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PROXIMITY BASES AND SUBBASES

P. L. SHARMA

In this paper we provide a definition of a proximity-base
(subbase); this enables us to prove results analogous to those
in topological and uniform spaces. For example we prove
that the set of all proximities on a set X forms a complete
lattice. Another consequence is that a proximity on a set X
can be defined as a certain collection of pseudometrics on X.
A pseudometric approach to proximities is discussed in [4].
Two definitions of a *'proximity base" have been given in
literature, one by Cs£sza> and Mrowka [1] and the other by
Njasted [3]. Neither of these definitions is perfectly satis-
factory; the first does not determine a unique proximity
whereas for the second (i) it is not known whether every
proximity has such a base and (ii) a proximity itself is not
a base unless it is discrete.

2* Notations and terminology. The terminology used in this
paper, with the exception of the definition of a proximity base is
same as in [5]. By Jm we denote the set of the first m natural
numbers. If xeX then for {x} we briefly write x. By P(X), we
denote the powerset of a set X. The collection of all topologies on
a set X is ordered by inclusion. The ordering J7\ ^ J?\ is expressed
by saying that ^~[ is finer than jy\, or that J^7 is coarser than ^\.
For any collection {^ : a el} of topologies on a set X, the notations
Sup {^Z: ae 1} and Inf {^ : a e 1} have their usual meanings. If
{J7~a\ ae 1} is a collection of completely regular topologies on a set X
then Sup CR {^: ae 1} denotes the coarsest completely regular
topology on X which is finer than each J ^ for ae I. Similarly the
notation Inf CR {^a\ ae 1} stands for the finest completely regular
topology on X which is coarser than each J/7; for ae I. If {j?Z: ae 1}
is a collection of completely regular topologies on a set X then

(1) Sup CR {jΓa: a el} = Sup {^: a el} ,
and

( 2 ) Inf CR {jr;: aeI}Q Inf {^\: a el} .
The following example shows that the inclusion between the two
topologies in (2) above may be proper.

EXAMPLE. Let P = I x I where I is the unit interval [0, 1].
Fix a point (x, y) in P. A base for a topology J7~{x,y) is described as
follows: For each (u, v)eP such that (u, v) Φ (x, y) the set {(u, v)} is
open. A set G containing the point (x, y) is open iff P — G is a
finite set. It is easily seen that the topological space (P, J7\Xiy)) is
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T4 and hence completely regular. Let S~ — ̂ 7o,o) Π ̂ U , Ό The
topological space (P, ̂ ~) is not even regular because the point (0, 0)
has no proper .^closed neighbourhood.

We give the definition of a proximity.

DEFINITION. A proximity on a nonempty set X is a binary
relation δ on P(X) satisfying the axioms (P. 1) through (P. 5) given
below:

(P. 1) (φ, X) e δ
(P. 2) If A n B Φ 9 then (A, B) e δ
(P. 3) (A, B) e δ if (B, A)eδ
(P. 4) (A,BuC)eδ iff (A, B) e δ or (A, C) e δ
(P. 5) If (A, B)$δ then there exists a set E g X such that

(A, #) e δ and (X - E,B)$ δ.
A proximity δ on X is separated if (a?, #) e δ implies as = y.

DEFINITION. Let X be a nonempty set. If θι and θ2 are two
binary relations on P(X), then θ, ̂  #2 iff θ, g 02 The ordering ^t ^ ^2

is expressed by saying that θγ is finer than θ2 (or θ2 is coarser than

θd
If δ is a proximity on X then J7~(δ) denotes the topology on X

induced by δ. The proximity on X induced by a pseudometric ώ is
denoted by δ(d).

3. Base and subbase for a proximity* Let X be a nonempty
set. A proximity-base on X is a binary relation & on P(X) satisfy-
ing the axioms (B. 1) through (B. 5) given below:

(B. 1) (φ, X) ί &
^ then (A, B) e &
iff (B, A) e &

^ and A g A*, 5 g JS* then (A*, B*) e &
& then there exists a set E g X such that

(A, #) ί ^ and (X - E,B)$ &.
A proximity-base ^ on a set X is separated if ({#}, {]/}) e ^

implies % — y for all E, T/ G X.

