuously fulfilled
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if Q = oo, a n d \\f\\p = 00 if / is n o t in Lp.

A well-known theorem of Riesz asserts that

11/11, ^ Λ , l l / l l , , P > 1

where Rp is constant. The smallest constant that can appear in this
inequality is called the Riesz constant; for example, R2 = π. Since
the Riesz theorem fails for p = 1 we assume once for all that the
functions / and g belong locally to Lp for some p > 1. However they
need not belong to Lp on (—oo, oo) for any p. (The same effect can
be achieved by declaring that Rv = oo for p = 1, which we do, but
perhaps the hypothesis mentioned here is clearer).

Throughout this paper α, δ, c, A, B, C, a, β, p, σ denote real con-
stants, which may be different in different contexts, and {xn} denotes
a real sequence satisfying

xn > 0, λ ^ ^+L ^ μ, -oo <:n< oo

where λ and μ are constants such that 1 < λ ^ μ. It is said,
briefly, that {xn} belongs to (λ, μ). The values λ, μ and the sequence
{xn} are regarded as fixed and are not always carried as explicit
parameters.

We could introduce another sequence {yn} such that {— yn} belongs
to (λ, μ) and thus obtain a more general formulation of the results
below. Instead, we refer both f(x) and f( — x) to the same sequence
{xn} for x > 0, placing a higher priority upon simplicity of statement
than upon maximum generality.

To avoid overburdening these introductory remarks, other defini-
tions are presented as needed. The modified Hubert transform fmr

which forms the subject of this paper, is introduced in the next sectionr

together with an error term [f]m. A functional Jp(φ) that plays a
role in the formulation of new inequalities is introduced in § 3, and
the products {/, g}p and [/, g]m are introduced in § 4, to permit the
statement of Theorem 1. These expressions all have the meanings
assigned to them on their first introduction, even when mentioned
later in the paper.

2* A modified Hubert transform* The Hubert transform exists
only for a narrow class of functions. We propose to enlarge this
class by allowing f(u) a behavior at -oo,%0, and ©o that might make
the integral diverge. Clearly u0 = 0 involves no loss of generality
and is assumed henceforward.

Near u = 0 and \u\ = co we have, respectively,
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X — U

X — U X LU \U

which give suitable approximations when terminated. Without loss
of generality the same terminating exponent, m — 1, is taken for both
series. For m ^ 1, then, let

( 1 ) Km(r) + R

The modified Hubert transform, which allows singular behavior of /
at 0 and at ±°o, is defined by

(2) fm{x) = ( Γ - i λ.κj^]\f(u)du, m = 1,2,3, . . .

Near 0 and ±oo the integral behaves like

( umf{u)[l + O(u)] du , f f&L\l + of—"jldw
Ji«!<ε Jl«l>i/e Um L \ ^ / J

respectively, hence exists for a larger class {/} than that available
for / . Later we shall require absolute convergence of the integrals
above. It is nevertheless appropriate to consider fm as a Cauchy
principal value, because the earlier terms of the series then exist for
a broader class of functions / than they otherwise would.

The structure of the formula for fm is somewhat clearer when /
exists. In that case

( 3 ) fax) = f(x) - f{x), where f(x) = 1- ί '*' f(u) du .
X J-la|

This reduces to / when / is odd. For m ^ 2

X JuKixi L\ x / \ a? / \ ί c / -1

+ if Γ( ) + ( i
X J\u\^\x\ L\U/ \U

Hence, about half the terms in fm — f can be dropped when / is
even, and about half can be dropped when / is odd.

Equation (2) gives fm+ί(x) — fm{x) as an integral with respect to
u. Another form is obtained by writing — u for u, and still a third
is obtained by averaging these. The third expression indicates that

*
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Thus, fm+1 — fm depends only on the even part of / if m is even, and
only on the odd part if m is odd. For any function / we define

(4) [f(x)]m = [" min( -* ", 2L m)\f(u)\du.

Then |/m+i(a?) —/»(»)| ^ [/0&)]m/l#l> and a sharper result can be ob-
tained by distinguishing even and odd parts. The expression [f]m is
often encountered in the sequel.

To illustrate the generality of fm, it may be mentioned that fm{x)
exists for m = 1, 2, 3 when f(x) — ex sin β2x, though \f{x)\ behaves
substantially like ex in this case. The theory of this paper is not
applicable, since [f(x)]m — °° for all m. However the choice f(x) =
(1 + I x \)a sin ex again ensures existence of fm for all m, and here
[f]m < °° for m > a + 1. It is possible to have singularities at 0
as well as at co; for instance, if f(x) = xa for x > 0,f(x) = 0 elsewhere,
then fm exists for \a + 1| < m, while / does exist when a ^ — 1.
A different generalization of f(x), originating in an idea of Achiezer,
has been considered by Koizumi [16].

We shall find it expedient to choose m large enough to make the
various integrals in our analysis converge, and then deduce results
for smaller m by direct examination of [f(x)]k, k < m. The behavior
of f(x) and of [/(&)]fc is so simple that we regard these functions as
"known" in the same sense that / is known. A theorem about fm

is, in essence, a theorem also about /.
Comparison of / and fm is facilitated by a theorem of Hardy,

Littlewood, and Pόlya [12] which reads as follows: Let

G(x) = [Xg(t)dt, r > 1; G(x) = ί"g(t)dt, r < 1,
JO Jx

where g ^ 0. Then for p > 1,

I x~rGpdx < ( 2.—) I xp~rgpdx .
Jo - \\r - 1 | / Jo

Furthermore, the constant on the right is sharp.
For r > 1 this applies to the part of [f]m for which the integra-

tion is over \u\ < \x\, and for r < 1 it applies to the other part. By
a short calculation we get the following: Let a = a — 1/q satisfy
I a I < m. Then

( 5 ) \\*-ι[f(x)U\\,£ mt\a\
 llχafllp-
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It is also true that

/ β \ 11 r α f(Ύ\ 11 < ^ 11 vaf(Ύ\ 11
\V ) \\x J\x)\\p = -J—T \\x J\x)\\p

provided a < 0. These results can be applied with / replaced by its
even or odd part, as explained above.

