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NUCLEAR SPACES, SCHAUDER BASES,
AND CHOQUET SIMPLEXES

A. J. LAZAR AND J. R. RETHERFORD

We prove that a Frechet space E with a Schauder basis is
nuclear if and only if every bounded subset of E is contained
in a bounded Choquet simplex. We then show how this theorem
relates to the basis problem for nuclear Frechet spaces and
to the classical Banach-Dieudonn§ theorem.

In the class of all infinite dimensional Banach spaces the Hubert
spaces (and their isomorphs) seem to be the natural generalization of
the finite dimensional normed linear spaces. Indeed many authors
have characterized Hubert spaces by extending results from Euclidean
geometry (see [4, Chap. VII, § 3 p. 115-121] for an excellent discussion).

However, in the class of all infinite dimensional Frechet spaces
(complete, metrizable, locally convex) this is no longer the case. It
now appears that the nuclear spaces of A. Grothendieck [9], [26] are
the proper generalizations of the finite dimensional spaces.

Indeed, Grothendieck [9] has shown that a Frechet space E is
nuclear if and only if E has the Dvoretzky-Rogers property: every
unconditionally convergent series in E is absolutely convergent.

This property is known to characterize the finite dimensional
normed linear spaces in the class of all normed linear spaces [7].

Also, it is well known that nuclear spaces can be nicely approxi-
mated by finite dimensional spaces (Kolmogorov diameters, diametric
and approximative dimensions) see [1], [22] and [26]. Moreover, the
Dynin-Mitiagin theorem [8] and a recent result of Wojtynski [29]
asserts that a Frechet space E with a Schauder basis is nuclear if
and only if every basis of E is absolute. Since pelczynski and Singer
[23] have shown that every infinite dimensional Banach space with a
basis has a conditional basis, the above result can be viewed as a
generalization to the class of Frechet spaces with bases of a well-
known property of finite dimensional spaces.

Aside from these characterizations and a few related results, there
seems to be few instances where nuclear spaces have been characterized
by some property common to finite dimensional normed linear spaces.
The purpose of this paper is to present such a characterization.

It is obvious that a bounded set in a finite dimensional normed
linear space lies in a bounded simplex. Our goal is to prove

THEOREM 1. A Frechet space E with a Schauder basis is nuclear
if and only if every bounded subset of E is contained in a bounded
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Choquet simplex. (Moreover, this simplex can be taken to be compact).

Part of this result, without the basis requirement, has appeared
in [18].

2* Terminology* All linear-topological prerequisites can be found
in Kothe [15] and Day [4]. Throughout this paper E denotes a real
Frechet space. We will use the word neighborhood to mean ' 'closed
convex circled neighbor hood".

If U is a neighborhood of the origin in E with Minkowski func-
tional Pu then by EΌ we denote the quotient space E/pΰι(0), on which
Pu is a norm. The space E is nuclear [26] if for each neighborhood
U of 0 in E there is a neighborhood of 0, V, absorbed by U, such
that the canonical map

Ivu: Ev —> Ev

is nuclear, i.e.

Ivuin) = Σ K<x, fn>pn , %zEv

where Σ*=i Iλ* I < + °° > (Λ) c: Ev is equicontinuous and (pn) c Eπ is
bounded.

(For equivalent ways to define nuclearity see [26].) We will use
conv A and Γ(A) to denote, respectively, the convex hull and convex
circled hull of a set A in E. As usual, A denotes the closure of A.

A sequence (xn) in E is topologίcally free if no xn is in the closed
linear span of (xm:m^ n); equivalently, (xn) is topologically free if
there are functionals (fn) in Er such that

Λ( Ό = δΛW, the Kronecker delta.

