TRIANGULAR MATRICES WITH THE ISOCLINAL PROPERTY

Leroy J. Derr

Consider the system V_{n} of $n \times n$, lower triangular matrices over the real numbers with the usual operations of addition, multiplication and scalar multiplication and with the additional property that $a_{i+1, j+1}=a_{i, j}$ (isoclinal). It is shown that V_{n} is a commutative vector algebra. The principal theorem (§3) establishes the existence of an algebraic mapping of V_{n} into a ring of rational functions. This mapping associates a special set of basis elements in V_{n} with the classically known Eulerian Polynomials.

Some properties of the space V_{n} are outlined in §2. Section 4 gives an application of the main theorem to a problem which motivated this study, namely, the inversion of certain matrices in V_{n} for arbitrary dimension n. The matrices with first columns $\left[1^{m}, 2^{m}, \cdots, n^{m}\right]$, $m=0,1,2, \cdots$, are considered in particular.

2. Properties.

2.1. Nomenclature. A matrix $A=\left\{a_{i, y}\right\}$ is called isoclinal if $a_{i+1, j+1}=a_{i, j}$ for all values of the indices permitted. Further we designate by V_{n} the class of $n \times n$ lower-triangular, isoclinal (L.T.I.) matrices (over the reals).

Remark. The isoclinal property has appeared in studies of commutativity, under other names; for example see [4].

Theorem 2.2. The class V_{n} is a commutative sub-ring of matrices. Further, if $A \in V_{n}$ is nonsingular then $A^{-1} \in V_{n}$.

Proof. A simple computation using the L.T.I. property will show multiplicative closure. Now, for $A, B \in V_{n}$ let $\left\{a_{i}\right\},\left\{b_{i}\right\}$ be the elements of their first columns; these clearly define the matrices. The first column of $A B$ is given by the Cauchy Product formula $\sum_{j=1}^{k}, a_{j} b_{k-j+1}$ for $k=1,2, \cdots, n$, which is commutative. Finally, if $A \in V_{n}$ is nonsingular then its diagonal element $a_{1} \neq 0$ and the system $a_{1} x_{1}=1, \sum_{j=1}^{k}, a_{j} x_{k-j+1}=0$ is solvable. Hence $X \in V_{n}$ and $X=A^{-1}$.

The algebra of V_{n} is closely allied to that of the polynomials over the reals, $P(Y)$. Let $A \in V_{n}$ be given by its first column $\left\{a_{i}\right\}$. Define $\phi_{n}: V_{n} \rightarrow P(Y)$ as the injection, $\phi_{n}(A)=\sum_{j=1}^{n}, a_{j} Y^{j-1}$ and let $\pi_{n}: P(Y) \rightarrow V_{n}$ be the projection. We then have:

Corollary 2.3.
(i) π_{n} is a ring homomorphism onto, with kernel the principal ideal generated by Y^{n}.
(ii) $\pi_{n} \phi_{n}$ is the identity and $\pi_{n}\left\{\phi_{n}(A) \phi_{n}(B)\right\}=A B$.

Finally we note the useful operating rule for L.T.I. matrices that the product $A x$, where x is a vector, is equivalent to $A X$ where X is the L.T.I. matrix with first column x.

3. A Mapping of V_{n} by means of Eulerian Polynomials.

3.1. Definitions and Nomenclature. (i). The Eulerian Polynomials $A_{m}(\lambda)$ may be defined recursively, with $A_{0}(\lambda)=1$, by:

$$
A_{m+1}(\lambda)=(1+m \lambda) A_{m}(\lambda)+\lambda(1-\lambda) A_{m}^{\prime}(\lambda)
$$

(ii) Let $M_{m, n} \in V_{n}$ be defined, (giving the matrices' first columns), by:

$$
M_{m, n}=\left(1^{m}, 2^{m}, \cdots, n^{m}\right) \quad \text { for } \quad m=0,1,2, \cdots
$$

(iii) Let $M_{m}(\lambda)=\sum_{p=1}^{\infty}, p^{m} \cdot \lambda^{p-1}$, for $|\lambda|<1$ and $m=0,1, \cdots$.
(iv) Let $R=\{P(\lambda) / Q(\lambda)\}$ be the sub-ring of rational functions such that $Q(0) \neq 0$.
3.2. Assertion. (i) The matrices $M_{m, n}$ constitute a basis for $V_{n}, m=0,1, \cdots, n-1$.
(ii) $\quad M_{m}(\lambda)=\mathrm{A}_{m}(\lambda) /(1-\lambda)^{m+1} \in R$.

