VON NEUMANN ALGEBRAS GENERATED BY OPERATORS SIMILAR TO NORMAL OPERATORS

W. R. WOGEN

A normal operator generates an abelian von Neumann algebra. However, an operator which is similar to a normal operator may generate a von Neumann algebra which is not even type I. In fact, it is shown that if \mathscr{A} is a von Neumann algebra on a separable Hilbert space and \mathscr{A} has no type II finite summand, then \mathscr{A} has a generator which is similar to a self-adjoint and \mathscr{A} has a generator which is similar to a unitary. The restriction that \mathscr{A} have no type II finite summand can be removed provided that it is assumed that every type II finite von Neumann algebra has a single generator.

Let \mathscr{H} be a separable Hilbert space and let \mathscr{A} be a von Neumann algebra on \mathscr{H} . \mathscr{A}' denotes the commutant of \mathscr{A} . For $n \geq 2$, let $M_n(\mathscr{A})$ denote the von Neumann algebra of $n \times n$ matrices with entries in \mathscr{A} . If T is a bounded operator, the $\mathscr{R}(T)$ is the von Neumann algebra generated by T.

We begin with some lemmas.

LEMMA 1. Let $\mathscr{A} = \mathscr{R}(C)$ and suppose $n \geq 3$. Let $\{\lambda_k\}_{k=1}^n$ and $\{a_k\}_{k=1}^{n-1}$ be sequences of complex numbers such that the λ_k are distinct, each $a_k \neq 0$, and $||(\lambda_1 - \lambda_2)C|| \leq |a_1a_2|$. Define $A = (A_{i,j})_{i,j=1}^n \in M_n(\mathscr{A})$ by $A_{k,k} = \lambda_k I$, $A_{k+1,k} = a_k I$, $A_{3,1} = C$, and $A_{i,j} = 0$ otherwise. Define $B = (B_{i,j})_{i,j=1}^n \in M_n(\mathscr{A})$ by $B_{k,k} = \lambda_k I$ and $B_{i,j} = 0$ if $i \neq j$. Then A and B are similar, and $\mathscr{R}(A) = M_n(\mathscr{A})$.

Proof. It follows from [11, Lemma 1] that $\mathscr{R}(A) = M_n(\mathscr{A})$. To show that A and B are similar we need only that the λ_k are distinct. We must find an invertible operator S such that AS = SB. Such an S of the form S = I + N, where N is lower triangular and nilpotent, can be computed easily. Merely perform the matrix multiplications and solve for the entries of S. We omit the details.

REMARK 1. If the operator S = I + N in Lemma 1 is computed, we see that we can make the entries of N small by choosing ||C||, $|a_1|, |a_2|, \dots, |a_{n-1}|$ suitably small. Hence we can suppose that ||N|| < 1/2. Then ||S| = ||I + N|| < 3/2 and $||S^{-1}|| = ||I - N + N^2 - \dots \pm N^{n-1}|| < 2$. Note also that by choosing $||C||, |a_1|, |a_2|, \dots, |a_{n-1}|$ suitably, we can assume that $||A|| \leq ||B|| + 1$. The following is a corollary of Lemma 1.

COROLLARY 1. If \mathscr{A} is a properly infinite von Neumann algebra on \mathscr{H} , then \mathscr{A} has a generator which is similar to a self-adjoint operator.

Proof. If \mathscr{A} is properly infinite, then it is well-known that \mathscr{A} is *-isomorphic to $M_{\mathfrak{s}}(\mathscr{A})$. \mathscr{A} has a single generator C by [10]. Construct a generator A of $M_{\mathfrak{s}}(\mathscr{A})$ as in Lemma 1, with λ_1, λ_2 , and λ_3 real. Then A is similar to self-adjoint operator by Lemma 1. (Another easy proof of Corollary 1 can be deduced from methods in the proof of Corollary 1 in [1].)

It has been shown that if \mathscr{A} is properly infinite, then \mathscr{A} is generated by three projections [9] and by two idempotents [4]. A related result is

COROLLARY 2. If \mathscr{A} is a properly infinite von Neumann algebra on \mathscr{H} , then \mathscr{A} is generated by three commuting idempotents.

Proof. If A is the generator of \mathscr{A} constructed in Corollary 1, let E be the (idempotent valued) spectral measure of A. Then $E(\lambda_i)$, $E(\lambda_2)$, and $E(\lambda_3)$ are the required commuting idempotents.

Let $\sigma(C)$ denote the spectrum of the operator C.

LEMMA 2. Let $\mathscr{A} = \mathscr{R}(C)$. Let

$$A = egin{bmatrix} C & 0 \ aI & \lambda I \end{bmatrix}, \qquad B = egin{bmatrix} C & 0 \ 0 & \lambda I \end{bmatrix},$$

where $a \neq 0$ and $\lambda \notin \sigma(C)$. Then A is similar to B, and $\mathscr{R}(A) = M_2(\mathscr{A})$.