(See [5] for a discussion of topologically free sequences in locally convex
spaces.) A topologically free sequence (xn) with associated functionals
(fn) is a Schauder basis for E if for each x e E,

convergence in the topology of E.
If A is a set of positive sequences a — (an) (i.e., all an ^ 0)

satisfying
( i ) for each n there is an a e A such that an Φ 0; and,
(ii) for α1, , an e A there is an ae A and M > 0 such that

αl ^ Λίttw for all i and w, then

X(A) = \x = (a?n):̂ α(α;) = Σ an \xn\ < + oo for all a e A \



NUCLEAR SPACES, SCHAUDER BASES, AND CHOQUET SIMPLEXES 411

with the topology generated by the seminorms {pa: a e A} is called a
Kothe sequence space. It follows from the Dynin-Mitiagin theorem
above that a nuclear Frechet space E with a Schauder basis (xn) is
isomorphic to the Kothe sequence space X(A), A = {\xn\m}, where
I li ^ I 12 ^ * is &n increasing family of seminorms generating the
topology of E. Thus, nuclear Frechet Kothe sequence spaces coincide
with the class of nuclear Frechet spaces with bases. (The above
discussion is the main theme of the work [1]; for general relations
between bases and sequence spaces see [28]).

In general, λ = x(A) is nuclear if and only if for each xe X there
is a y e X and telλ with xn <Z tnyn for each n. This property is known
as the Grothendieck-Pietsch criterion [14].

Grothendieck has conjectured that every nuclear Frechet space
has a Schauder basis. Our Theorem 2 below sheds some new light
on this (still unsolved) conjecture.

Finally we need the notion of a Choquet simplex.
Let S be a convex subset of E. Passing to E x R, R the scalar

field, if necessary, we may suppose that S lies in a hyperplane of E
which misses the origin. The set S is a Choqust simplex [3], [25] if
the cone

C = {as: a^0,seS}

generated by S induces a lattice order in C-C. Choquet has observed
that in finite dimensional spaces a Choquet simplex coincides with the
usual notion of simplex. (A word of caution is necessary. A Choquet
simplex S may not, strictly speaking, generate a cone in E, e.g. if
the origin is in the core of S. More precisely, S is a Choquet simplex
if S is affinely homeomorphic to a set Sf with the above properties.
In particular, a translate of a Choquet simplex is again a Choquent
simplex.)

3* Three lemmas* In this section we develop the machinery
used to prove Theorems 1 and 2. Lemma 1, purely technical in nature,
appears in [18]. We reproduce it here for completeness. Lemmas 2
and 3 are of independent interest.

LEMMA 1. Let (21, Σ, μ) be a measure space and (gn)n=o & sequence
in L^T, Σ, μ). Suppose there is a constant M such that gQ ;> 0, gQ +

f Γ
Σ % e σ Qn ^ 0 and \ gQdμ + Σ«eσ \ gndμ ^ M for any finite set σ of posi-

JT JT

tive integers. Then

f i t \9n\dμ< + 0 0 .
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Proof. Since L^T, Σ, μ) is weakly complete and

it follows that Σ~= o gn is unconditionally convergent [4, p. 60], [21],
say to g. For any positive integer m let (EJfLT be a partition of T
into disjoint measurable sets such that each gn, 1 ̂  n ^ m has constant
sign on Ei91 ^ i ^

For fixed i let

and

Q< = {1,2,

Then

( ( ) ^ \ gdμ

and

t \ ( )μ^\ godμ.
neQijEi

Thus

Σ ί \9n\dμ^ \ (go + g)dμ

and so,

Σ ( \Qn\dμ ̂  ί (flr0 + flr)Λj" < +oo .

The next lemma is the main tool needed in the proofs of Theorems
1 and 2.

LEMMA 2. Let (yn) be a topologically free null sequence in a
locally convex space. If K = conv (yn) is compact, then K is a Choquet
simplex.

Proof. By Milman's theorem [15, p. 332] the set of extreme
points of K, ext K, is included in {yn: n ^ l}U{0}. By the Choquet-
Meyer uniqueness theorem [25, p. 66] we must show that every point
ke K admits a unique maximal (in Choquet's order) representing
measure. The set ext K is closed since (yn) is a null sequence and
so the maximal measures on K are exactly those measures supported
by ext K [25, p. 27, p. 30 and Prop. 9.3, p. 69], i.e. they are atomic
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measures supported by {yn: n ^ 1}U{O}. Let μ and v be two maximal
measures representing k e K. Let μ({yn}) = μn, MW) = Λo and similarly
for vn and v0. Then μn, vn ^ 0 for n = 0, 1, 2, ,

0

and

& = Σ μny» = Σ »̂2/»

Let (/w) be the functionals associated with (yn). Then fjjc) = μn = vn

and from (+) it follows that μ0 = v0, i.e. μ = v and K is a Choquet
simplex.

