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THE REGULARITY OF MINIMAL SURFACES
DEFINED OVER SLIT DOMAINS

DAVID KINDERLEHRER

Let Ω denote the disc x\ + x\ < r2 in the x = (xi, x2) plane
from which the segment {0 ^ Xi < r, x2 — 0} has been deleted.
Suppose that u{x) e C° (Ω) is a solution to the minimal surface
equation in Ω((l) below) and attains boundary values
/(a?i) e CUtt(0 < a <1) on the slit {0 g xt < r, x2 = 0}. We shall
prove here that the gradient of u, Du = (uXl,uX2), is continuous
at the origin x = 0.

There is a corresponding result for harmonic functions, due to
H. Lewy [7], which we paraphrase here. If u(x) e C\Ω) is harmonic
and attains boundary values f{x^ e C1>a(0 < a < 1) on the slit
{0 ^ xL < r, x2 = 0}, then

lim inf — (u(h, 0) - u(0, 0)) = ^ - oo, or

When the last alternative holds, Du{x) is continuous at # = 0. The
harmonics u±(x) = ±p112 sin 0/2, α; = |θe^, illustrate the occurrence of
the co and — co as possible limit values. The result to be proven
here is, then, another example of the greater regularity possessed by
solutions of the minimal surface equation (cf Bers [2], Nitsche [9],
and [4]).

As an application, we consider the problem of minimizing the
non-parametric area integrand among functions constrained to lie
above a given function defined on a segment in a domain. More
precisely, let P be a bounded, open, convex domain with smooth
boundary, σ a closed straight segment in P, and f(x) a continuous
nonnegative convex function on σ which vanishes at the endpoints of
σ. Denote by

JT~= {v(x) e C°>ι(P): v{x) ^ f(x) on σ and v = 0 on dP} .

The problem is then

(A) Prove that there exists a u(x)eSf~ such that

VI + \Du(x)\2 dx = min ί \ Vl + | Dv(x) \2 dx .
veSf JϊJ

Evidently, a solution to A, if it exists, satisfies (1) in the set
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{x e P: u{x) > f(x)}. Johannes C. C. Nitsche [10], considering, in fact,
a larger class of surfaces than J%Γ above has proven:

(B) If P is symmetric with respect to a line and σ lies on this
line of symmetry, then there exists a solution to A.

Furthermore, he has shown:
(C) If a solution to A exists, it is unique. Moreover the set

T = {xe P: u(x) = f(x)} is a (connected) sub-interval of σ.
Using the theorem to be proved here in addition to some similar

elementary considerations, we may prove

THEOREM I. If u(x) is a solution to A where f e Cι>a(σ), 0 < a < 1,
then du/dx1 is continuous in P and du/dx2 is continuous in P-τ and
upon one-sided approach to τ. In addition {du/dx^ is bounded by a
constant depending only on P, σ, and f.

For the solution of B, Nitsche has shown the second part of
Theorem /([1O], p. 105). We remark briefly on the proof of Theorem
I at the conclusion of this paper. Primarily, we wish to prove

THEOREM II. Let u(x) e C\Ω) n C\Ω) satisfy

(1) (1 + ul2)uXlXl - 2uXιuX2 UXLX2 + (1 + ul)uXzX2 = 0 in Ω

u(xu 0) = f(Xj)9 0 <̂  xι < r ,

where f(xL) e Cla([0, r]), 0 < a < 1 .
Then Du{x) is continuous at x = 0.

To prove Theorem II, we shall utilize known properties of the
conformal representation of the surface

S = {(x, x3): x3 = u(x), xeΩ}

together with Lemma 1 below. In brief, S may be viewed as a
minimal surface whose boundary contains a spike. The boundary
behavior of such surfaces is known. We quote here Theorems D and
E. To compute uXl, uXo in terms of parameters (ζ, rj) different from
(xu x2) involves the determination of three functional determinants,
one of which, the Jacobian J = d(xu xz)/d(ξ, η), occurs as a denominator.
The fact that S has a one-to-one projection onto a slit domain is
used to show that J has "lowest order" among the three determinants.

We close with remarks about extensions to weaker boundary
regularity.