Proof. A routine computation shows that

$$\mathscr{R}(A)' = \left\{ egin{bmatrix} T & 0 \ 0 & T \end{bmatrix} \colon \ \ T \in \mathscr{S}'
ight\} \, .$$

It follows that $\mathscr{R}(A) = \mathscr{R}(A)'' = M_2(\mathscr{A})$. Let

$$S = egin{bmatrix} I & 0 \ a(C - \lambda I)^{-1} & I \end{bmatrix}.$$

Then S is invertible and AS = SB.

LEMMA 3. Let $\{A_k\}_{k=0}^{\infty}$ be a uniformly bounded sequence of operators. Suppose that the A_k have pairwise disjoint spectra. Then

$$\mathscr{R} \Big(\sum\limits_{k=0}^{\infty} \bigoplus A_k \Big) = \sum\limits_{k=0}^{\infty} \bigoplus \mathscr{R}(A_k)$$
 .

Proof. The proof given here is due essentially to Rosenthal [8, Th. 3]. (See also [3, Lemma].) Let $A = \sum_{k=0}^{\infty} \bigoplus A_k$. Suppose $C = (C_{i,j})_{i,j=0}^{\infty}$ commutes with A. Then

$$C_{i,j}A_j = A_iC_{i,j}$$
 for all i, j .

If $i \neq j$, then $\sigma(A_i)$ and $\sigma(A_j)$ are disjoint, so by a theorem of Rosenblum [7], $C_{i \ j} = 0$. It follows that $\mathscr{R}(A)' = \sum_{k=0}^{\infty} \bigoplus \mathscr{R}(A_k)'$, so that $\mathscr{R}(A) = \mathscr{R}(A)'' = \sum_{k=1}^{\infty} \bigoplus \mathscr{R}(A_k)$.

THEOREM 1. If \mathscr{A} is a von Neumann algebra on a separable Hilbert space such that \mathscr{A} has no type II finite summand, then \mathscr{A} has a generator which is similar to a self-adjoint operator.

Proof. Write $\mathscr{A} = \sum_{n=0}^{\infty} \bigoplus \mathscr{A}_n$, where \mathscr{A}_0 is properly infinite and for each $n \ge 1$, \mathscr{A}_n is an *n*-homogeneous type I summand (see [2]). (Note that some of these summands may be absent.) Let $\{I_n\}_{n=0}^{\infty}$ be a pairwise disjoint sequence of nonempty subintervals of [0, 1].

By Corollary 1, we can choose A_0 and an invertible operator S_0 such that $\mathscr{R}(A_0) = \mathscr{N}_0, S_0A_0S_0^{-1}$ is self-adjoint, and $\sigma(A_0) \subset I_0$.

For each $n \geq 1$, \mathscr{N}_n is *-isomorphic to $M_n(\mathscr{C}_n)$, where \mathscr{C}_n is the center of \mathscr{N}_n (see [2]). \mathscr{C}_n is abelian, so \mathscr{C}_n has a self-adjoint generator by [5]. Let A_1 be a self-adjoint generator of $\mathscr{N}_1 = \mathscr{C}_1$. By translating and scaling, if necessary, we can assume $\sigma(A_1) \subset I_1$. Let S_1 be the identity in \mathscr{N}_1 .

Let C be a self-adjoint generator of \mathscr{C}_2 with $\sigma(C)$ properly contained in I_2 . Let $\lambda \in I_2$ with $\lambda \notin \sigma(C)$. Let $a \neq 0$ and let

$$A_2 = egin{bmatrix} C & 0 \ aI & \lambda I \end{bmatrix}.$$

Then by Lemma 2, $\mathscr{R}(A_2) = \mathscr{N}_2$ and for some invertible S_2 , $S_2A_2S_2^{-1}$ is self-adjoint. Also, $\sigma(A_2) = \sigma(C) \cup \{\lambda\} \subset I_2$.

For $n \geq 3$, use Lemma 1 to construct A_n and an invertible S_n such that $\mathscr{R}(A_n) = \mathscr{N}_n$, $S_n A_n S_n^{-1}$ is self-adjoint, and $\sigma(A_n) \subset I_n$. Moreover by Remark 1, we can suppose that the sequences $\{A_n\}, \{S_n\}$, and $\{S_n^{-1}\}$ are uniformly bounded.