It is very likely that the conclusion of Lemma 2 holds without
the assumption that K is compact. In the case of a Frechet space,
our interest here, of course K is compact. Thus we have not checked
the general result.

For our final lemma we need the notation of the normal hull of
a set of sequences. If M is a set of real sequences b = (bn), the
normal hull of M is the set of all real sequences y = (yn) with
\yn\ ^ \K\ for all n and some be M.

Kothe [14] has shown that in a nuclear sequence space λ, each
bounded set B is contained in the normal hull of a single element

P = (|O )
Geometrically Lemma 3 says that in a nuclear sequence space a

"parallelepiped" can be placed in a simplex.

LEMMA 3. Let X be a nuclear Kothe sequence space and let p =
(pn) e λ, pn Ξ> 0 for each n. Then B = {x e λ: | xn \ <̂  ^ J is contained
in a compact Choquet simplex.

Proof. Considering B + p instead of B we may assume B —
{xeX: 0 ^ xn ^ pn). By the Grothendieck-Pietsch criterion there is a
a z=z (an) e X and (tn) e lι such that pn <j £wσπ. Dividing by a constant
if necessary we can assume that Σtn <Ξ 1, ίn > 0. Also we can suppose
that no σn is zero. If (en) is the unit vector basis of λ then (σnen)
is a topologically free null sequence. Thus if x e B, x = 2 ^ ^ =
Σtn(σntn)-ιxnσneu and J μ > A ) " X I ^ ^ ^ 1 i.e. BaΓ(σnen). By the
Dynin-Mitiagin theorem i/σ^β,, is absolutely convergent to σ. Let
S = conv (2σnen). By Lemma 2, S and hence any translate of S, is a
compact Choquet simplex. Thus B + σ c Γ{σnen) + ( J c S , i.e..

BdS-σ.

4. Proof of theorem 1* We first suppose that E is a nuclear
Frechet space with a basis. If B c E is bounded then by the result
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of Kothe above B is contained in the normal hull of some p = (pn) e λ,
the sequence space representation of E. By Lemma 3, B is contained
in a compact Choquet simplex.

Now suppose each bounded subset of E is contained in a bounded
Choquet simplex. Let Σ~=i χn be an unconditionally convergent series
in E and let A = {Σ, ιef fίi;: σ finite} U{0}. It is well known that A is
precompact, hence by hypothesis, contained in a bounded Choquet
simplex B. Consider in E x R the cone C generated by B x {1}.
Then F = C-C is a linear lattice with the order induced by C The
Minkowski functional of Γ(B x {1}) is a norm on F. This norm and
the order are related by the following two properties:

( i ) i f x A y = 0 t h e n \\x + y\\ = \\x - y \ \ ; a n d
(ii) if x^ 0,y ^ 0 then | |α + j / | | - | |g | | + \\y\\.

It follows from the Kakutani theorem [16], [4, p. 98-100] that the
completion of F is an abstract L-space (with order determined by C).

Let P be the restriction to F of the natural projection from
E x R onto E. Since B is bounded, P is cotinuous from F to !£.
Let yn = (&Λ, 1), w = 0, 1, 2, where x0 = 0. Clearly yoeB x {1}
and #0 + X% e σ (#* — y0) e B x {1} for each finite set of positive integers
σ. But B x {1} is part of the positive face of the unit ball in an
abstract L-space. By Lemma 1 it follows that Σ«=i Il2/n — 2/oll < +°°
Since Pyn = xn it follows from the continuity of P that Σxn is abso-
lutely convergent, i.e. E has the Dvoretzky-Rogers property. By the
result of Grothendieck quoted in the introduction, E is nuclear.