The second part of the assertion may be easily proved by noting the recursion $M_{m+1}(\lambda)=d\left\{\lambda M_{m}(\lambda)\right\} / d \lambda$. The Eulerian Polynomials and rational functions closely related to the $M_{m}(\lambda)$ were used by Frobenius [2] in studies of Bernoulli numbers; a further exposition of their properties has been given by Carlitz [1] and they have been used by Riordan [3] in combinatorial analysis. The inversion of the matrices $M_{m, n}$ was the author's original problem and will be discussed in the next section. Now, using the above notations and definitions, we give the following algebraic mapping theorem.

Theorem 3.3. In the following diagram:

$$
V_{n} \xrightarrow{f_{n}} R \xrightarrow{h_{n}} R /\left\langle\lambda^{n}\right\rangle \xrightarrow{j_{n}} V_{n}
$$

f_{n} is defined by identifying the basis elements of $V_{n}, f_{n}\left(M_{m, n}\right)=$ $M_{m}(\lambda) \in R . \quad h_{n}$ is the natural homomorphism with kernel, $K\left(h_{n}\right)$, the principal ideal generated by λ^{n}. Then, there exists a ring isomorphism
j_{n} such that $j_{n} h_{n}\left(M_{m}(\lambda)\right)=M_{m, n}$.
Proof. We first note that an element γ of the ring $R /\left\langle\lambda^{n}\right\rangle$ has a unique antecedent in R of the form $\sum_{p=1}^{n}, a_{p} \lambda^{p-1}$. This enables us immediately to define j_{n} as an additive isomorphism onto by $j_{n}(\gamma)=$ $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in V_{n}$. The product of two elements in $R /\left\langle\lambda^{n}\right\rangle$ can be expressed as $\sum_{p=1}^{n}, c_{p} \lambda^{p-1}+K\left(h_{n}\right)$ where the c_{p} are formed by Cauchy Products of the unique antecedents. This gives a ring isomorphism since the multiplication in V_{n} is also Cauchy Product, truncated to n components.

The conclusion $j_{n} h_{n}\left(M_{m}(\lambda)\right)=j_{n} h_{n}\left\{\sum_{p=1}^{n}, p^{m} \lambda^{p-1}\right\}=M_{m, n}$ follows at once by noting $M_{m}(\lambda)=\sum_{p=1}^{n}, p^{m} \lambda^{p-1}+\sum_{p=n+1}^{\infty}, p^{m} \lambda^{p-1}$. Other immediate consequences are:

Corollary 3.4. (i) f_{n} is one-to-one and $j_{n} h_{n} f_{n}$ is the identity. (ii) $j_{n} h_{n}\left\{f_{n}(A) \cdot f_{n}(B)\right\}=A B$.
4. Application. By making use of the previous theorem:

$$
M_{m, n}^{-1}=j_{n} h_{n}\left\{(1-\lambda)^{m+1}\right\} \cdot j_{n} h_{n}\left\{1 / A_{m}(\lambda)\right\}=B C^{-1}
$$

The matrix B is given by its first column $\left(b_{1}, \cdots, b_{n}\right)$ where $b_{i}=$ $(-1)^{i-1} \underset{(i-1)}{m+1}$ if $i \leqq m+2$ and $b_{i}=0$ if $i>m+2$. The nonzero components for $C \in V_{n}$ are also finite in extent, being the coefficients of the Eulerian Polynomial $A_{m}(\lambda)$. These are known explicitly: $A(m, k)=$ $\sum_{j=0}^{k},(-1)^{k-j}(j+1)^{m} \underset{(k-j)}{m+1}, k=0,1, \cdots, m-1$. The problem is then reduced to finding C^{-1} which may be expressed in terms of a recursion on the $A(m, k)$. For $m=0,1,2$ the solutions are trivial. For $m=3$ the $n^{t h}$ component, c_{n}, of C^{-1} is $c_{n}=U_{n}(-2)$ (Chebyshev polynomials of the second kind). These are readily given in explicit form.

References

1. L. Carlitz, Eulerian numbers and polynomials, Math. Mag. 32 (1959), 247-260.
2. G. Frobenius, Uber die Bernoullischen und die Eulerschen Polynome, Sitzungsberichte der Preussische Akademie der Wissenschaften (1910), 809-847.
3. J. Riordan, An introduction to combinatorial analysis, Wiley, New York, 1958.
4. D. Suprunenko and R. Tyshkevich, Commutative Matrices, Academic Press, New York 1968.

Received July 22, 1970
Louisiana State University in New Orleans

