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MAXIMAL SUBGROUPS AND CHIEF FACTORS
OF CERTAIN GENERALIZED SOLUBLE

GROUPS

RICHARD E. PHILLIPS, DEREK J. S. ROBINSON

AND JAMES E. ROSEBLADE

It is shown by means of a generalization of a result of
R. Baer and D. H. McLain that if G is a locally polycyclic
group and if the chief factors of every finitely generated
subgroup of G have finite rank at most equal to r, then
every maximal subgroup of G has index dividing the r th
power of some prime. This answers a question about locally
supersoluble groups raised by the first author. In addition,
examples are furnished to show that neither of the properties
"all chief factors are finite" and "all maximal subgroups
have finite index" implies the other.

1. Both R. Baer [1, p. 419] and D. H. McLain [9] have given
proofs of the fact that maximal subgroups of locally nilpotent groups
are normal. An easy generalization of this, which seems hitherto to
have escaped notice, is

THEOREM A. Let K be a normal locally nilpotent subgroup of a
locally Noetherian group G. If H is a maximal subgroup of G, then
H f]K is normal in G.

The proof is similar to McLain's proof of the special case when
K = G. Suppose H Π K is not normal in G. Then there exists x
in G such that (H Π K)x S H Π K. Since K is normal in G, it
follows that (HΓ)K)X is not contained in H. Since H is maximal,
G = <ίf, (H Π K)xy» Thus, there exist finitely generated subgroups P of
H and Q of Hf]K such that xeR = <P, Qx>. Letting Q, = QR, we
deduce that R = P{QX)R = PQR = PQ,. Therefore

Qi = (Qp)Qί

Since R is finitely generated, it is Noetherian. Thus its subgroup
Qγ is finitely generated. Since Q1 is contained in K and K is locally
nilpotent, Qλ is nilpotent. Thus Qx = (Qp)Qι implies that Q^ = Qp,
which in turn implies that R = <P, (£> ̂  H. Since x belongs to R
but not to H, we have a contradiction and the theorem is proved.

As a simple consequence of Theorem A we have

COROLLARY 1. If G is a locally Noetherian, radical group and
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H is a maximal subgroup of G, there exists a chief factor U/V of G
such that HU = G and Hf]U = V.

Here we are using the term radical in the sense of Plotkin [12];
a group G is radical if every nontrivial homomorphic image has a
nontrivial locally nilpotent normal subgroup.

To prove the corollary suppose that H is a maximal subgroup of
G and let V be the core of H in G. Since G is a radical group, there
is a nontrivial locally nilpotent normal subgroup U/V of G/V. Appli-
cation of Theorem A to G/V shows that Hf]U = V. Suppose that
L < G and F < L ^ Σ7. Then certainly L £ H, so that G - HL.
Hence U = U f] (HL) = VL = L. It follows that C7/F is a chief factor
of G and that G - flZΛ

We remark that the index of H in G equals the order of U/V.
Therefore, if all the chief factors of G are finite, then so are the
indices of all the maximal subgroups of G. This allows us to prove

COROLLARY 2. Suppose that G is a locally poly cyclic group. If
the chief factors of every finitely generated subgroup of G all have
rank at most r, then every maximal subgroup of G has index dividing
the r-th power of some prime.

Since chief factors of supersoluble groups have prime order, it
follows from this that any maximal subgroup of a locally supersoluble
group has prime index. This answers a question raised by R. E.
Phillips in [11; p. 350].

To prove this corollary it is enough by the first corollary and a
theorem of McLain [10; p. 104] to show that the group G is radical.
This can be done by using the theorem of Zassenhaus [13; p. 294]
which asserts the existence of an integer r*, depending only on r,
such that any soluble linear group of degree r has derived length at
most r*.

Suppose that X is any finitely generated subgroup of G—so that
X is polycyclic—and let F — X{r*\ the r*th term of the derived series
of X. If Yn denotes the subgroup of Y generated by all nth powers
of elements of F, then Y/Yn is finite and consequently has a series
the factors of which are chief factors of X. All these must be cen-
tralized by F, so Y/Yn is nilpotent and hence every finite homomor-
phic image of Y is nilpotent. We deduce from a theorem of K. A. Hirsch
[6; p. 190] that Y is nilpotent.

It follows easily that G(r*} is locally nilpotent and therefore that
G is a radical group.

2 The question arises whether there exist generalized soluble
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groups which have maximal subgroups of infinite index but all of
whose chief factors are finite. We shall show that such groups do
exist by considering a cyclic extension of one of the groups discussed
by McLain in [7].

Let F be a field with a prime number of elements and suppose
that V is a vector space over F with basis elements vn, n — 0, ± 1 ,
±2, •••,. For integers m < n we shall write τmn for the linear
transformation of V determined by

vmτm>n = vm + vn and vrτm n = vr if r Φ m .

The group M generated by all the r M is the McLain group in ques-
tion. The linear transformation ί of F which sends each vn onto vn+1

transforms τmιΛ into τm+un+ί and therefore normalizes M. We define
G to be the group generated by M and t. We shall prove

THEOREM B. Every chief factor of G is finite and yet G has a
maximal subgroup of infinite index.