THEOREM 3.1. Lei & be a proximity-base on a set X and let a
binary relation δ(έ%?) on P(X) be defined as follows:

(A, B) e δ{&) if, given any finite covers {At: i e Jm) and {B3 : j e Jn}
of A and B respectively, then there exists a pair (ί, j) Jm x Jn such
that (Aif Bj) e &.

Then δ(&) is the coarsest proximity on X finer than the relation
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&. Moreover, the proximity δ{&) is separated iff the proximity-
base & is separated.

Proof. It is obvious that δ(&) ^ .^. Moreover δ(&) easily
satisfies the proximity axioms (P. 1), (P. 2) and (P. 3). Also, if
(A,B)eδ(&) then (A, B U C) e δ(^), because any finite cover of
B U C is, as well, a finite cover of B. Now suppose that (A, B) e δ(έ%?)
and (A, C)eδ(^). Then there exists finite covers

{G<: i e Jm}, {Hά: j e Jn}, {Lk: k e Jr}

and {Mi: I G J J of A, B, A and C respectively such that (Gif H3) ζ &
for any (i, j) e Jm x Jn and (Lk, Mi) £ . ^ for any (&, ί) e Jr x / s . Let
S(ίffc) - Gi Π LΛ and Hn+ι = Mt. Then {S(ifΛ): (i, k)ejmx Jr} and
{iί^: p e Jn+s} are finite covers of A and B U C respectively. By axiom
(B. 4) and the above construction, it is clear that (Sii}k), Hv) & & for
any (i, k) e Jm x Jr and p e Jn+a. Therefore (A, BUC)£ δ(&). Thus
δ ( ^ ) satisfies the proximity axiom (P. 4) also. Now let (A, B) 6 δ(&).
So there exist finite covers {Â : i G Jm} and {J5j : j 1 e«/«} of A and B
respectively such that (Ait B5) £ & for any (ΐ, j) eJmx Jn. By axiom
(B. 5) we can find a set JS^ g X for each (i, j) e Jm x Jw, such that
(A,, £ ^ ) 6 ̂ T and (X - EijΊ Bj) 0 ,£§>. Let ̂  - n {Ei3 : i G /W} and let
£7 = U {E5\ j € JΛ}. Then (A,, #,•) g ̂  for any (i, j) eJmxJn and so
(A, # ) g δ ( ^ ) . Also X- E= f){X - E3-:je Jn) and

(X-Es)= U{X- E{j:ieJm} .

From this we get (X — Ejy Bj) £ δ(&). Since <?(^) satisfies the
axiom (P. 4), we obtain (X — E, B,) % δ(&) for any j e Jn and so
(X - E,B)$δ(&) (By (P. 4) again). Thus δ ( ^ ) is a proximity on
X.

Let δ be any proximity on X such that δ ;> ̂  and let (A, J3) G δ.
If {Â : i e Jm) and {^ : i G Jn] are any finite covers of A and JB respec-
tively then there exists a pair (i, i) e Jmx Jn such that (Â , JŜ  ) e δ.
Therefore (A,, 5, ) G .^. By definition of δ ( ^ ) , we have (A, 5) e <5(.^).
This proves that δ :> δ(&). Hence δ(&) is the coarsest proximity
finer than the relation .^. It is obvious that δ{&) is separated iff
& is separated. The proof of the theorem is now complete.

If & is a proximity-base on a set X then we say that the
proximity δ{&) is generated by the base &.

DEFINITION. Let X be a nonempty set. A proximity-subbase on
X is a binary relation s on P(X) satisfying the axioms (S. 1) and
(S. 2) given below:

(S. 1) A Π .5 Φ 0 implies (A, J5) G s
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(S. 2) If (A, B) ί s then there exists a set E £ X such that
(A, JS) £ s and (X - E,B)$ s.
A proximity-subbase s on X is separated if s satisfies the following
axiom.

