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TAYLOR'S THEOREM

A. P. MORSE

Taylor's theorem requires here the continuity of only
those mixed partials actually involved in the remainder term.

Taylor's Theorem seems always to require, at the very least,
the continuity of all mixed partials of order n + 1. In marked
contrast the remainder involves only naturally arranged mixed
partials of order n + 1. It turns out in Theorem 10 that the natural
conjecture is valid. Theorem 10 follows routinely from Theorem 0
and 2.

We agree that ω is the set of integers n for which n ^ 0, that
0 is the empty set, that

A ~ B = {x: xe A and xg B] ,

that

end n = {j e co: 1 <̂  j ^ n) ,

that R is the set of real finite numbers, that

Rp = {x: p e ω and x is on end p to R} .

For x 6 Rv it is customary to put

X(j) = Xj .

We note that

Rp Π Rq = 0 whenever pe ω and p Φ q eω ,

and we assume that no member of R is a nonvacuous function.
We agree that if r is a function on S then.

sum r = Σ i eS r(j) .

To simplify printing we use this notation instead of the traditional
notation

sum r = Σ r(j) .

Thus in particular if 1 <̂  p e ω and r is on end p to R, then

sum r = Σ i G e n d P r i — Σ r i e -R

We agree that:
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Rζ = {r e Rp: r is to ω and sum r g neω}

JB^ = {r G JBJ: sum ?• = n) .

For each k we agree that JO; is that function ψ on ω for
which:

^(i) = 1 whenever k = j eω

^(j) rrr Q whenever k Φ j eω .

For each k and each function / we understand: Dkf is such a
function that for each x

i>l/ = /

for each neω

Dl+ιf = DkDlf

if I <^ peω and r is a function on end p to α), then

Drf = D?D? . D pf .

At this point we urge the reader to notice that the subscripts appear
only in their natural order and that Drf is built inductively from
right to left.

Some comments and illustration follow.

If l ^ p e ω and / is a real valued function on some subset S
of Rp, then Dkf is a real valued function on some subset Tk of S;
the set Tk may be 0, in which event, Dkf = 0.

If / is that function on R2 for which

f(x) =z χ\. χ2 whenever x e R2 ,

then, for each k, Dkf is such a function on R2 to R that for each
xeR2:

if k = 1 then Dkf(x) = 2 #1 .τ2;
if fc = 2 then Dkf(x) = x\\
if Λ^end2, then Z)fc/(a?) = 0.
Let us agree now that # is trivial if and only if # is a function

for which g(t) — 0 whenever ί is in the domain of g.
For example, if pea), then the origin of Rv is trivial.
Now suppose A is the characteristic function of the rationale

and B is the characteristic function of the irrationals. Let / be that
function on R2 to R for which

f{x) = A{x,)Ά{x,) + B{x^B{x2) whenever xeR2 .
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Here Dkf is on some subset Tk, of R2; in fact

DJ = DJ=0 = 2\ = T2;

if k£end 2 then Tk — R2 and Dkf is trivial. In particular Dγf is
both trivial and vacuous while D3f is trivial but certainly nonvacuous,

We agree that / is n fold smooth on a if and only if there is a
p for which:

1 <, peω neω α is a nonvacuous open subset of Rv; / is to R

Z)r/ is continuous on a whenever reRp

Λ.

THEOREM 0. If l^peω, ccaRp, f is n fold smooth on a, j e end p,
r e Rl-u and x e a, then

Theorem 0, which is a consequence of Theorem 7, can be proved
directly by induction in sum r. This direct proof, based on well
known Theorem 5, is so simple and straightforward that we are
amazed that Theorem 0 seldom, if ever, appears in books.

Because of Theorem 0 alone, we can usually1 diminish the conti-
nuity requirements in Taylor's Theorem. We need only require that

Drf is continuous whenever r&RlλΛ ,

where the number of points in Rζ.rl is

In + p + 1\

V I .
Since these functions are all involved in Taylor's Formula we can
usually check their continuity, at a glance, as we needfully compute.
Ordinarily, in applying Taylor's Theorem, we should check continuity,
quite possibly in an intuitive flash, in at least pn!rl cases.