3* A survey of results obtained here* The result of this paper
which is most closely connected with well-known theorems is Corollary
6. This asserts that

( 7 ) \\xafm\\P S C(RV + ™L—)\\χ'f\\p, o> = a-±,
V m — I a\ / q

where | a\ < m and where C is an absolute constant. In 1936 Hardy
and Littlewood [10] proved for p > 1 that

\\xaf\\p< - i m p l i e s \\xaf\\p < -

provided / is even and — 2 < a < 0. In 1944 this was refined (for
the circle) by K. Chen [4], who showed that

for some constant C(a, p), - 2 < a < 0. Both follow from (7) with
ra = 2. Indeed, since / is even, f2 = fu and hence (7) applies to fλ

with \a\ < 2. In the Hardy-Littlewood case α < 0 and (6) together
with the above gives

l l r α ? l ί < Γi P ^l/v a/Ίl 9 ^ /T <^ 0

where C is an absolute constant.
In 1948 Babenko [1] obtained Chen's result without assuming /

even, provided — 1 < a < 0. This follows from (7) with m = 1, and
in the more explicit form

\\xaf\\P £ C ( R , - - ^ 1 — ^ ) 1 1 ^ / 1 1 , , - 1 < a < 0 ,

where C is an absolute constant.
In 1958 Flett [8] remarked that it ought to be possible to get

Babenko?s theorem for a larger range of a when / is odd, as had
already been done by Hardy-Littlewood and Chen for / even. Flett
showed, in fact, that the result holds for \a\ < 1, on ( — π, π), provided
/ is odd, periodic and integrable. A sharpened form of Flett's theorem
on (-oo f oo) follows from (7) with m = 1.

Since the integration in (7) involves the region \x\ < 1 as well



186 RAY REDHEFFER

as \x\ > 1, the effect of changing the parameter a is by no means
obvious at first glance. Corollary 7 gives a more general version of
(7), in which xa on the left is replaced by two different powers, one
for \x\ < 1 and one for \x\ > 1. Similarly, xa on the right is replaced
by two different powers. The resulting inequality reduces to (7) again
in case all exponents are equal.

For example, the choice a = β = 0,p = σ=— a in Corollary 7
gives the following: Let a satisfy

α + i- < m — δ

where δ is a positive constant. Then there exists a constant Cm

depending on m alone, such that

CjR,+f
f

(1 + \x\

The choice m = 1, a = a/p, where 0 ^ a < 1, gives a sharpened form
of a theorem of Koizumi [15]. The case a = 1 is also worthy of note,
since we can then take 1/δ = p for m ^ 2. In particular, m = p = 2
gives

-L-ίte^ \f(x)

where C is an absolute constant. Thus the transform taking / into
f2 belongs to the Wiener class.

Corollary 7 shows a remarkable symmetry in the conditions for

x\ < 1 and \x\ > 1. The weight (1 +
like 1 near 0, and like \x\~a near «
a weight that behaves like 1 near oo and like
if the weight (1 -f \x\)~a is replaced by

x\)~a considered above behaves
We could just as well construct

x\~x near 0. Indeed,

then the same inequality holds, and with the same condition on a.
This follows by taking p = σ = 0, a = β = — α in Corollary 7.

It should perhaps be mentioned that these results can be combined
with the Marcinkiewicz-Zygmund interpolation theorem [20] to get
results of the form

Γ φ(fm)w(x)dx ^ Cφ\~ φ(f)W(x)da
J - o o J - o o

for suitable functions φ. Since the technique is well known [6], [14],
[15], the details are not repeated here. Our main objectives lie in a
somewhat different direction, as described next.
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Results of the foregoing types fail when p = 1. For instance,
if feL then it does not follow that feL, or even that fmeL for
any m. However, if/ admits a majorant FeL such that xpF(x) is
monotone for some p, for x > 0, and also admits such a majorant for
x < 0, then /x e L does follow. This is the content of Corollary 2.
Corollary 2 was in part suggested by, and strongly generalizes, an
unpublished result of Matzayev on even entire functions [19].

The assumption of a monotone majorant is very restrictive. For
example, a function as simple as |log|cosa?|| is excluded, through for
many purposes this function behaves like a constant. Here we intro-
duce majorants that are in a certain sense of regular growth, and
yet have infinities. This is accomplished by use of the functional

Jp(φ)= SUP ( * \'n+1\φ(x)\>dx)1IP

where {xn} is the sequence belonging to (λ, μ) mentioned in § 1. The
majorants have the general form | / | <; Fφ, where Jp(φ) ^ 1 and where
F has the desired regularity. It can be thought that F is a smooth
carrier of the singular mass distribution φ.

Every function / which is locally Lp can be written in the form
/ = Fφ for x > 0, where F is constant on each interval (xn, xn+ι) and
where Jp(φ) Ŝ 1. To see this, let

so that Jp(f) = sup In. If In > 0 we define

F(X) = In , φ(χ) = ίψ- , Xn < x < χn+ι

while if In = 0, the definition F - 0, φ = 1 is used. Then / = Fφ
almost everywhere, and JP{φ) = 1. We set F(x) = 0 for x < 0.

The particular decomposition mentioned above makes F^ 0 and
minimizes \F\ subject to the constraints: JP(<P) Ŝ 1, F = const on
(xn, xn+1). This is called the minimal decomposition.

For brevity, it is said that G(x) belongs to a if x~aG(x) decreases
and xaG(x) increases for x > 0. Corollary 8 then reads as follows:
Let \f(x)\ + \f( — x)\ have the minimal decomposition F(x)φ(x) for
x > 0. Let \g(x)\ + \g(—x)\ = G(x)ψ(xj where G(x) belongs to some
constant a < m and where Jq{ψ) ^ 1. Then there exists a constant
C, independent of / and g, such that

The form of C is determined explicitly. In particular, if
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λ ^ 1 + — , μ <; λ2

m

as can be assumed with only slight loss of generality, then

C = C0(RP + — - i -)
\ m(m — a) /

where Co is an absolute constant.
Other corollaries have various monotony properties for F, in the

majorant | / | ^ Fφ, and greater flexibility in the weight g,\g\ <£ Gψ.
The general significance of these results is that the L behavior of fm

relative to the weight g is largely determined by the L behavior of
FG in these decompositions, and that more regularity in one of the
functions F, G allows less in the other.

A class of functions that is well adapted to majorants of the
above types is the class of periodic functions. If \f(x)\ has period
ω > 0 let xn = ω2n, so that λ = μ = 2. Then for n S 0

/ I fαi \l/p

/ • = ( - \f(x)\'dx)
\ω Jo /

and the function F in the decomposition / — Fφ is constant. Corollary
10 indicates that

X 1 W , m ^ 2 ,

where g is any weight such that g = 0 for x < ω, and \g(x)\xp is
monotone for some p. The dependence of C on the relevant para-
meters is also given, and the actual statement is much more general.
These results apply to broad classes of functions f(x) = P[Q(x)] where
P is periodic and Q is sufficiently well behaved. For instance f(x) =
P(logx) makes f(Xx) = f(x) for λ = βω, and the choice xn = Xn gives

ι[In = const, again.

4* The main theorem* In this section we state the main
theorem, from which the other results follow as corollaries. The
formulation requires two products, [/, g]m and {/, g}p. The first of
these correlates / on the whole range (--°°, °o) with g on the whole
range (~oo, oo) and is called the global product. The second cor-
relates / and g only on overlapping intervals (xn-u xn+ί) and is called
the local product.