2* The conformal representation and its properties* In this
paragraph we introduce conformal parameters so that the minimal
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surface S = {(x, x3): x3 = u{x), xeΩ} in (xl9 x2, x3) space may be
considered to be a minimal surface with a spike (cf [4]). We then
determine regularity properties of this representation.

Denote by G the open upper half ζ = ζ + iη plane. By a conformal
representation of S we shall understand a triple of harmonic functions.

continuous in G and admitting finite limits at ± ©o, which is a one-
to-one map of G onto S and satisfies the isothermal relations

Xζ(ζY = Xv(ζy and Xξ(Q . Xv(ζ) = 0, ζ e G .

According to a result of Beckenbach and Rado [1], such a
representation for S exists because ueC°(Ω). We may assume that
X(0) = (0, 0, /(0)) and that the curve x3 = ffa), x2 = 0, 0 ^ x1 < r, is
the one-to-one continuous image of — ξx < f ^ 0 and the one-to-one
continuous image of 0 <£ f < f2, for some f1? f2 > 0.

For the discussion which follows, it is more convenient to consider
the conformal representation

obtained from X(Q above through the Euclidean motion

y1 = α ĉos/3 + (a?3 - /(0)) sin /S

( 2 ) 1/2 = B 2

2/3 = — ^ sin β + (ff3 — /(0)) cos /S ,

where

/5 = arc tan /'(0) .

Note that |/5| < τr/2β Evidently, dyjdx,\Xl=0 > 0 and dy^/dx.l^o = 0
on the curve x3 — /(αά), x2 = 0, 0 ^ xx < r .

After a conformal mapping of G onto itself, if necessary, the
conformal representation Y(ζ) satisfies these conditions:

2/Xς) is strictly decreasing from y to 0 for — 1 < £ ^ 0

yγ(ζ) is strictly increasing from 0 to y for 0 ^ ξ < 1 ,

for some i/ > 0, and

y2(ξ) = 0,y3(ξ) = g(Vl(ξ)) for 151 < 1

where g{y^ is the C1>α function of yγ obtained by setting xB = f(xλ).
The conformal representation Y(ζ) is a representation of S as a

minimal surface with the spike

Γ: y3 = flrd/0,2/2 = 0, 0 ^ ^ < y; g(0) - flf'(O) - 0 .
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Let Fj(ζ) = y3(ζ) + iy*(Q, where y*(ζ) denotes the harmonic
conjugate to y3(ζ), F3 (0) = 0, j = 1, 2, 3. It is well known, [12], that
Fj(ζ) have absolutely continuous boundary values for Imζ = 0. About
the Fj(ζ) we state Theorems D and E which are Theorem 1 [4] together
with its corollary and Theorem 4' [5] respectively.

THEOREM D. There is a neighborhood U = {|ζ| < R, Imζ > 0} and
a branch of z = .Fi(ζ)1/m, m > 0 even integer, such that z = Fι{ζ)ιlm is
a univalent map of U onto a domain in the (ordinary) z = x + iy
plane.

The curve 7 which is the image of [ — 1, 1] Π U under this mapping
meets at a straight angle at z — 0. Its tangent has a modulus of
continuity proportional to gr{y^) at z — 0.

THEOREM E. There is a neighborhood U = {|ζ| < R, Imζ > 0} such
that

where m > 0, even, is the integer determined in Theorem D.

For the proof of E, we refer to Theorem 4 in [5]. In addition
to the facts just quoted, we require

LEMMA 1. The functions Ff

3 admit the expansions

where a1 is real, α2, α3 are imaginary, | aι \ ̂  | a21 > 0 and | b3-{Q \ <£ C \ ζ | 1 + a

for ζ G U, C > 0, a constant.

The asymptotic expansion of the F](ζ) provided by Theorem E,
and stated explicitly in Lemma 1, is similar to those in [11], which
is for minimal surfaces, and [3] which is for surfaces satisfying
certain assumptions about their mean curvature. Both of these require
the boundary to be of class C2 and "regular," although the constants
corresponding to a3- and C above depend only a priori on the given
data. However, the existence of the tangent plane to a minimal
surface when the boundary is suitably smooth has been known for
some time [8].

3* Proof of Theorem II assuming Lemma !• In terms of the
given (xu x2, x3) coordinates, the mapping ζ—>x(ζ) = {x1{ζ),x2{Q) is a
one-to-one harmonic mapping. In view of (2), its Jacobian is
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J = Im(F[(Q cos/3 - F;(Z) sin/3) F'2(ζ)

= ia,a2 cos£|ζ|2 + ImKζδΛO + a£bt(ζ) + b&MQ} cos/3

- Im{α3ζδ2(ζ) + α2ζ63(ζ) + 63(Q62(ζ)} sin/3

= iα2α2cos/3 | ζ | 2 + 5 , ( 0 ^ 6 ? .

Here we have used that aγ is real and α2, α3 are imaginary. After
two similar computations, we find that

^ 1 ^ I2 + 5,(0, Ce U

and

^ i ^ I = ία 1 α, |CΓ + 5 , ( C ) , ζ e t ? .

The 5y(0 satisfy 15,(01 ^ C | ζ | 2 + α for a constant C> 0.
Therefore, for # in the image of U under x(ζ),

- ^ (x) = /'(0) + Λ ( 0 , where [R(ζ) \ ̂  const. \ζ\a .
oxι

But an elementary computation reveals that x[ + x\ ^ const. | ζ
for | ζ | sufficiently small. Hence

— - / ' ( 0 )
9a?

const
dx1

sufficiently small. In the same way

du 1 α3

cos /3 α2

^ const |

\x\ sufficiently small. Here we have used the abbreviation "const."
to denote a positive constant, not necessarily the same at each
occurrence.

The question of determining an a priori limitation of (du/dx2)(Q)
is different in nature, and will be considered elsewhere.

4. Proof of Lemma 1. The proof of Lemma 1 is divided into
the two lemmas below. Note that the strict monotonicity of y^ξ) in
— 1 < ξ ^ 0 and 0 ^ ξ < 1 implies the existence of continuous func-
tions Hjiyjy j = 1, 2, such that y?(ξ) = H^y^ζ)) for — 1 < ξ ^ 0 and
y*(ξ) = H2{Vl{ζ)) for 0 ^ ξ < 1.

LEMMA 2. (a) Hj(y^ are absolutely continuous functions of yλ and
I H-(y^) I ^ CΊI g'(yi)\, a.e., 0 ^ ^ ^ r̂, CΊ > 0 constant.

(b) lim ^ ^ (?) f % (£)) ^ 1
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(c) IFJίfJI^C.IFίίOI^Cilfr- 1 for | ? | < l , f e ϊ 7 , i = 2,3,
where m ^ 2 is £Λe integer determined in Theorem D and C2, C3 > 0
are constants. U is the set of Theorem E.

Proof. Let s denote the arc length of the minimal surface on
Γ: y3 = giVi), y2 = 0,0 SVi^y. According to Tsuji's result [12],

0 Φ {^j = (1 + g'faYKdyJdξγ, a.e. for | ί | < 1 .

Therefore, dyjdξ Φ 0 a.e. for — 1 < f < 1. It follows that the inverse
function ξ = h{yγ) to yj£) on — 1 < ζ <̂  0 is absolutely continuous for
0 ^ y ^ y. Since h is also monotone, H^y^ = yt{h{y^)) is absolutely
continuous for 0 ^ y ^ y.

Furthermore,

Hence for a constant C: > 0,

Σ ( ^ Y ^ sup (1 + ^(i/,)2) = Cf for | £ | < 1 .

Using the isothermal relation

we obtain that

^f (^y\ a.e. for - 1 <£ ί ^ 0

Hence

\H!(vd\ ^ C J ^ O I a . e . , - l ^ f ^ O .

Now from (3),

(y*ξ(ξ))2 ^ ( l + g W M S Y , l ί l < 1

Hence (b) follows.
Finally

i ̂  (ί) i2 ̂  Σ i ^-(f) i2 = 2 ( J } ) ^ 2(i + ̂ x^)2) i F
i \ aξ /

which implies t h a t

l ^ ω i for [ f | < l .



THE REGULARITY OF MINIMAL SURFACES 115

Now F&y1" e Cι>a{U), for a suitable U, by Theorem E; hence,

m

and Fί(f) = α ^ - 1 + &,(£), | £ | < 1 and f e £7, 16,(1)1 ^ const. |f | " - 1 + e

and αx =£ 0. That αx ̂  0 is insured by the existence of a tangent
with a suitable modulus of continuity to the curve 7: z = Fί(ξ)llm

f ξeϋ,
(cf Theorem D). Also, \F[(ξ)\ ^ const. |£Γ""\ f e U, from which (c)
follows.