A fairly obvious companion to Theorem 0 is

THEOREM 1. If l<Lpeω, aaRp, f is n fold smooth on a,
r e Rζ, s e Rζ, r + se Rζ, and xe a, then

DrDsf(x) = Dr{"f(x) .

The question which intrigues us here is answered by Theorem 2
below. Before coming to Theorem 2 let us agree that / is n smooth
on a if and only if there is a p for which: l^peω; neω; a is a

Exceptions: n = 0; p = 1; n f p S 4.
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nonvacuous open subset of Rp;f is to R; Drf is continuous on a
whenever r e Rζ.

THEOREM 2. If f is n smooth on a then f is n fold smooth on a.

Because of Theorem 2 we can still further diminish the conti-
nuity requirements in Taylor's Theorem. We need only require that

Drf is continuous whenever r e Rζ+1

where the number of points in R%+L is

n + p

p-1

If nothing else we find Theorem 2 and especially Theorem 0
computationally reassuring. We use these, in turn, to verify our
computationally pleasant Theorem 10.

We now start our attack on Theorems 0 and 2. We capture the
essence of the conclusion of Theorem 2 by agreeing that Cn consists
of such functions / that, for some a, f is on a and f is n fold
smooth on a. We capture the essence of the premise of Theorem 2
by agreeing that Cn consists of such functions / that, for some a, f
is on a and f is n smooth on a.

We feel that our rather tangled inductive attack can be clarified
by the introduction of some technical (left, center, right) pivot
concepts and their preliminary analysis in Lemmas 4, 5, and 6. This
material is only of momentary interest and is to be forgotten as
soon as Theorems 7 and 8 have been proved.

If fe Cn, 1 ^ pe ω, a a Rp, and / is on α, then we agree that:
Lpivot fn = {j e end p: DάD

rf = Dr+Kjf whenever r e i^_J;
Cpivot fn = {j e end p: Dr+Kif is continuous whenever r e Rζ^};
Rpivot fn = {j e end p: DrDάf = Dr+Kjf whenever r e i?;_J.
If / g Cn then we agree that
Lpivot fn = Cpivot fn — Rpivot fn = 0.

THEOREM 3. If 1 ^ peω, keenάp, 0 is the origin of Rp, and
g is to Rj then:

.0 D'g = g;

.1 if r is on end p to ω and

γ. = 0 whenever i e end (k — 1) ,

then

DkD
rg = Dr+Kkg
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.2 Dkg = D9+Kkg;

.3 if meω, j eco, 0 ^ j g m, cm<i

JD?flr(a;) e R ,

then

Dig(x) e R .

Conclusions .0 and .1 and .3 are fairly obvious; Conclusion .2
follows from .0 and .1.

LEMMA 4. If feCn, 1<L peω, aczRv, and f is on a, then:
.0 if r e Rζ then Drf is on a to R;
.1 if j £ end p and

end p ~ end j c Lpivot fn ,

then

DrDJ = Dr+Kjf whenever r e Rp

n_,

.2 if j e end p and

end p ~ end j a Lpivot fn ,

then

j e Rpivot fn

.3 if 1 fg n and j e Rpivot/t^, ίfeβ^

.4 if j e Rpivot/^ and Djfe Cn~ι, then

.5 if end p c Cpivot/w, ίΛe^ / e C%.
If in 3.3 we take k = 1 and

then we see that .0 is at hand.
Conclusion .1, which strikes us as intuitively evident, can be

proved by induction in sum r. We shall give the details later.
Conclusion .1 implies .2. Conclusions .3 and .4 are easy.
We now turn to .5, let θ be the origin of Rp, and note we may

as well assume 1 <£ n. Clearly if

θ φre Rl
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then Drf is continuous. On the other hand if r — θ, then:
θ Φ θ + Kke Rζ whenever k e end p;
Dej+Kkf is continuous whenever k e end p; because of this, .0, and 3.2,
Dkf is continuous on a whenever k e end p; accordingly

/ is continuous ,

and, because of 3.0,

D'f is continuous .

Consequently Drf is continuous whenever r e R*, and hence, because
of .0, feC\

We now tackle .1 by verifying the

Statement. If

N = {me ω: for some r e Rl^, sum r = m and DrD3f Φ Dr+Kif}9

then,

N = 0 .