5* Cones and the existence of bases • In any separable Frechet
space E (in particular a nuclear Frechet space) there is a topologically
free null sequence (zn) whose closed linear span is E, i.e. (zn) is funda-
mental. (This result is due essentially to Markuchevitch [19]; see
also Klee [11]). Thus S = conv (zn) is, by Lemma 2, a Choquet sim-
plex. It is not hard to see that C = {as:a ^ 0, se S} is always a
proper cone. There are important cases in which C is not only a
cone but makes C-C a vector lattice (see [24] for terminology). We
will call a simplex S a VL-sίmplex if C is a cone making C-C a
vector lattice.

Let (xn) be an unconditional basis for E with coefficient functionals
(Λ) and let K= {xeE:f%(x) ^ 0 for all n}. Then K is called the
basis cone of (xn).

Ceitlin [2] has shown that K is normal (for any two nets (xβ), (yβ)
in E with 0 <̂  xβ ^ yβ, if lim^ xβ — 0 then lim xβ — 0) and K-K = E. Ceitlin
observes that in this situation the induced lattice operations are con-
tinuous. The work of Ceitlin above makes it easy to prove the following
result.

PROPOSITION 1. If (xn) is an unconditional basis in a Frechet
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space E ivith limw xn = 0 then S — conv (xn) is a VL-simplex.

Proof. By Lemma 2 and the above remarks we need only observe
that C — K where C = {as:a ^ 0, S G S } and K is the basis one of (xn).
The inclusion C c K is obvious and since any finite sum Σ£=i a%χn
ai ;> 0 is in C, KaC.

Our next theorem shows the difficulties in trying to remove the
basis hypothesis in Theorem 1.

THEOREM 2. Let E be a nuclear Frechet space. The following
are equivalent:

( a ) E has a Schauder basis;
( b ) each bounded subset of E is contained in a translate of a

bounded VL-simplex; and
( c ) there is a fundamental bounded set containing 0 and contained

in a translate of a bounded VL-simplex.

Proof, (a)—>(b): Let (en) be a basis for E, B a bounded subset
of E and let p = (pn), σ = (σn) have the meaning of Lemma 3.

Then by Lemma 3, Ba —p + S where S = conv (2σnen). Since
we may assume that each σn Φ 0 (2σnen) is, by the Dynin-Mitiagin
theorem, an unconditional basis for E. Also (2σnen) is a null sequence.
By Proposition 1, S is a FL-simplex.

(b)—>(c) is obvious from [19] since E is separable.
(c)—>(a). Let B be the fundamental bounded set of (c). By hypo-

thesis there is & pe E and a VL-simplex S such that B — p c S. If
C is the cone generated by S then, since 0 e B

B c B - B = (B - p) - (B - p) c C - C i.e.

C — C is dense in i?. Since E is nuclear and S is a VX-simplex
C — C is a nuclear vector lattice and so [13] the lattice operations
can be extended to E in such a way that E is a nuclear vector
lattice. However, from the generalized Grinblyum if-condition [20]
and the results of Komura-Koshi [13] it follows that every Frechet
nuclear vector lattice has a basis. (See [1] for a complete discussion
of the Kδmura-Koshi result and its relation to basis theory.)

6* The strong Banach-Dieudonne property* Let us recall the
Banach-Dieudonne theorem for Frechet spaces: every precompact subset
of E is contained in the closed convex circled hull of a null sequence
(see e.g. [15, p. 273]).

The following proposition allows one to strengthen this result.
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PROPOSITION 2. Let (xn) be a null sequence in a locally convex
space F. Then there is either a linearly independent null sequence
or a finitely nonzero sequence (zn) in F such that conv (xn) c conv (zn).