The global product, [/, g]m, is the integral of [f]m \g\ or | / | [g]m.
Thus,

S oo Γoo /

I mini

\f(u)\ \g(x)\dudx.
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(We integrate with respect to x from -c« to oo so that [/, g]m will
be symmetric. In most applications g(x) = 0 for x < 0.) Existence
of [f]m in (4) is equivalent to convergence of

( \u\m\f(u)\du and ί \u\~m \f(u) \ du .
J\u\<i J | M | > 1

Hence, the larger m is, the larger is the class of functions for which

The local product {/, g}p is defined by

{f,g),= Σ (\ \fiχ)\'dχ) ( \g{x)Ydx)

and {/, g}p = oo if the series diverges or a term is infinite. We could
avoid the dependence on {xn} by taking the inf over {xn} belonging to
(λ, μ), but that would not always be convenient.

Thd main theorem of this paper is:

THEOREM 1. Let Ap = 2RP, where Rp is the Riesz constant, and
let

Let g{x) = 0 for x < 0. Then for all m, p, λ and μ

\\xfJx)g(x)\U ̂  Ap{f, xg}p + Bm[f, g]J.

The conclusion could also be written in the form

\^ Ap{f, g}v + Bm\f, MΛ .
L X Am

The earlier statement is preferred because it allows the roles of / and
g to be interchanged, by virtue of

[/, g]m = [9, f]m, {/, g}P = {g, f}q.

It turns out that the factor x can be transferred from g t o / in {/, xg}p,
with only trivial modification, while simple examples show that

are compatible for every value of m. The symmetry is of some
interest because one often has a different hypothesis for / from that
for g. The fact that xfmg and xfgm satisfy substantially the same
inequality is, then, not quite obvious.

The factor x, which can be transferred from g to / in {/, g}p but
not in [/, g]m, is responsible for some subtleties in the following
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analysis, as is the fact that {/, g}p involves overlapping rather than
disjoint intervals in the sum.

5* Proof of the main theorem. If R and S are positive func-
tions of x let

( 8 ) f*(x; R , S ) =
x-R X —

for x > 0, so that

xf*(x; R, S) =

. x

f(u)du , x > 0 .

By (2), with K = Km for short,

foe

«/ τn\ / — I

(u
f(u)du .

For \r\ < 1, equation (1) gives

JΓ(r) =

 Λ ~m

1 — r' 1 — r 7 1 — r

Since iί(r) = 1 — K(l/r) for | r | > 1 we have also

K(r) = 1 ~ rl~m, — K(r) = γl~m ,

1 — r 1 — r 1 — r

Applying this with r = u/x gives

(9) xfm{x) - xf*(x; R, S) = ί°° kί^
J_oo \ cr.

where k(r) has the values

1 — r 1 — r r — 1 r — 1 1 — r

on the respective intervals

(—°°, — α), ( — a?, & — iί), (» - Λ, »), (x,x + S), (x + S, oo) .

The intervals of the variable r = u/x corresponding to these intervals
of the integration variable u are respectively

x / \ x J \ x J \ x

To introduce [f,g]m we need a factor \u/x\m on intervals where
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\u\ < x, and a factor \x/u\m on intervals where \u\ > x. Hence we
set p = 1/r and write k(r) in the form

v 1 m 1 — Pm ™ τm~ι — 1 T
1 l _ r ' i - r 1 - <o ι ' ' r - 1 ' 1 - r

on the above intervals, respectively. In each case the factor multiply-
ing rm or pm is monotone, as seen when this factor is written as a
geometric series. Hence, the maximum of this factor occurs at an
end point of the corresponding interval and can be found by inspec-
tion. To estimate these factors we need values for R and S, given
next.

Let {xn} be a sequence belonging to (λ, μ) and such that {/, xg}p

converges; if there is no such sequence then there is nothing to
prove. We define R and S by

and observe that (x — R)/x = xn-Jx, (x + S)/x = Xn+Jx- Hence,

1 ^ x - R ^ 1 ^ x + S < o
μ2 x λ x

These results can be used to estimate the coefficients of r m or pm in
the above formulas for k{r). The result is that

mini
\

u
—

1 x

m X

u

for x > 0, where Bm is the constant of the theorem. Namely, this
holds on xn ^ x < xn+1 for every n and hence it holds on (0, oo).
From (9) it follows that

A/mW ^J \^f tt ) &) I = ^mL/ WJm

where [/(»)]„ is given by (4). If this is multiplied by \g(x)\ and
integrated from 0 to oo the right-hand side is Bm[f, g]m, since we
have assumed g(x) = 0 for x < 0.

To get a similar estimate for the integral of | &/*(#; R, S)g(x)
note that

\ a; | / * ( » ; i2, S)g(x) \dx = \ Λ Jy ; du
x w _ x X — U

where in the last step we used the Schwarz-Holder inequality and
the Riesz theorem for Hubert transforms of class Lp. It is well
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known that

(10) L(a^ + bιιη ^ (α + b)ιlp rg α1/p + bίlp (a ^ 0, b ^ 0, p ^ 1)

and hence

1/(35) I'(to) ^ ( |/(s)|Λ + (

This shows that the coefficient of Rp above is dominated by the sum
of two adjacent terms in the series defining {/, xg}p. Upon multiply-
ing the inequality

\xfm(x) I ^ x \fm(x) - f * ( χ ; R,S)\+x \f*(x; R, S) \

by \g(x)\, integrating from xn to xn+1, and summing on n, we get the
inequality of the theorem.

6* Convergence theorems. Here we give some easy consequences
of Theorem 1 that do not involve detailed estimates. Corollaries 1-5
use Theorem 1 only for m ^ 2, and in several cases only for p = 1/2.
Proof of Theorem 1 for this case is somewhat simpler, but not enough
simpler to be worth writing out again. For the reader's convenience
we recall (3), namely, fι=f — f, if / exists, where / is the Hubert
transform and / is twice the average of f(u) sign x on (—1#|, |# |) .
In this section the letter S denotes the set of sequences {xn} satisfying

xn > 0 , inf ϋ^±i- > 1, sup -^±i < oo .
xn xn

It is well known that the Riesz theorem fails for p = 1, so that
feL does not imply feL. However we shall establish the following:

COROLLARY 1. For x > 0, suppose \f(x)\ admits a major ant
F(x) e L which is constant on each interval (xn, xn+1) of some sequence
{xn}eS. Suppose \f( — x)\ also admits such a major ant. Then fxeL.

For proof let g{x) — \\\x\ for \x\ > 1 and g(x) = 1 for \x\ < 1.
Then [^(x)]i as given by (4) with m = 1 is bounded, and hence feL
implies [ # , / ] ! <<*>. This gives [/, g],<^, since [/, g]m = [g,f]m.
Also we have the following approximate relations for p = 2, xn > 0:

1/2

',.,) + F(x'n)].
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Here x'n is any point on (xny xn+1). Since FeL the latter series con-
verges and Corollary 1 follows.