Proof. We suppose N Φ 0, and use 3.0 and 3.2 to learn that JV
is a nonvacuous set of positive integers. We let v be the smallest
integer in N and then so choose s e Rζ-i that

.6 sum s = v , DsDjf Φ Ds+Kjf .

Since 0 < sum s we choose k to be the smallest integer in

{% e end p: ŝ  > 0} .
Thus we have

.7 Si = 0 whenever i e end (k — 1) .

We let

.8 u = s — jKTb , v — n -\- Kj

and note that

.9 % 6 !?;_!, v G JB;^, u + Kk = s, v + Kk = s + Kj .

Since

sum t6 — v — 1

we see, with the help of .8, that our choice of v insures that

.10 DuD,-f - Dvf .

We infer from .7 and .8 that

.11 Ui = 0 whenever i e end (k — 1) .
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We use 3.1, .11, .10, and .9 in checking that

.12 DsDjf= DkD
vf.

We must have

•13 1 ^ k ^ j

since otherwise we would know that

k e Lpivot fn

and then could use .12 and .9 to infer that

D Dsf = Da+K*f

in contradiction to .6. We infer from .11, .13, and .8 that

.14 Vi = 0 whenever i e end (k — 1) .

We use 3.1, .14, .12, and .9 to conclude

DsDjf - Ds+Kjf

in contradiction to .6.
The following well known Theorem of Interchange is ample for

our needs.

THEOREM 5. If 1 ^ pea), a is an open subset of Rp, g is on a
to R, ke end p, j e end p,

Dkg is on a to R, DkDjg is continuous on a,
then

D3Dkg - DkD, g .

Our next lemma is crucial.

LEMMA 6. Cpivot/π c Lpivot fn

Proof. We suppose the contrary, choose

j e Cpivot fn — Lpivot fn ,

note that

and so choose p and a that

1 <: pe ω, a is an open subset of Rp, f is on a.

Letting

N= {meω: for some r e Rζ^ sum r = m and ΏάΌ
rfΦ Dr+Kjf} ,

we use 3.2 to learn that N is a nonvacuous set of positive integers.
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We choose v to be the smallest integer in N and then so choose
s e Rl_γ that

.0 sum s = v , DjD f Φ Ds+Kjf .

Since 0 < sum s we choose k to be the smallest integer in

{i e end p: s{ > 0} .

Thus we see

.1 Si = 0 whenever i e end (k — 1) .

We must have

.2 k <j ^p

since otherwise we could use .1 to see that

Si = 0 whenever i e end (j — 1)

and then could use 3.1 to infer that

DjD'f = D B + J f i /

in contradiction to .0. We let

.3 u = s — Kk , v = u + Kj

and note that

.4 w G JBS_!, v e Ri_u u + Kk = s, v + Kk = s + Kj .

Since

sum u — v — 1

we see, with the help of .3, that our choice of v insures that

.5 D, Duf = D v / .

We infer from .1 and .3 that

.6 vH — 0 whenever i e end (k — 1)

and then from .6 and .2 that

.7 ^ = 0 whenever i e end (Zc — 1) .

We use 3.1, .7, .5, and .4 in checking that

.8 DhDsD*f - DΛ+K>'f .

We use 3.1, .6, and .4 in checking that
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.9 DkD*f = Dsf .

We let

9 = Duf ,

and from 4.0, .9, .8, and the fact that

j eCpivotfn ,

we infer that:

g is on a to R)

•10 Dkg = Dsf;

Dkg is on a to R;

.ii z>*A 0 = Ds+κ''f;

DkDjg is continuous on α .

Because of Theorem 5 we know

.12 DsDkg = DkDjg .

From .10, .12, and .11 we now conclude

- DόDkg = DkDjg = D'+K>'f

in contradiction to .0.
From Lemma 6 we have at once

THEOREM 7. If feCn, 1 ̂  peω, aaRp, f is on a, and r e
then

DjDrf = Dr+Kjf whenever j e end p .