Proof. If there is no infinite dimensional bounded set in F then
conv (xn) is bounded and finite dimensional and the assertion is obvious.
Thus suppose (yn) is a bounded linearly independent sequence in F.
Construct an infinite array in the following manner: It xu , x{ are
linearly independent and xi+1 = Σ* =1 XJXJ put xjf 1 ^ j ^ i in the first
place of the j-th row. Choose n, such that nγιyni + xi+ι is linearly
independent from the elements in the array and put this new element in
the first place of the ί + 1-row. If xi+2 is linearly independent from
the elements of the array put it in the first place of the i + 2-row.
If not, put in this place n2

ιynι + xi+2 where n2 > nγ and n2

ιyn2 + xi+2

is linearly independent from the elements of the array. Next choose
n3 > n2 such that nv'y^ + xi+1 is linearly independent from the ele-
ments of the array and put it in the second place of the i + 1-row.
The first element of the ί + 3-row will be xi+z or of the form
nT'y^ + xi+3 (where n4 > n3) depending on whether α?i+3 is linearly
independent or not from the elements of the array. Next put
nϊιyn5 + Xi+ι, nrιynQ + xi+2 with n6 > n5 > n± in the third place of the
i + 1-row and the second place of the i + 2-row (if the row does not
begin with xi+2), where these elements are chosen to be linearly
independent from the array. Continue the process and enumerate the
array diagonally to obtain the sequence (zn). Then (zn) is a null
sequence and (xn) ccόnvfe).

In particular if E is metrizable, Proposition 2 and the Banach-
Dieudonne theorem show that every precompact subset of E is contained
in the closed convex circled hull of a linearly independent null sequence.

This motivates the following definition. We say that a locally
convex space F has the strong Banach-Dieudonne property if each
bounded subset of F is contained in the closed convex circled hull of
a topologically free null sequence.

REMARK 1. If F is barrelled and has the strong Banach-Dieudonne
property then F is a Montel [15] space. Indeed, in this case, bounded
sets are necessarily precompact. In particular, if a Banach space E
has the strong Banach-Dieudonne property then E is finite dimensional.

If one replaces "null sequence" in the above definition with
"absolutely convergent sequence" then the proof of Lemma 2 and
[26] show that a space F with this property must be nuclear.

We do not know if a Frechet space E with the strong Banach-
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Dieudonne property is necessarily nuclear. Lemma 3 shows that a
nuclear Frechet space with a Schauder basis (en) has the strong
Banach-Dieudonne property. Indeed if

B = {xe\:\xn\ ^ ρn}

then by the proof of Lemma 3

A = {ye\:0^yn^ 2pn) c Γ(σnen) .

Also,

-A a Γ(σnen) and B c conv (A U -A)

since Σxnen is we conclude with two examples.

EXAMPLE 1. A nuclear space F which lacks the strong Banach-
Dieudonne property.

Let F be I, with the σ{lu L)-topology. Since F has a neighbor-
hood basis {U} such that for each Ue{U}, Fv is finite dimensional,
F is nuclear. By Shur's lemma sequential convergence in F is norm
convergence in lx. If B is the unit ball of I, there is no null sequence
(yn) in F with BczΓ(yn).

EXAMPLE 2. A locally convex space F with the strong Banach-
Dieudonne property which is not nuclear.

Let F be I, with the bounded weak*-topology (i.e. the topology
of uniform convergence on null sequences in c0). Since a functional
/ is bw*-continuous if and only if it is w*-continuous [6], a bounded
subset of F is w*-bounded, hence norm bounded. Thus to show that
F has the strong Banach-Dieudonne property it suffices to show that
the unit ball of lγ is contained in the closed convex circled hull of a
topologically free i^-null sequence. Let (en) be the unit vector basis
of lγ. Clearly B c Γ{en) and (en) is topologically free. Also w*-lim en = 0
and so by [4, p. 42] (en) is jF-null.

To see that F is not nuclear it suffices [26] to produce a series
Σxn in F which is unconditionally but not absolutely, convergent.

By the proof of the Dvoretzky-Rogers theorem [7], [4] there is a
sequence (xn) in ix such that Σxn is unconditionally convergent (in
norm) and \\xn\\ = 1/n. For each n let yne c0, 11yn11 = 1 and xn(yn) > l/2n.
Let y be the null sequence ((l/lnm)ym). Then

ρy{xn) = sup
In m 2n Inn
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Thus Σpy(xn) diverges. But ρy is a continuous seminorm on F and
so Σxn is not absolutely convergent in F.
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