COROLLARY 2. Suppose \f\ admits a majorant FeL such that
xpF(x) is monotone for some constant p as x —• oo, and also such that
\x\p F(x) is monotone for some constant p as x-+ — oo. Then feL.

For proof let x > 0 and, to fix ideas, let xpF(x) be increasing.
Taking xn = 2n we have

2 - p F ( x n ) ^ F(x) ^ 2 p F ( x n + 1 ) (xn ^ x ^ x n + 1 ) .

The left-hand relation together with FeL gives

Σ xnF(xn) <

and the right-hand relation then gives a majorant of the type needed
in Corollary 1. Discussion of the case in which xpF(x) is decreasing
and of the case x < 0 is similar.

The choice f(u) = ^- 1(log u)~2 for u >̂ 2 shows that /x cannot be
replaced by / in Corollaries 1 and 2. The same example applies to
several results given below.

COROLLARY 3. Let \f(u)\ ^ F(\u\) and \g(u)\ ^ G(\u\) where F(x)
and G(x) are 0 for x < 0. Suppose xFG e L, and suppose xpF(x) and
xpG(x) are increasing for some constant p < 2. Then xftg e L.

A calculation similar to that in Corollary 1 gives {/, xg}p < oo
even if it is not assumed that p < 2. The integral for [/, g]x can be
found by integrating over the region R where \u\ < \x\ and over the

complementary region R. The first integral does not exceed

ί \u\p F(\u\) \u\~p^G(\x\)dudx £ —-—\~xF(x)G(x)dx
JR \χ\ 2 — p Jo

and hence is finite. By symmetry the same inequality holds for the
integral over Rf and Corollary 3 follows.

The choice f(u) = u~2, g(u) — (log u)~2 for u ^ 2 shows that the
condition p < 2 cannot be replaced by p ^ 2 in Corollary 3. Namely,
Theorem 1 gives xf2g e L under these conditions, but x(f — f2)g is
not in L.

When p < 1 in Corollary 3 then f can be replaced by /, through
such replacement is not permitted when p :> 1. This is so because if
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where xpF(x) is increasing for some constant p < 1, then

(ID \f(x)\*ψl*l.
i - p

It was observed above that in {/, g}p the two functions / and g
are compared only locally. We can allow / to be very large on a
given interval (xn, xn+1) if g is correspondingly small on that interval.
The following example is an extreme case:

COROLLARY 4. Let {xn} = X be a given sequence belonging to S.
Suppose the support of f is contained in a set Xf of closed intervals

%n ^ 8 fg xn+1

of X, and suppose the support of g is contained in another such set,
Xg, disjoint from Xf. If there is a p > 1 such that feLp and g e Lq

locally, then [/, g]m < oo => xfmg e L.

The proof is obvious, because {/, gx}p = 0 under the stated
conditions.

COROLLARY 5. Let φ(u) have period ω > 0 and let φ e Lp locally
for some p > 1. Define

Q) JX — U X Q) Jo

where da = 1 for a = —1 and δa = 0 otherwise. Then

\°°xaw(x)dx < oo => [~\Fa(x) I w(x)dx

where w(x) is any nonnegative weight such that xpw(x) is monotone
for some p.

We apply Theorem 1 with f(u) = \u\a φ{\u\) for \u\ ̂  ω, otherwise

f(u) = 0. Also g(x) = w(x)/x for x ^ ω, otherwise g(x) = 0. If xn is
large then, approximately,

\φ(u)\*du) =^(\ \φ(u)\pdu) = CX

where c is constant. Thus, for purposes of convergence,

Since (xaw)xp is monotone for some |0, the hypothesis xaw e L makes
{/, %9)v < °° as in the proof of Corollary 1 or 2.
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The behavior of [/, g]m is not satisfactory when m = 1 and so
we pick m = 2. Computation of [f(x)]2 leads to consideration of

— Γ Ua+2 I φ(u) \du + X2 ί ° V - 2 I φ(u) \ du .
X2 Jω Jx

Since φe L on its period it is easily checked that the above expres-
sion has the order of magnitude xa+1 as x —> co, just as it would if φ
were constant. Hence g[f]2 has the order of magnitude wxa and
therefore [/, g]2 < oo.

Theorem 1 now gives wf2 e L. Since / is even, f2 = / — /. The
left-hand integral in Fa(x) is f(x)/2 and the right-hand expression is
f(x)/2, apart from a term of order xa. This is seen when we write
φ = (φ — M) + My where M is the mean value of φ over a period.
The term φ — M has a bounded integral, and integration by parts gives
the desired conclusion.

Corollary 5 shows, for example, that the two functions

f(u) = ̂ ^ , f(u) =
u u

behave differently with respect to convergence. If w(x) = (log x)~2

for x ^ 2π then the first function satisfies fw e L and the second does
not.

7* Properties of the global product* Here we collect some
properties of [/, g]m that are useful for sharpening and generalizing
the previous corollaries, as explained in § 3.

Property 1. Let a + b = 1 and let a = a — 1/q = 1/p — b satisfy
I a I < m. Then

[LQL^ fm \\χ*f\\v\\χhg\\q.

Suppose first that / = g = 0 for x < 0. In this case

H%, v)χa \f(χ) 12/* \g(y) I

where

Since k(x, y) is homogeneous of degree — 1 we can apply Hardy's
generalization of Hubert's inequality [11]. By a short computation

k(x, l)x~llpdx = (~&(1, y)y-ίlqdy = — -
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The Hardy-Hilbert inequality now gives

(12) [f,g]~£C\\xΛf\\p\\xhg\\q

where C = 2m/(m2 — α2), and shows that this result is sharp.
To get the general case, note that the arbitrary functions / and

g can be written

— /i + ft > = ΰl + #2

where fλ = g1 = 0 for x < 0 and f2 = g2 = 0 for x > 0. By symmetry
(12) applies to each pair fi9 gό, that is, it applies in each quadrant.
Therefore

[/, g]m £ Σ [Λ, Λ] ^

where in the last step we used the inequality on the left in (10)..
This completes the proof.

Property 2. Let α, b, A, B be constants such that

a ^ — + m — δ , b <: — + m — δ , α + 6 ^ 1

A >̂ m + δ ,

where 0 < δ ^ m. Let

r(x) = \x\a,

Then

V

^—-m + δ , + B> 1

(I a?

s(x) = \x\B

^> όάl II /• I I M

^ 1)

We give the proof first for the case in which a + b = l, A + B=l-
In this case

V
m — δ

and likewise for A and B. Let

f(x) = fx{x) + f2(x) ,

w h e r e fi = g1 = 0 for |α?| ^ 1 a n d f2 = g2 = 0 for \x\ < 1. P r o p e r t y 1
g i v e s

< \\vaf II l l ^ δ 7 II^ ll̂ /ll 11̂  llΓ f
d

and similarly for [/2, ^ 2 ] w with A and B on the right.
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To estimate [/2, g^ consider the integral

ί~x~m-AxAf2(x)

By two uses of the Schwarz-Holder inequalily it is found that

IΛ, flrj. ^ •f(p-1")(<r1/t) p y . l l , l l^ i l l . .
d

(The factor 2 arises from the extension to the other quadrants). A
similar result holds for [fu g2]m with a and B on the right. Since
p-ιip <: i these results can be combined as in the proof of Property 1.
This gives the desired conclusion, under the additional condition that
a + b = A + B=l.

To extend the result, let Rδ be the region of the (a, b) plane in
which the inequality of Property 2 holds for fixed δ. Then if
(α0, 60) £ Rδ it is easily seen that (α, b) e Rδ whenever a < α0 and b < δ0.
Similar remarks apply to (A, B). This completes the proof of Property
2, as can be seen by a sketch.

If, besides the hypothesis of Property 2, α, 6, A, B satisfy the
additional condition

(13) α + δ ^ l - δ , A + B^l + δ

it is possible to deduce the conclusion by use of the Schwarz-Holder
inequality, without using Property 1 and without the assumption
3 ίg m. In fact, the following generalization holds in this case: Let
r and s be even functions such that r(x)x~a and s(x)x~b are decreasing
on (0, 1), while r(x)x~A and s{x)x~B are increasing on (1, oo), Let
a, 6, A, B satisfy the hypothesis of Property 2 and let the condition
^ m be replaced by (13). Then

[/,g].g s ^n,\\rf\\
δr(l)s(ϊ)

In particular, this applies if δ ^ 2m, since (13) holds automatically
in that case. Thus Property 2 holds for δ ^ 2m as well as for
O ^ δ ^ m . Ifm^<5<^ 2m then Property 2 holds with the constant
m on the right instead of δ.

Property 3. Let f(x) > 0 and g(x) > 0 for x > 0 and let f(x) =
g(x) = 0 for x < 0. Given a < m, consider the four functions

Suppose one of the following conditions holds:
( i ) The first and second functions both increase;
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(ii) the first increases, the third decreases;
(iii) the second increases, the fourth decreases;
(iv) the third and fourth decrease.

Then

m — a

The proof follows by using the two possible orders of integration
in the region u < xf and the two possible orders in the region u > x;
we omit the routine details.

As the reader will recall, the functions used in the Zygmund-
Marcinkiewicz interpolation theorem satisfy inequalities of the form

l ta+1

and similar inequalities on (u, 1) and (0, u); cf. [6], [14], for example*
The monotony conditions of Property 3 could be replaced by more
general conditions of this kind. In particular, in place of cases (ii)
and (iii) one could just assume

[f(x)]m^a\xf(x)\ or [g(x)]m < a |xg(x) \

where a is constant, and

then follows by inspection.
The reader preferring these more general conditions will find that

the following proofs are virtually unchanged. The monotony formu-
lation of Property 3 is used here because it is simpler.

Let r(x) > 0 for x > 0 and r(x) = 0 for x < 0. It is said that r
is right-majorized with constant a if

r{x) ^ a r ( t x ) , l ^ t ^ μ ,

and that r is left majorized with constant a if the above holds with
t^ 1.

Property 4. Let r = 0 for x < 0, r > 0 for x > 0, and let C have
the value

C = °LV—± , C=aβ, C= ϋ i
μ λ 1

, Caβ, C /9λ
μ λ — 1 λ — 1

according as r is right-majorized with constant a, both right and
left majorized with constants a, β, or left majorized with constant
β. Then

[rφ, g]m ^ Cμ2m[r, g]mMφ) .
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For proof we compare [rφ]m with [r]m. Given x, let

L(u) = Lx(u) = mini
u

u > 0 .

By distinguishing the three cases in which the interval (u/μ, uμ) is
wholly at the left of \x\, or wholly at the right, or contains \x\, it
is seen that L(u) is both right and left majorized with the constant
μ, no matter what value x may have. Thus the function

R(v) = Ra(v) = φ)[L(u)]m

is right-majorized with constant aμm if r is right-majorized with
constant α. In that case

[rψU = Σ \*n+lR(u) \φ(v) \ du S aμmR(xn+ί)dn+1Jι(φ)

where dn — xn — #Λ_i On the other hand

[ φ ) ] , = Σ

Without loss of generality it can be assumed that Jγ{ψ) = 1. Under
this condition we want to choose a constant C so that Cdn+2 ̂  (μma)2dn+1.
Since

we get C as the first constant in Property 4. With this C,

1̂ 1 ̂  ^ c Γ [ r ] w |flτ| ώ? = C[r, g]m .
Jo

Proof of the other two statements is similar.

8* Properties of the local product. The results of this section
pertain to the product {/, g}p. We assume throughout that all func-
tions are 0 for x < 0. By the Schwarz-Hδlder inequalities for integrals
and for series,

(15) 2||/ f lr|| ι^{/ fff}p^2||/||p | |flf||g.

We wish to get conditions under which the first inequality can be
effectively reversed, so that {/, g}p ^ CWfg]^ for some constant C.

Property 5. Suppose r and s are both right majorized, or are
both left majorized, with the respective constants a for r and β for
s. Suppose also rs = 1. Then
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{/, g}9 ^ {rf, sg}p ^ (aβ)*{f, g}p.

If r and s are right-majorized then

r(x) ^ a2r(xn+ί) , φ ) ^ β2s(xn+i)

for a?n+1 ^ x ^ #w+i and the desired result follows by inspection of the
general term in the series for {rf, sg}p. The case in which they are
left-majorized is similar.

Property 6. Let r be right-majorized with constant a and left-
majorized with constant β. Then

{r<P, g}p ^ aβ{r, g}pJp{φ).

This follows by comparison of the two integrals

\r<p\pdx, \ rpdx,
xn-l Jχn-l

as in the proof of Property 4. Since a more difficult case is considered
later the proof is omitted.

If both r and s satisfy the hypothesis, one can use Property 6
twice and get

(16) {rψ, sf}p tί (aβ)2{r, s}pJp(ψ)Jq(ψ) .

We shall obtain a similar result when r and s satisfy only one-sided
conditions.

Property 7. Suppose r and s are both right majorized, or are
both left majorized, with the respective constants a for r and β for
s. Then

, sf}p ^ C{r, s}p , {rφ, sf}p ^ aβC \\rs\\,
where

C = 4 ( a β £ ±βYXμ
X — 1

For proof let dn = xn — xn_γ and suppose (r, s) are right-majorized.
Then (10) gives

\rφ\*dx) <ί a[d^+

We replace dn and dn+ι by max (dn, dn+ι), and, without loss of genera-
lity, we take Jp{φ) = Jq(ψ) = 1. The above together with the analogous
relation for sψ shows that the general term in {rψ, sψ}p does not
exceed
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(17) aβπmx(dn, dn+1)[r(xn+1) + r(xn)][s(xn+1) + s(xn)] .

On the other hand (10) also gives

^ [dϊMU + e ^

and hence the general term in C{r, s}p is at least

— - m i n ( d Λ + 2 , dn+ί)[r(xn+1) + r(xn)][s(xn+1)

It suffices, therefore, to choose C so that

C > \(θί3Y

min (dn+2, dn+ι)

Since
( l - —)xn ^ d n ^ ( l - ±-)xn , (λ - 1)0?. ^ eίn+1 <{μ- l)xn

\ λι ' \ Li'

the numerator is at most (μ — ί)xn and the denominator is at least
(λ — l)xn. This gives l/(λμ) times the constant in the statement of
Property 7. The latter results from consideration of the case in which
(r, s) are left-majorized. Here it is required that

C > ^ w > ^ w +

min (dn, dn_γ)

and this produces the extra factor Xμ.
To prove the second part assume again that r and s are right-

majorized. Since r(xn) <̂  αr(ίcw+1) and s(xn) ^ βs(xn+1) in (17) it suffices
now to majorize

β)r(xn+1)s(xn+ι)
by

rsdα? ^ —dw+2r(a;w+1)s(a;11+1) .
αβ

Similar considerations apply when (r, s) are left-majorized. The two
together lead to

when we replace (1 + α)(l + β) by Aαβ. The second condition leads
to the constant in the second inequality of Property 7.

Property 8. Let r(x) be constant on each interval (xn, xn+1). Let
s(x) be both right-majorized and left-majorized with constant α. Then
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{rφ, sψ}P £ 2α2 λ ^ - 1 J,(φ)J,(Ψ) \\rs\l.
ΛJ — 1

Without loss of generality let Jp(φ) = Jq(Ψ) = 1. To show the
structure of the proof more clearly we assume that s(x) is left-
ma jorized with constant β rather than a. Then, as in several cases
above, it is found that the general term of {rφ, sf}p does not exceed

Here rn is the value of r on (xn, xn+1). Furthermore, if C is any
positive constant,

a β

We have to choose C so that the coefficients of rn and rn_γ in the
latter expression are not smaller than those in the former. This
holds if

C ^ aβ + α2(-A_J/9, c ^ aβ + /92(^ V "

Thus C must be the larger of the two expressions

The result of Property 8 is obtained by setting β = a and considering
the worst case, q = 1. The factor 2 is needed because the intervals
(xn, xn+1) are covered twice in the summation.

9. Inequalities for the weighted norm. Corollary 1 asserts
that fxeL provided / admits a certain type of majorant FeL. The
proof actually gives ||/i||i ^ C ll^lli where C is some constant, and a
similar refinement applies to the other corollaries above. Here we
propose to study the dependence of these constants on the other
parameters p,m,\,μ, . The results obtained go farther than
previous results in this direction, yet follow with ease from Theorem 1.

COROLLARY 6. Let a = a — 1/q satisfy \a\ < m. Then there
exists an absolute constant C such that

V
RP +

m — \a\

For proof let α + 6 = 1 and let g be arbitrary. Then
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where in the last step we used Property 5 with r = xa, s = x~a. Since
\a\ < m + 1 we get, by (15),

(18) {f,xg}p^2μ^\\xaf\\p\\xbg\\q.

Here / = # = O f o r α ; < 0 . A similar result can be obtained for x < 0,
taking f — g = 0 ΐor x > 0. Property 1 gives also

(19) [/, gU £ l l ^ l l M l

m - \a\

and it remains only to apply Theorem 1.
The exponential dependence on m in μm seems a disaster for the

estimates desired here, but can be made harmless by appropriate choice
of μ. Indeed, the second term in Bm does not exceed mμ2rn, and the
choice

λ = ̂  = l + - L
2m

gives Bm <̂  3m. Thus Theorem 1, (19) and (18) together give

\\χLg\l ^ C ( R P + — ^ — ) \ \ χ a f \ \ p \\χbg\\q

V m — \a\/

where C is an absolute constant. If we set G = xbg then the left
side is \\xafmG\\ι, and Corollary 6 follows from the converse to the
Schwarz-Holder inequality. It should be stressed that C is independent
of α, m, p; the result with C = C(a, m, p) is more immediate.

It is not difficult to show that the constant of Corollary 6 has an
appropriate form, in that any such constant must tend to oo for p —> 1
and p —• oo in the same way as does Rp, and must also tend to co as
\a\ —*m like (m — l^l)"1. Indeed, let Am, Bm and Cm be any constants
such that

m — a m +

holds for \a\ < m and 1 < p < co, as in Corollary 6. Then necessarily

A w ^ l , B m ^ l , C m ^ l , ( m = 1,2,3, . . . ) •

For proof, let δ be a small positive constant and let

α = — + m — δ , b = — 1 — m + <5 + <52.
Q

Then the function f(x) = x\ 0 < x < 1; f{x) = 0 elsewhere, satisfies

I f — f >
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Since ||a?α/w+i||p is bounded for small δ by Corollary 6, letting <?—»0
shows that Bm ^ 1. Similarly Cm ^ 1, and the fact that Am ^ 1
follows from the ordinary Riesz theorem for a = 0. We do not know
whether the numerator m in m/(m — \a\) in Corollary 6 can be re-
placed by 1. Apart from this, the above example shows that the result
is sharp.

The technique of considering fm+ι — fm is a powerful method of
constructing examples, and shows that the constants in the following
corollaries are also, in various respects, sharp. (Cf. the discussion
following Corollary 3.)

COROLLARY 7. Let Rδ be the region of the (ζ, η) plane defined by

ς ^ JL + m - 8 , η^ξ, TJ-^I. - m+ δ
Q q

where δ > 0. If (a, β) and (p, σ) are two points of Rδ, let

w(x) = \x\fi, W(x) = I x \a , \x\^l;

w(x) = \x\o, W(x) = \x\% \x\^l.

Then there exists an absolute constant C such that

When a = β = p = σ this reduces to Corollary 6.
For proof, we can assume δ <̂  m. This is so because Rp ^ π,

and hence the term m/δ can be incorporated with Rp by increasing
C, if m ^ δ. Also it suffices to establish the result with (α, β) and
do, σ) on the line ξ = η. This is seen by considerations similar to
those used in the proof of Property 2. Thus we can assume that

I<*I, \β\i lι°lι \σ\ a r e a t m o s t m + 1.
We use Property 2 with r — W, s — x/w, and with

a = a , 6 = 1 - / 3 , A — σ, B = 1 — p .

It is easily checked that Property 2 applies with the same δ as in
Corollary 7. Hence

where CQ is an absolute constant. In order to estimate {/, xg}p, con-
sider first the terms for which xn_x ^ 1 . In this case A + B ^ 1 gives

{/, χg}p ^ {/, χ*+*}p ^ t*^{xAf, XBg}P

where in the second step we used Property 5 with r(x) = xA. A
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similar result applies to the terms with xn+ί ^ 1 and to the single
term with xn = 1. Since | A| ^ m + 1 and \a\ ^ m + 1 can be assumed,
as noted above, we get, essentially,

The result is readily extended to negative x. With λ = μ = 1 + 1/m,
Theorem 1 gives an absolute constant C such that

(A similar inequality can be found with more general r and s by
using (14) together with the full force of Property 5.) As before, we
set G = xg and use the converse to the Schwarz-Hόlder inequality.
The result is Corollary 7.

The discussion following Corollary 6 indicates that some of the
inequalities in the hypothesis of Corollary 7 are appropriate, but gives
no clue concerning the inequality ΎJ >̂ ξ. This is discussed now, under
the hypothesis that the remaining conditions

ζ < m , V ~ — > - m ,
q q

continue to hold. We shall show that the conclusion of Corollary 8
is never true if a. > β, or if p > σ; in other words, the condition
Ύ] Ξ> ξ is really needed both times it is used.

To this end, note that fm can be written in the form

, Lj^)f(U)du.
x J-~ \χ /

If f(χ) — χa for 0 < x < 1, and f(x) = 0 otherwise, the substitution
u — tx gives

fm(x) = x Λ 1 * L m ( f ) t a d t , x > 0 ,
Jo

and so fm(x) ~ cax
a as x—>0+ where ca is a certain definite integral.

This integral converges if \a + 1( < m. For present purposes we take
a in such a way that

L-ξ<a + i < λ - v
q q

which is always possible if ξ > η. The above conditions on ξ and η
ensure the needed inequality | a + 11 < m. The inequality

I rγ \riί> I -f (sγ\ ΪP rl rγ <1 C* \ I T I'*2' I ^( ^ίΛ \P rl Ύ 4 - \ " W Z ^ ^ I /YΛΛ IP /7Ύ*

0 JO J1
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fails for this function / no matter what the weight W may be, since
the integral on the left diverges while both integrals on the right
converge. This shows that a ^ β is necessary in Corollary 7. Similary,
p 5j σ is necessary.

10. Majorants of special forms* Here the results of Corollaries
1-5 are refined and extended. The reason for presenting Corollaries
1-5 separately is that their proofs are very simple, while the exten-
sions obtained now require more attention to detail. If only the
existence of some constant C is required, the considerations of this
section can be simplified after the manner of Corollaries 1-5, and the
rather tedious analysis of §§ 7 and 8 can be, in part, avoided.

In the minimal decomposition / = Fφ, F could be expressed as a
difference of two step functions both of which are monotone. Thus
/ for x > 0 can be written as a difference of two expressions Fφ in
which Jp{φ) ^ 1, F is constant on each interval (xnt xn+1), and F is
increasing.

Often such a majorant F can be majorized by another in which
x~aF(x) is decreasing for some a. Thus we are led to consider ma-
jorants Fφ ^ I/I in which, instead of being a step function, F has
the property that Fxa increases and Fx~a decreases. Similar remarks
apply to the weight g; that is, we consider \g\ < Gf where Jq{ψ) ^ 1
and where G has various regularity properties. As noted above, the
L1 behavior of fm relative to the weight g is largely determined by
the Lι behavior of FG in these decompositions.

In this section it is assumed that

(20a) |/(α;)| <* F{\x\)φ{\x\) , \g{x)\ £ G(\x\)Ψ(\x\)

for — oo < x < oo, where

(20b) F(x) = G(x) = 0 for x < 0, F(x) > 0, G(x) > 0 for x > 0

and where, relative to {xn},

(20c) Jp(φ) ^ 1 , Jq(f) tί 1 .

COROLLARY 8. Let (20) hold and suppose further:
( i ) F(x) is constant on each interval (xn, xn+1);
(ii) x~aG(x) decreases and xaG(x) increases for some a < m. Then

there exists a constant C, depending on μm alone, such that

llΛfflli S C^—±(RP +
λ 1λ — 1 \ m —

Clearly a ^ 0 unless g = 0, in which case the theorem is vacuous.
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If μm is bounded—for example, if μ ^ (1 + 1/m)2—then C is an
absolute constant. We can always diminish λ so as to make λ <Ξ 1 +
1/m, since the inequality xn+i/xn > λ, continues to hold with the new
λ. We can then add enough geometric means on each interval
(xn, xn+1) so as to make μ <̂  λ2 for the new sequence. This operation
multiplies Jp(φ) and Jq{ψ) by factors which do not exceed, respectively,

Hence, if λ ^ 1 + 1/m, we can replace C by

where Co is an absolute constant.
In the proof it is convenient to use Ck to denote various constants

depending on μm alone. We also note the relations

(21) J^φ) ^ Jp(φ) £ 1 , J.iψ) ^ Jq(ψ) £ 1

whice follow from the fact that Jp(φ) is a monotone function of p.
Furthermore, the assumed monotony of G ensures that G(x) is both
right and left majorized with constant μa ^ μm.

For the first step of the proof, Property 4 gives

[/, g/x]m ^ 2[Gf/x,f]m ^ Cje/x,/]^) ^ C\Glx,f\m .

For the second step, Property 2 gives

(22) [/, G/xU ^ 2[Fφ, G/x]u g -J—\\FφG |U
m — a

For the third step, since G is right-majorized with constant μm,

[n+1\FφG\dx ^ μ™F{xn)G{xn+1){xn+1 - xn)

where again we have used JJ&) ^ JP{φ) ^ l On the other hand
since G is left-majorized with constant μm

[n+1

Jχn

FGdx ^ μ'mF{xn)G{xn+ι){xn+ι - xn) .

Hence by addition WFφGW^ C2\\FG\\ι. These three steps together
give

[ f 9 U
m — a

For the fourth step, Property 8 gives
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Since Bm in Theorem 1 clearly satisfies

Theorem 1 gives the desired conclusion in case g(x) = 0 for x < 0.
To get the full result, note that the two relations

Λ(*) = - Γ L
X J - ~

imply each other. In other words, fm( — x) is the modified Hubert
transform of —f( — u). Since

(23) Γ \g(x)fm(x)\dx= \~\g(-χ)fm(-χ)\dx
J-«» Jo

and since g( — x) and f{ — u) satisfy the same hypothesis as g{x) and
f(u), the above estimate applies to the integral (23). Addition of the
two estimates gives Corollary 8.

It has already been mentioned that the assumption | / | <; Fφ, or
even | / | = Fφ, with F and φ as in Corollary 8, holds for every /
which is locally Lp. Sometimes | / | ^ Hφ where H(x) is right or
left majorized with some constant a. In this case we can obtain a
majorant F(x) by taking F(x) = aH{xn) or aH(xn+ι) on (xn, xn+1) and
can apply Corollary 8 (cf. in this connection the deduction of Corollary
2 from Corollary 1). In particular, Corollary 8 applies if xpH{x) is
monotone for some p.

When I/I has such a majorant, it is often possible to get by with
only a one-sided monotony condition on G. We shall establish:

COROLLARY 9. Let (20) hold and suppose there exists a constant
a < m such that one of the following holds:

( i ) xι~aF(x) and x~~aG(x) both decrease, or
(ii) x1+aF(x) and xaG(x) both increase.
Then there exists a constant C, depending on μm alone, such that

λ — 1 V (λ — iym — a

The proof is similar to the above proof. Two uses of Property
4 followed by one use of Property 2 give

[Fφ, Gψ/X]m ̂  Cl ^ " ^
m — a (λ — 1)
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On the other hand Property 7 gives

Corollary 9 now follows from Theorem 1.
In Corollary 8 the roles of / and g could be reversed, giving a

corresponding inequality in which / is associated with a monotone
majorant and g is associated with a function G constant on each
interval. The new result applies when G is right or left majorized
with some constant 6, and is stated as follows:

COROLLARY 10. Let (20) hold and suppose further:
( i ) x1~aF(x) decreases and xί+aF(x) increases for some constant

a < m;
(ii) G(x) is right- or left-majorized with some constant b. Then

there exists a constant C, depending on μm alone, such that

IIΛ0II1 ^ C ( V R , + £ ^
λ — 1 V (λ — l)(m — α)

Here Property 4 used twice followed by Property 2 gives

[Fφ, Gf/x]m ^ C ^ μ - L L \\FG\\,.
λ — 1 m — a

Property 7 gives

and again the conclusion follows from Theorem 1. The result applies
with b = μιpι if xpG(x) is monotone for some p. The roles of / and g
can be interchanged, giving Corollary 8 again for the case in which
F, instead of being constant, is right or left majorized with some
constant 6.

II* Concluding remarks* It should perhaps be mentioned again
that an even majorant as in (20) is not really necessary. If, instead,
we refer f( — x) and g{ — x) to another sequence {yn} belonging to (λ, μ),
the most important change is that HJFYTHI must now be replaced by

\\F(x)G(x)\\1 + \\F(-x)G(x)\\1.

With a more fussy arrangement of details, it is found that an esti-
mate for x > 0 involves the special majorants F, G only for x > 0,
just as {/, g}p is required only for x > 0. Thus we get inequalities
of the general form
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^ cX°F(x)G(x)dx + Ct[Ίf(-x)g(x)\dx.
Jo Jo

As a natural continuation of this sequence of corollaries, one
might consider the case in which both F and G are constant on the
intervals (xn, xn+1), so that Fφ and Gf are both minimal decomposi-
tions. This can be done, but the resulting statement is unappealing
because of the overlapping in {/, g}p. That is, values of F on (xn, xn+ι)
are correlated with the values of G on (xn+1, &n+2), as well as with
those on (xn, xn+1), and no hypothesis on \\FG\l alone can ensure
convergence of the series. In the special case in which {xn} is a
geometric sequence, so that λ' = μ, the integrals encountered are
essentially of the form

\\F(x)G(x)\\l9 \\F(x)G(Xx)\\1.

Formulation of the theorem in this case is left to the reader.
For suitably restricted classes these conditions may be both

necessary and sufficient, in the following sense: If \\FG\l = ©o, one
can construct functions / = Fφ, g = Gφ, with Jp(φ) S 1, Jg(Ψ) ̂  1»
and such that | |/m#| | i = oo, This seems tolerably clear from the
proof of Theorem 1, but detailed investigation is reserved for another
occasion. The question of necessary and sufficient conditions is taken
up from a different point of view in [2], [9], [13] and [17], but none
of these results apply to the Lι case of interest here.

Another question to which the solution is not presently known is
this: For precisely what classes of function-pairs (/, g) do the two
conditions

\\XLQ\K - , \\%fgm\l< oo

imply each other? A third question is this: To what extent do the
results hold if, instead of belonging to (λ, μ), the sequence {xn} satisfies
Σ(2/»/ff»)2 = °° only, where yn = xn+ι - xj

REFERENCES

1. K. I. Babenko, On conjugate functions, Dok. Akad. Nauk SSR (N.S.), 62 (1948),
157-160.
2. Ralph P. Boas, Jr., Integrdbility Theorems for Trigonometric Transforms, Springer
1967.
3. A. P. Calderόn and A. Zygmund, On the existence of certain singular integrals,
Acta Math., 88 (1952), 85-139.
4. K. Chen, On absolute Cesάro summability of negative order for a Fourier series
at a given point, Amer. J. Math., 66 (1944), 299-312.
5. Yung-Ming Chen, Theorems of asymptotic approximation, Math. Ann., 140 (1960),
360-407.
6. , On conjugate functions, Canadian J. Math. 15 (1963), 486-494.
7. Mischa Cotlar, Condiciones de continuidad de operadores potenciales y de Hubertt



AN INEQUALITY FOR THE HILBERT TRANSFORM 211

Cursos y seminarios de mathematica, 2, Univ. de Buenos Aires, (1959), 210-211.
8. T. M. Flett, Some theorems on odd and even functions, Proc. London Math. Soc,
(3) 8 (1958), 135-148.
9. V. F. Gaposkin, A generalization of M. Riesz's theorem on conjugate functions, M.
Sbornik (88), 46 (1958), 359-372.
10. G. H. Hardy and J. E. Little wood, Some more theorems concerning Fourier series
and Fourier power series, Duke Math. J., 2 (1936), 354-382.
11. G. H. Hardy, J. E. Littlewood and G. Pόlya, Inequalities, Cambridge University
Press, (1959), p. 229.
12. G. H. Hardy, J. E. Littlewood and G. Pόlya, Inequalities, Cambridge University
Press, (1959), p. 246.
13. Henry Helson and G. Szegό, Problem in prediction theory, Ann. di Math. Bologna
IV, 5 1 (1960), 107-138
14. H. Ishikawa and Sumiyuki Koizumi, On some theorems of the Fourier transform,
J. Fac. Sci. Hokkaido Univ., Sapporo 14 (1958), 225-230.
15. Sumiyuki Koizumi, On the Hilbert transform I, II, J. Fac. Sci. Hokkaido Univ.,
Sapporo, 14 (1959), 153-224; 15 (1960), 93-130.
IQ ^ Qn j-fa singUlar integrals, V, Proc. Japan. Acad. Tokyo, 35 (1959), 1-6.
17. Paul Koosis, Weighted quadratic means of Hilbert transforms, to appear.
18. R. M. Redheίfer, An inequality for the Hilbert transform, Proc. Nat. Acad. Sci.
6 1 (1968), 810-811.
19. , On a theorem of V. I. Matzayev, Duke Math. J., to appear.
20. A. Zygmund, On a theorem of Marcinkiewicz concerning interpolation of opera-
tions, J. de Math., 35 (1956), 223-248.

Received July 26, 1967, and in revised form September 11, 1970. The preparation
of this paper was supported in part by NSF Grant #GP-13377.

UNIVERSITY OF CALIFORNIA, LOS ANGELES