THEOREM 8. Cn - C\

Proo/. Suppose Cn φ Cn, let

iV= {meω: Cm Φ Cm} ,

note that

0 Φ Naω

and choose v to be the smallest integer in N, and then choose

.0 feC»~C>.

Note that
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.1

let

and observe that

Λf =

A. P.

1 :

end^i

MORSE

• ~ Cpi vot fv

since otherwise 4.5 would demand that

in contradiction to .0. Let then j be the largest integer in M.
Note that

.2 i G end p — Cpivot/V

and, because of Lemma 6, that

end p ~ end j c Cpi vot fv c Lpivot fv .

From this and 4.2 infer that

.3 jGRpivot/v.

From .1, .3, 4.3, and the choice of v, infer that

.4 DjfeC"-1 = Cv~ι .

From .3, .4, and 4.4 conclude, in contradiction to .2, that

j e Cpivot fv .

We now infer Theorem 0 from Theorem 7 and Theorem 2 from
Theorem 8.

In order to formulate and prove Theorem 10 we shall understand
that if 1 ^ p e ω , heRp, and r is on endp to co then:

r! = r j ra!

hr

p* .

THEOREM 9. If neω, 1 <; p e ω, S = end p, απrf 4̂ is o^ Rv

nΛ

to R, then

ΣreRζΣJεS\ (n + l ) Σ r e JRJU r ^
r! r!

Proof. Let J5 and i ϊ be such functions on Rp that:



TAYLOR'S THEOREM 471

B(r) = A(r) whenever r e S ; + 1 ;

B(r) = 0 whenever reRp ~ Rζ^;

H(r) = — whenever r e Rp and r is to ω
r!

H(r) = 0 whenever r e Rp and r is not to co .

We notice that if j e S then:
if reRp and r is to ω then

reRp

n if and only if r + ϋf/ e 5^+1

if reRp ~ Rp

n then

H(r)-B(r + iζ?) = 0

if r 6 jβp then

£Γ(r- Kj) = rrH{r) .

Because of all this we now infer

Σ r e Rp

n Σ j e SA{r + Kj) - Σ r e Rζ Σ i e S [ff(r) ΰ(r + i^i)]

r!

= Σ r e Rp Σ i e S[H(r) -B{r + ίζ/)]

= Σ i e S Σ r e Rp[H(r).B(r

r). H(τ)

= Σ r e S;+1[(sum r).fί(r).5(r)]

= ΣreRp

n+1[(n+ 1). H(r) B(r)]

rl

TAYLOR'S THEOREM 10. If 1 <z pe ω, a is an open subset of Rp,
cea, heRp,

c + t'hea whenever 0 fg t <̂  1 ,

nea), f is n + 1 smooth on α, ίfeen ίAβre are J ami <9 /or which:
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0 < θ < 1;

r!

Proof. In the usual way we let ί7 be such a function that

27 )̂ = /( c + t h) whenever t e R ,

and then use 2, 0, and 9 to check by induction in k that

kl ^ k rl

whenever

fceω, 0 ^ h ^ n + 1 , 0 <, t < 1 .

Also in the usual way we so choose A and θ that:

0 < θ < 1

(n + 1)! '

The desired conclusion is now at hand.
Without resorting to Banach space integration we can verify the

following

TAYLOR'S THEOREM FOR A LINEAR NORMED SPACE 11. If X is

a linear normed space, 1 <; peω> a is an open subset of Rp, cea,
heRp,

c + t h e a whenever 0 <£ t ^ 1 ,

ne ω> f is n + 1 smooth on a to X, then there is a Δe X for which:

<s (n + D - Π l d - *)--Σrefr.+1

 J y fle + ' *> * 1U
Jo I! r! II

r!

By completing the space X of Theorem 11 we obtain an alter-
native proof of Theorem 11 based upon

TAYLOR'S THEOREM FOR A BANACH SPACE 12. If X is a Banach
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space, 1 ^ pe ω, a is an open subset of Rp, cea, he Rp,

c + t he a ivhenever 0 ^ t ^ 1 ,

ne ω, f is n + 1 smooth on a to X, and

1 trΣ>rem+ί

r!
then

f(c + A) = Σ r e R*Df(c) h + j .
r!
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