We show first that the chief factors of G are all finite. Since
those of G/M obviously are, it suffices to consider chief factors U/V
of G with U ^ M. By an argument of McLain [8], every nontrivial
normal subgroup of M contains one of the generators τί>3 . If the
normal subgroup is invariant under <Y>, then it must clearly contain
one of the subgroups

(1) 7n(M) = <r ί i ί + n I i = 0, ± 1 , ±2, . •>

of M. However it is well known and easy to see that Ύn(M) is the
nth term of the lower central series of M and also that (\nΊn{M)
is trivial. This shows that V is nontrivial and therefore M/V is
nilpotent. It follows that U/V is a central factor of M and conse-
quently an irreducible representation space for ζty over F. By
Theorem 3.1 of P. Hall [5] or a simple direct argument we deduce
that U/V is finite, as required.

We turn now to the existence of maximal subgroups of G which
are of infinite index. It will be enough to show that the subgroup

K - <τOflτo,2, ί>

does not contain the element τ o a . For suppose this has been done.
It is clear that G is generated by τ0 x and t. Let H be a subgroup
of G containing K which is maximal with respect to excluding τ0>1.
Clearly H is a maximal subgroup of G and, by (1), G = Hj2(M).
Therefore, by a well-known argument, G = Hyn(M) for each positive
integer n. However M is locally nilpotent, so a subgroup of finite
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index must contain a term of the lower central series of M. There-
fore [M:Mf]H] = [G:H] is infinite.

Now K = Nφ , where N = (τ0Λτ0 2)<*> = M f] K.

We must show that

( 2 ) τQΛϊN

and in order to achieve this we shall write

M- = <τm>n I m < 0>
and

M+ = <τm,n I m ^ 0> .

It is easy to see that M~ is a normal subgroup of M and that

( 3 ) M = M+M~ ,

( 4 ) 1 = M+nM~ .

We define
ζn — TQ Λ .w+1 J (n = 1)

and
Vm = τm,m+1τntm+2, (m = 0, ± 1 , ± 2 , . . . ) ,

and let Z = <fn, 77J w ^ 1>.

It is clear that Z ^ ikf+, and that

( 5 ) ΛΓ = <£lf ^ I n = ± 1 , ± 2 , •> ̂  îl̂ Γ- .

(3), (4) and (5) together show that (2) will follow from showing that

( 6 ) τ0ΛίZ.

Let X - <ί J n ^ 1> and Γ = <fo | w ^ 1>. For n^l, the ele-
ment ξn commutes with every ηr, r ^ 1, except ηn and ^w + 1. Moreover,
[fw, Vn] = ξn+i and [ίw, ηn+ι] = ξn+2. This shows that Y normalizes X.
Therefore Z = XY. Suppose τ01e Z; then τOfl = ί^ for some f e X and
some 37 G F. But then £~ιτQ>1 = 77 and this element fixes vn for w Φ 0
since both f and τ 0 1 do, and also fixes vQ because ΎJ does. Hence
Ύ] = 1 and f = rOιl belongs to X. However, the elements rOfl, τ0>2, •••,
τOιΛ form a basis of the elementary abelian group which they
generate, and therefore τ0>L cannot belong to X. This establishes (6).

We note that this group G is a 2-generator radical group. Since
M is generated by its abelian normal subgroups <Lf,w)>, the group G
is even subsoluble in the sense of Baer [2: p. 421]. Moreover, the
group G satisfies Max-ti, the maximal condition for normal subgroups.
To see this, we remark that for each n the lower central factor
7n(M)/yn+1(M) is isomorphic as an Fφ-module with the group algebra
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F(β} itself and so, according to a theorem of P. Hall [4: p. 429], is
a Noetherian module. It follows that each of the groups G/yn(M)
satisfies Max-w. Since every nontrivial normal subgroup of G must
contain some yn(M), it follows that G has Max-π.

Thus even with these stringent additional hypotheses the finiteness
of all the chief factors of a group does not imply that each maximal
subgroup is of finite index. On the other hand, it is easy to prove
that a hyperabelian (or SI*-) group with finite chief factors has
every maximal subgroup of finite index. Hyperabelian groups, of
course, form a rather special class of subsoluble groups.

3* We conclude by observing that the same situation prevails
in the opposite direction. More precisely we shall establish

THEOREM C. There exists a metabelian group which has no maxi-
mal subgroups and yet has infinite chief factors.

For let H be a quasicyclic group of type Cpoo and K a group of
type Cqoo where p and q are distinct primes. The group which will
demonstrate Theorem C is the restricted standard wreath product
W=HIK. Let B = H[V, the base group of W. Since W/B = K,
no maximal subgroup of W can contain B. Thus if L is a maximal
subgroup of W, it follows that W = BL and B/B Π L is a chief factor
of W. But B is a radicable abelian p-group, so this is impossible.
Hence W has no maximal subgroups.

On the other hand W does have infinite chief factors: for if x is
an element of H with order p, then (xyw is isomorphic as an FK-
module with the group algebra FK where F is a field with p ele-
ments, and it has been shown by Carin [3] that K has an infinite
dimensional irreducible representation over F.
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