(S. 3) If x, y are two distinct elements of X and ({a?}, {?/}) e s
then there exist two subsets P and Q such that xe P,yeQ and
either (P, Q) g s or (Q, P) g s.

THEOREM 3.2. If s is a proximity-subbase on a set X, then there
exists a coarsest proximity S(s) on X finer than the relation s. More-
over δ(s) is separated iff s is separated.

Proof. Define a binary relation ^?(s) on P(X) as follows:
(A, B) e &(β) iff A Φ 0 , B Φ 0 and for any sets A* 2 A, #* 5 -B,

both
(A*, B*) and (£*, A*) are elements of s.
Obviously ^ ( s ) ^ s. We claim that ^ ( s ) is a proximity-base

on X. The axioms (B. 1) through (B. 4) are easily satisfied by
To prove that ^ ( s ) satisfies the axiom (B. 5), suppose (A, B) ί
Then two cases arise:

Case I. A - 0 . Take E = X. Then (A, JS7> - (0, X) έ
and (X - E,B) = (<Z>,B)$ ^ ( s ) . Similarly, when £ = 0, but A Φ 0 ,
we take E — <Z) and we are through.

Case II. Aφ 0 , 5 Φ 0 . There exist sets A* a A and ί * 3 ί
such that either (A*, £*) g s or (J5*, A*) g s. If (A*, 5*) g s then by
axiom (S. 2), there exists a set EQX such that (A*, 2£)gs and
(X - #, JS*) g s. Therefore (A, E) £ ̂ ( s ) and (X - E,B)£ ^ ( s ) .
Similar arguement applies when (I?*, A*) g s.

Thus .^(s) is a proximity-base on X. Let <5(s) be the proximity
generated by ^ ( s ) . Then δ(s) ^ ^ ( s ) ^ s. Let δ be any proximity
on X such that <? ^ s. From the definition of ^ ( s ) it easily follows
that δ ^ ^ ( s ) . So by theorem 3.1 we obtain δ ^ δ(s). Thus δ(s) is
the coarsest proximity on X which is finer than the relation s.
Moreover it is obvious that s is separated iff .^(s) is separated.
Hence the theorem is proved.

If s is a proximity-subbase on a set X then the proximity base
^ ( s ) as defined in the proof of Theorem 3.2 above, is the coarsest
proximity base on X, which is finer than the relation s. We say
that the proximity <?(s) is generated by the proximity-subbase s.
Similarly ^ ( s ) is the proximity-base generated by the subbase s.

THEOREM 3.3. Let {δa: a e 1} be a nonempty collection of prox-
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imities on a set X. Then there exists a coarsest proximity 8 on X
such that 8 is finer than 8a for each ael.

Proof. Let έ%? = Γ){8a: a el}. Then & is a proximity-base, and
so it generates a proximity 8(&). Obviously 8(0) fulfills the
requirements of the theorem. Hence the theorem is proved.

NOTATION. If {da: ae 1} is a nonempty collection of proximities
on a set X then the coarsest proximity on X finer than each δa for
a e I is denoted by Sup {8a: a el}.

COROLLARY 3.1. Let {8a:ael} be a nonempty collection of prox-
imities on a set X. Then J^[Sup {da: a el}] = Sup {J7~(δa): a el}.

The proof follows from the fact that the finest proximity compatible
with Sup {^~(δa): a el} is finer than δa for each a el.

THEOREM 3.4. Let {δa: a el} be a nonempty collection of proximities
on a set X. Then there exists a finest proximity 8 on X such that 3
is coarser than δa for each ae I.

Proof. Let a be the collection of all proximities on X such that
δpea implies that δa ;> δp for each ae I. The collection a is nonempty
because the indiscrete proximity on X is a member of it. Let
δ = Sup {δp: δp e a}. Now we want to prove that δa :> δ for each ae L
So take an α e J and let (A, B) e δa. If {A^ ie Jm} and {Bji j e Jn} are
arbitrary finite covers of A and B respectively then there exists a
pair (i, j) eJmxJn such that (Aiy Bj) e δa. Therefore for the same
pair (ί, j), (Aif Bj) e δp for each δp e a. So (Aiy Bj) e & = n {8P: δp e a}
and since & is a proximity-base for 8, we get, (A, B) e δ. Therefore
δa ^ δ. This is true for each ae I. Moreover 8 is finer than each
member of a. Thus 8 is the finest proximity on X coarser than each
member of the collection {δa: a el}. Hence the theorem is proved.

NOTATION. If {δa:ael} is a nonempty collection of proximities
on a set X then the finest proximity on X which is coarser than each
δa for ael is denoted by Inf {δa: a el}.

The following corollary is obvious.

COROLLARY 3.2. If {δa:ael} is a nonempty collection of prox-
imities on a set X, then J Π I n f {δa: ael}]^ Inf CR {^~{δa)\ ael}.

The following example shows that the inclusion between the two
topologies of Corollary 3.2 can sometimes be proper.
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EXAMPLE. Let (X, ̂ ~) be a Tychonoff space (completely
regular + Tλ) which is not locally compact. Let {δa: a el) be the
collection of all proximities on X which are compatible with ^ Let
S — Inf {δa: a el} and denote by j?l the topology induced on X by
8. Since ^ = J^(δa) for each a el, so Inf CR {./"(ίj α e l ) is j ^ ~
itself. But since (X, J7~) is not locally compact so S cannot be com-
patible with ^~. Thus ^\ is properly contained in ^.

Combining Theorems 3.3 and 3.4 we get the following:

THEOREM 3.5. The collection of all proximities on a nonempty
set X forms a complete lattice under the ordering ̂ >.

From Corollary 3.1 it follows that the collection of all proximities
on a set X compatible with a completely regular topology on X forms
a complete sup-semilattice.

Moreover if (X, ̂ ~) is a Tychonoff space, then the collection of
all proximities on X compatible with ^ forms a complete lattice iff
the topology ^ is locally compact. Thus we have

THEOREM 3.6. The collection K of all T2-compactifications of a
Tychonoff space (X, j^7") forms a complete sup semi-lattice. The collec-
tion K forms a complete lattice iff the topology ̂ 7~ is locally compact
also.

THEOREM 3.7. Let (X, δj and (Y, S2) be two proximity spaces
and let s be a proximity-subbase for the proximity δ2. A function
f: (X, δ,) —> (Y, δ2) is p-continuous iff (A, B) g s implies (f"1(A)9

Proof. Let / be p-continuous. Suppose (A, B) 6 s. Then (A> B) £ δ2

and therefore (/"'(A), f~\B)) £ δim

Now we prove the 'if part. So assume that, if {A, B)£s then
{f~\A), f~ι{E)) £ δλ. Let ̂ ( s ) be the proximity-base on Y generated
by the subbase s. Suppose (A, B)$δ2. We must show that (f~ι(A),
f~ι{B)) e δ,. If A - 0 or B = 0 or (A, B) £ s then we are through.
Also if there exist two sets, A* and #* such that A* ^ A and J3* 3 B
and either (A*, £*) e s or (B*, A*) ί s even then we are through. In
other words we have shown that if the pair (A, B) is not in ̂ ( s )
then (/"'(A), f~\B)) £ δt. Lastly suppose that (A, B) e &(β) - δz.
Then these exist finite covers {A^. ieJm}y {Bf. j eJn) of A, B with
(A,, Bj) £ ̂ ( s ) for any (i, i) € Jm x Jn. This implies that (UΓ / " W ,
UΓ/"TO) ί «! for any (i,j)eJmxJn: and so (/^(A), Γ\B)) ϊ δ,.
Therefore / is p-continuous. Hence the theorem is proved.
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THEOREM 3.8. Let X be a nonempty set and let F be a non-void
family of functions, each member of F being on X into a proximity
space (Yf, δf). Then there exists a coarsest proximity on X such that
each member of F is p-continuous.

Proof. Define a binary relation έ%? on P{X) as follows:

(A, B) e & iff (/(A), f(B)) e δf for each feF.

We claim that & is a proximity-base on X. Only the axiom (B. 5)
requires verification. Suppose (A, B) $ &. Then there exists some
feF such that (f(A), f(B))$δf. So there is a set Ef £ Yf such
that {f {A), Ef) g δf and (Yf - Ef, f{B)) e δf. Let E = f~ι(Ef). Then
(A, E) ί & and (X — E, B)£ &. Thus & is a proximity-base on X
The proximity δ ( ^ ) on X generated by the base & is the required
proximity. Hence the theorem is proved.

It is possible to generalise the above theorem by replacing any
proximity δf by a base £%f of it.

In fact the following stronger form can be proved with the aid
of Theorem 3.7.

THEOREM 3.9. Let X be a nonempty set and let F be a non-void
family of functions, each member f of F being on X onto a proximity
space (Yf, δf). For each feF, let Sf be a proximity subbase for δf.
Then a proximity subbase S for the coarsest proximity on X which
makes each feF p-continuous is defined by:

(A,B)eS iff (f(A),f(B))eSf for each feF.

By making use of proximity-bases (proximity-subbases) several
theorems in proximity-spaces can be drastically simplified. For example,
the following theorem provides a much simpler definition of the
product proximity.

THEOREM 3.10. Let {(Xa, δa): a el} be a nonempty collection of
proximity spaces, and let Z — II {Xa: a el}. The binary relation &
on P(Z) defined by

(A,B)e^ iff (Pa(A),Pa(B))eδa for each projection Pa ,

is a proximity-base on Z for the product proximity.

The proof follows from Theorem 3.8.

In view of Theorem 3.9, it follows that if Sa is a proximity
subbase for δa then a proximity-subbase S for the product proximity
on Z can be defined as follows:
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(A, B)eS iff (Pa(A), Pa(B)) e Sa for each projection Pa .

The analogues of our next theorem are well-known in topological and
Uniform spaces.

THEOREM 3.11. Let {(Xa, δa): ae 1} be a nonempty collection of
proximity spaces and let (Z, δΣI) be the product proximity space. A
function f on a proximity space (X, δ) to the product (Z, δri) is
p-continuous iff its composition Pa°f is p-continuous for each projec-
tion Pa.

Proof. If / is p-continuous then P α ° / is p-continuous for each
a el, because each projection Pa is p-continuous. Now suppose Paof
is p-continuous for each ae I. Let έ%? be the proximity-base on Z
defined by: (A, B) e & iff (Pα(A), PJβ)) e δa for each a el. Suppose
(A, B) g &. Then there exists an a e I such that (Pa(A), PJβ)) £ δa.
As Paof is p-continuous, so ((Paof)-ψa(A)ΛP*°fYιPJB))t8. More-
over A S P-1 PJA) and B £ Pa1 PJB). Therefore (/-'(A), f~ι{B)) ί 8.
Thus by Theorem 3.7. / is p-continuous. Hence the theorem is
proved.

THEOREM 3.12. If δ is any proximity on a set X, then there
exists a nonempty collection {δa: ae 1} of pseudometric proximities on
X such that δ = Sup {δa: a el}.

Proof. Suppose (A, B) £ δ. Then there exists a p-continuous
function fAB on X to [0, 1] such that fAB(A) = 0 and fAB{B) = 1.
Define a pseudometric d(fAB) = d o n l by: d(x, y) = \fAB(x) — fAB{y) I for
all x, y in X. Let δ(d) be the proximity on X induced by d. We
claim that δ ^ δ(d). Suppose (P, Q) $ δ(d). Then d(P, Q) = e where
ε > 0. So, for any pe P, qeQ we have d(p, q) ̂  ε. Therefore if d0

is the unique proximity on [0, 1] then (f(P),f(Q))ίd0 and since / is
p-continuous so (P, Q)$δ.

Thus we have shown that δ ^ δ(d)9 where d = d(fAB). It follows
that 3 ̂  Sup {δ(d): d = d{fAB) and (A, B) € 8). Moreover, if (A, B) g δ
then (A, 5) ί δ(d) where d = d(ΛB), Thus we get 8 = Sup {δ(d): d =
d(fAB) and (A, B) g δ}. Hence the theorem is proved.

The following corollary is now obvious.

COROLLARY 3.3. Let δ be a proximity on X and let D be the
collection of all pseudometrics on X such that δ >̂ δ(d) for each de D.
Then we have

δ = f]{δ(d):deD} .
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The analogue of the following theorem is well-known in uniform-
spaces.

THEOREM 3.13. Every proximity space is proximially-isomorphic
to a subspace of a product of pseudometric proximity spaces.

Proof. Let ί be a proximity on X and let P be the collection of
all pseudometrics on X such that δ :> δ(d) for each de P. By Corollary
3.3 we have δ = Γ\{δ(d): de P}. Let Z = II {X:deP} and let / be
the mapping of X into Z defined by Pd(f(x)) = x for each xe X and
each projection Pd. Let Z be given the product proximity δ* where
the dth coordinate space of the product has the proximity δ(d). The
composition of / with each projection is the identity map on X.
Therefore, by Theorem 3.9 the mapping / on (X, δ) to (Z, δ*) is
p-continuous. Moreover if (A, B) £ δ then there exist de P such that
(A, B) £ δ(d); and so (/(A), f{B)) $ <5* by definition of product proximity.
Thus / is a proximal isomorphism of (X, δ) into (Z, δ*). Hence the
theorem is proved.

A clue to a pseudometric approach to proximities (see [4]) is
provided by Theorems 3.12 and 3.13.

4* Remoteness chains* If δλ and δ2 are two proximities on a
set X such that δ, ;> δ2 then J7~{δ^ ^ ^~(δ2). Conversely if ^\ and
^l are two completely regular topologies on X such that ^ 7 ^ ^ 2

and if δ2 is any proximity on X compatible with ^\ then there always
exists a proximity δx on X compatible with ^\ such that δv ^ δ2.
For example, for δλ we could take the proximity of functional indistinc-
tion for j^7. The following problem arises:

Problem I. Given ^ 7 and S\ are two completely regular
topologies on a set X such that S\ ^ ^ 7 and also given a proximity
<?! on X compatible with ^\. Under what conditions will there exist
a proximity δ2 on X compatible with ^\ such that δι ^ <?2?

The following example shows that such a proximity δ2 need not
always exist.

EXAMPLE. Let R be the real line and let _^7, ̂ 7 respectively
be the discrete topology and the usual topology on R. Let δx be the
coarsest proximity on R compatible with ^\. Take two sets A = [1, 2]
and B = [3, 4]. Then (A, B) e δΣ because both A and B are ^7-closed
and ^"-noncompact. Let δ2 be any proximity on R compatible with
^ 7 . Since A is ^7-compact and both A and 5 are ^7-closed, disjoint
sets, so (A, B) $ δ2. Hence for any proximity δ2 on R compatible with

it would be impossible to have δλ ^ δ2.
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THEOREM 4.1. Let ^\ and ^l are two completely regular topologies
on a set X such that JΠ ^ J^7 Let δx be a proximity on X com-
patible with J/7 wnd denote by δ** the proximity of functional
indistinction for J7\. A necessary and sufficient condition for the
existence of a proximity δ2 on X compatible with J^ and satisfying
δi ^ δ2, is that the proximity Inf {δl9 δ**} must be compatible with

Proof. The sufficiency part is obvious. To prove the necessity
part suppose there exists a proximity δ2 on X compatible with j^l
such that δ, ̂  δ2. Then we have δ** ̂  Inf {δu δ**} ̂  δ2. Since both
the proximities δ** and δ2 induce the topology S\* so Inf {δu δ**}
must be compatible with ^~2. Hence the theorem is proved.

NOTATION. By D we denote the set of all diadic numbers which
lie in the interval [0, 1]. Explicitly D — {m.2~n: m and n are integers
and 0 ^ m ^ 2n}.

DEFINITION. Let (X, δ) be a proximity space and let a = {EΪ. ie D}
be a collection of subsets of X such that (X — Ei9 Ej) £ δ for any
i, j e D satisfying i < j . Then a is called a δ-remoteness sequence
for the pair (X — Eo, J5Ί). Moreover the collection a* = {(A, B): either
{A, B) S (X - Ei9 Ej) or (B, A) £ (X - Eiy Eά) for some iJeD such
that i<j} is called a δ-remoteness chain for the pair (X — E0} Eλ).
Sometimes we say that a* is a remoteness chain for (X — Eo, JEΊ) with
regard to the proximity δ. If (X, δ) is a proximity space and (A, B) £ δ
then at least one δ-remoteness chain for (A, 5) will surely exist. This
can be shown by first constructing a δ-remoteness sequence for the
pair (X — E09 EJ = (A, B) by applying the proximity axiom (P. 5)
successively and then by defining a remoteness chain from the
remoteness sequence.

THEOREM 4.2. Let J7\ and ^\ be two completely regular topologies
on a set X such that ^\ ^ ^ . Let δt be any proximity compatible
with ^ 7 and let δ** be the proximity of functional indistinction for
J7~2~. A necessary and sufficient condition for the proximity δ2 = Inf
{δly δ**} to be compatible with ^ 7 is that for each pair (x, A) such that
x $ ̂ l-cl(A) there exists a common remoteness chain a for (x, A) with
regard to both the proximities δt and δ**.

Proof. Necessity part: Suppose that δ2 is compatible with
Take any pair (x, A) such that x$j?l-G\{A). Then any δ2-remoteness
chain for {x, A) is a common remoteness chain for (x, A) with regard
to both the proximities δλ and δ**.
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Sufficiency p a r t . S u p p o s e (x, A ) i s a p a i r s u c h t h a t x ^ ^
Then there is a common remoteness chain a for (x, A) with regard
to both <?! and <5**. If 30 denotes the indiscrete proximity on X, then
the collection & — o0 — a is a proximity base on X and generates a
proximity δ(^). Moreover we have δx ^ δ{&) and 3** >̂ δ ( . ^ )
because δx ^ ^ and 3** :> &. Therefore δ2 ^ δ ( ^ ) . Since (x, A) $
δ(&) so (x, A) ί δ2. This can be done for each pair (x, A) such that
x& j7l-cl(A). It follows that o2 is compatible with ^ 7 . Hence the
theorem is proved.

A solution to problem I is provided by Theorems 4.1 and 4.2
taken together. A comparison between Corollaries 3.1 and 3.2 raises
the following problem:

Problem II. Let {oa: ae 1} be a non-void collection of proximities
on a set X. Under what conditions will the topologies ^""[Inf {3a: a e I}]
and Inf CR {^~(δa):ael} be same?

An example has already been given to show that the two topologies
can be distinct. The following theorem solves this problem.

THEOREM 4.3. Let {δa: a e 1} be a non-void collection of proximities
on a set X and let J7~* = Inf CR [ά^{8a): a e /}, and denote by δ*
the proximity of functional indistinction for S~*. A necessary and
sufficient condition for the proximity δ = Inf {δa: ae 1} to induce the
topology ^* is that for each pair (x, A) such that xξ J^~*-cl A, there
is a δ*-remoteness chain a for (x, A) so that a is also a remoteness
chain for (x, A) with regard to δa for each ae I.

The proof of this theorem is similar to those of Theorems 4.1
and 4.2, and is thus omitted.

Several interesting problems on proximities can be solved by
making use of proximity bases (subbases).

The author wishes to thank Professor S. A. Naimpally for helpful
suggestions.
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