LEMMA 3. F2(ζ) admits the representation

.(C) i , C + Σ 4 C M C | <
k>2

where a2 Φ 0, ck are imaginary.

Also the integer m — 2.

Proof. Since Re F2(f) = y2(ξ) = x2(ξ) = 0 for |f | < 1, F2 admits a
development as that above, perhaps with a linear term, with α2, cfc

imaginary. We must demonstrate that a2 Φ 0 and cx — 0. This
follows from a well known argument about harmonic mappings [2].
The mapping ζ —> (^(ζ), 2/?(Q) is a one-to-one harmonic map. Hence
by a lemma of Lewy [6], d(xl9 y2)/d(ξ, η) Φ 0 in | ζ | < 1, I m ζ > 0, and
therefore F2(ζ) Φ 0 in | ζ | < 1, Im ζ > 0. For λ real, we consider the
inverse image

C = {|ζ| < 1 , Imζ > 0: τ/2(ζ) = λ}

of y2 = λ in β. If not empty, C is an analytic curve in Imζ > 0,
| ζ | < 1 since ζ—*(xl9 y2) is an analytic homeomorphism whose Jacobian
does not vanish. For ζ e C,

where t denotes the tangent direction on C. Hence dy*/dt Φ 0 on C,
so that F2(ζ) is monotone on C. Hence F2 is univalent in | ζ | < 1,
Im ζ > 0, from which it follows that

F2(ζ) = — anζ
n + Σ ckζ\ with an Φ 0, n ^ 2 .

By the previous lemma

S c2\ξ\m~\ m ^ 2 even .



116 DAVID KINDERLEHRER

Therefore 2^n^m^>2oγm = n = 2.

Proof of Lemma 1. Since m = 2, we know that

F'ό{Q = a£ + 6,(0, Ce ϋ, with 16,(01 ^ C|ζ|1 +«

for j = 1, 2, 3. By Lemma 2(b) and Lemma 3,

<h\ ^ IReαJ ^ |α 2 | > 0 .

It remains to show that αx is real and α3 is imaginary. Using Lemma
2(a),

I m F'&) - Im^ + Imfe^Γ , ^ n

and I J3i'(2/i) | ^ CΊ | #'0/0 | —> 0 as yγ —> 0. Hence Im αx = 0. Now accord-
ing to the isothermal relations

Σ W = o ,

hence a\ + a\ + αa = 0. Since ĉ  is real, α2 is imaginary, and \ax\ ^ |α 2 | ,
the relation implies that (α3)

2 ̂  0. Hence α3 is imaginary.

We wish to remark here that by assuming only that f'{%ι) satisfies
t~ιI f'(t)\dt < oo, some a > 0, it is possible to prove that du/dx1 is

0

continuous as x —* 0 in any sector 0 < τ ^ arg a? ̂  2ττ — τ. The proof
is by the same argument, except that Theorem E must be replaced
by a fact analogous to the existence of the angular derivative as
proved by S. Warschawski [13] This fact, whose proof requires a
generalization of a classical theorem of Lindelof, is not difficult to
prove.

We now remark briefly on the proof of Theorem I. The technique
by which continuity of Du{x) was shown at the end points of the
segment τ in Theorem II may be utilized in a simpler fashion to
show that uXι(x) and uX2(x) are continuous at each interior point of τ.
Continuity of uX2(x) is understood to mean continuity upon one-sided
approach to τ. In fact, the functions analogous to i*"'(O in Lemma
1 admit an expansion of the form "α, + δy(O" with |6y(ζ)| ^ c\ζ\a,
suitable c > 0, where the a3- satisfy the conclusions of Lemma 1.

Given xΊ e 3P, Duix0) may be estimated by the slopes of the plane
tangent to the space curve dP at (xl, x\, 0) and some point of the
curve x3 = /(&i), x2 = 0. This estimate depends only on the given
data. Finally, we observe that uXl(x) satisfies a maximum principle
in P — τ. Hence sup p | uXί(x) \ ̂  max(sup3P | Du{x) |, sup| / ' (^) |).
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