Let $A = \sum_{n=0}^{\infty} \bigoplus A_n$, and let $S = \sum_{n=0}^{\infty} S_n$. Then A and S are bounded operators, S is invertible, and SAS^{-1} is self-adjoint. Finally $\mathscr{R}(A) = \sum_{n=0}^{\infty} \bigoplus A_n$ by Lemma 3.

It has long been conjectured that every von Neumann algebra on a separable Hilbert space has a single generator. Results in [6] and

W. R. WOGEN

[10] reduce the proof of the conjecture to showing that (S) Every type II finite von Neumann algebra on a separable Hilbert space has single generator. (See [4] for a partial solution to this conjecture.)

THEOREM 2. If (S) is true and \mathscr{A} is a von Neumann algebra on a separable Hilbert space, then \mathscr{A} has a generator which is similar to a self-adjoint operator.

Proof. Write $\mathscr{A} = \mathscr{A}_1 \bigoplus \mathscr{A}_2$, where \mathscr{A}_1 has no type II finite summand and \mathscr{A}_2 is type II finite. By Theorem 1, \mathscr{A}_1 has a generator A_1 which is similar to a self-adjoint operator. Construct a generator of \mathscr{A}_2 as follows: Choose a projection $E \in \mathscr{A}_2$ such that \mathscr{A}_2 is spatially *-isomorphic to $M_4(E \mathscr{A}_2 E)$. $E \mathscr{A}_2 E$ is type II finite, so $E \mathscr{A}_2 E$ has a single generator by assumption. Now use Lemma 1 to construct a generator A_2 of \mathscr{A}_2 which is similar to a self-adjoint and such that $\sigma(A_1)$ and $\sigma(A_2)$ are disjoint. Then $A_1 \bigoplus A_2$ is similar to a self-adjoint operator, and $\mathscr{R}(A_1 \bigoplus A_2) = \mathscr{A}_1 \bigoplus \mathscr{A}_2$.

We now indicate briefly how the previous results can be obtained with "similar to a self-adjoint" replaced by "similar to a unitary,"

COROLLARY 1'. If \mathscr{A} is a properly infinite von Neumann algebra on \mathscr{H} , then \mathscr{A} has a generator which is similar to a unitary operator.

The proof is the proof of Corollary 1, except that λ_1 , λ_2 , and λ_3 must be chosen on the unit circle. (See [1] for another proof.)

THEOREM 1'. If \mathscr{A} is a von Neumann algebra on a separable Hilbert space such that \mathscr{A} has no type II finite summand, then \mathscr{A} has a generator which is similar to a unitary operator.

Proof. Proceed as in the proof of Theorem 1. Write $\mathscr{A} = \sum_{n=0}^{\infty} \bigoplus \mathscr{A}_n$. Use Lemmas 1 and 2 and Corollary 1' to construct generators A_n of the \mathscr{A}_n which have pairwise disjoint spectra on the unit circle. Then each A_n will be similar to a unitary operator. To handle the summands \mathscr{A}_1 and \mathscr{A}_2 , we need the following: If C is a self-adjoint generator of \mathscr{C} , then e^{iC} is a unitary generator of \mathscr{C} and $\sigma(e^{iC}) = \{e^{i\lambda}: \lambda \in \sigma(C)\}$. The rest of the proof is clear.

Finally we have

THEOREM 2'. If (S) is true and \mathscr{A} is a von Neumann algebra on a separable Hilbert space, then \mathscr{A} has a generator which is similar to a unitary operator.

References

1. H. Behncke, Generators of W*-algebras, Tôhoku Math. J., 22 (1970), 541-546.

2. J. Dixmier, les algebres d'operateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1969, Deuxieme Edition.

3. R. Douglas and C. Pearcy, Von Neumann algebras with a single generator, Mich. Math. J., 16 (1969), 21-26.

4. R. Douglas and D. Topping, Operators whose squares are zero, Rev. Romaine Math. Pures Appl., **12** (1967), 647-652.

5. J. von Neumann, Zur Algebra der Functional Operatoren und Theorie der Normal Operatoren, Math. Ann., **102** (1929), 370-427.

6. C. Pearcy, W*-algebras with a single generator, Proc. Amer. Math. Soc., 13 (1962), 831-832.

7. M. Rosenblum, On the operator equation BX - XA = Q, Duke Math. J., 23 (1956), 263-269.

8. P. Rosenthal, Completely reducible operators, Proc. Amer. Math. Soc., 19 (1968), 826-830.

9. T. Saitô, Generators of certain von Neumann algebras, Tôhoku Math. J., 20 (1968), 101-105.

10. W. Wogen, On generators for von Neumann algebras, Bull. Amer. Math. Soc., 75 (1969), 95-99.

11. _____, On special generators for properly infinite von Neumann algebras, Proc. Amer. Math. Soc., **28** (1971), 107-113.

Received October 23, 1970.

UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL