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UNIVERSAL COEFFICIENT THEOREMS
FOR GENERALIZED HOMOLOGY

AND STABLE COHOMOTOPY

PAUL C. KAINEN

We show that if h is a nice (e.g. representable) homology
functor and G is an Abelian group, then there is a cohomology
functor k(X; G) which is a "quasi-functor" of G and a short
exact sequence

0 —•> Ext (h(ΣX), G) —•> k(X; G) —> Horn (h(X), G) —> 0

which is natural in X, "strongly quasi-natural" in G, and
split if two additional conditions are satisfied.

If, for example, h(X) = Hn{X), then k(X; G) = Hn(X; G), and we
obtain a proof of the ordinary Universal Coefficient Theorem which
does not descend to the chain level but which does make heavy use of
Brown's Representability Theorem [2]. After setting up the machi-
nery and proving some technical results in § 1, we derive in § 2 quasi-
naturality and, with suitable restrictions, splitting of the sequence.

The construction of k(X; G) involves an injective resolution of G.
We show (2.8) that k(X; G) is independent (up to non-canonical iso-
morphism) of the resolution chosen and we remark (in 2.12) that there
is a particular injective resolution Γ(G) which is even functorial.

In § 3 we prove a corresponding Universal Coefficient Theorem
for stable cohomotopy. We construct (3.8) the following short exact
sequence for finitely generated G and finite dimensional X

0 > Extz (G, πΓιX) > {X, L(G, n)} > Hom^ (G, πn

sX) > 0

which is natural in X, strongly quasi-natural in G, and split if
{X, L(G, n)} is a functor of G. L(G, n) denotes the co-Moore space of
type (G, n), {X, Y} = stable homotopy classes of maps, and πg

s(X) =
{X, SQ}. In §4 we present some examples and a conjecture.

Let us recall from [5] the definition of a quasi-functor. Suppose
S/ and & are categories and S: \ .ζ%? \ —> | Sf \ is a function from the
objects of & to the objects of s/. We call *S a quasi-functor if given
any morphism β\B—>Bf in & there is a nonempty set S(β) of mor-
phisms in Sf satisfying

(a) S(β)^J*(SB,SB');
(b) β:B-+B' and β': B' -> B" imply

S(β'β) D {a'a I a! e S(β'), a e S(β)}

(c) 1SB6S(1B).

397
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Now if S, U: & —* Sf are quasi-functors, we say that v is a strong
quasi-natural transformation from S to U provided that v associates
to each J 3 e | ^ | a morphism vB: S(B) -> U(B) and if β:B-+Br then
the following diagram is commutative for all s e S(β) and all u e U(β)

S(B) —-—^ U(B)

S(B') > U(B') .

We call v quasi-natural if for every s e S(β) there exists u e U{β) such
that the above diagram commutes, and symmetrically, if for every
u there exists s making the diagram commute. Note that if S is a
quasi-functor which is not a functor and if v: S —• S is the identity,
then v is quasi-natural but not strongly quasi-natural.

Early versions of these results comprised a portion of the author's
doctoral dissertation written at Cornell University under the direction
of Professor Peter Hilton. I am grateful to Professor Hilton for
pointing out a number of substantial improvements. I should also
like to thank the referee for his very helpful suggestions.

One may view this paper as an alternative to Adams' approach
(see [1]).

l The machinery* Let us recall that a homology functor on
the category W* of based connected CW complexes is a covariant
functor h: 30^°—> Ab, the category of abelian groups, satisfying the
following two conditions:

( i ) if A > X—g—* C is a cofiber sequence, then

h(A) > h(X) > h(C)

is exact;
(ii) the natural map

Π k(Xa) > h( V Xa)
aeΓ aeΓ

is an isomorphism for any index set Γ, where U and V denote co-
products in Ab and Wlω, respectively.
A contra variant functor k: Wlω —> Ab is a cohomology functor provided
that it satisfies the duals of (i) and (ii).

DEFINITION 1.1. We say that a homology functor is special pro-
vided that for every pair (X, A) of spaces in

ζ: lim h(Xn U A) > h(X)
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is a monomorphism, where Xn is the ^-skeleton of X and ζ is induced
by the inclusions /n: X

n \J A —> X. For example, h is special if it is
representable in the sense of Whitehead [7]. We call a cohomology
functor k: W*° —> Ab special if it satisfies the dual condition-that is,
the natural map

p: k{X) > lim k(Xn U A)
n

is epic.
For the remainder of this section, let h be a fixed but arbitrary

special homology functor on W*ω.

LEMMA 1.2. Let I be an ίnjective Abelian group. Then there is
a based CW complex B(I) and a natural equivalence

(1.3) fa [-,£(/)] > Horn (h(-), I)

of cohomology functors on Ύ/^ί*, where [ —, — ] denotes homotopy classes
of maps.

Proof. Since H o m ( — , / ) is an exact functor, Horn (/&( — ),/) is a
special cohomology functor on W~*. Hence, by the Representability
Theorem of E. H. Brown [2], the conclusion follows.

LEMMA 1.4. B is a functor on injective Abelian groups.

Proof. Let I and J be injective and let ψ:I—>J. Let B(γ):
B{I) —> B(J) be the unique (up to homotopy) map which makes the
diagram below commutative.

T>1 >Hom(ft(-),/)

[-, B(J)] — ~ J — > Horn (fe(-), J)

where the vertical arrows are induced by B(-f) and ψ, respectively.
(The existence and uniqueness of a map B(γ) inducing the natural
transformation ήjιψ^z follows from the Yoneda Lemma of category
theory.)

For brevity, we shall write ψ instead of B(ψ). Let Γ: 0 >

G > I —̂—> J > 0 be a short exact sequence in which I and J are
injective.

DEFINITION 1.6. We define B(Γ) to be the mapping kernel of ψ,
so B{Γ) fits into the following pull-back square
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B(Γ) > EB(J)

(1.7) j A

- > B(J)

where EB{J) is the (contractible) space of paths in B(J) starting at
the base point, p(ω) = ω(l), and the fibre of the fibration p is ΩB(J).
Note that B(I) and B(J) are homotopy associative and homotopy com-
mutative iϊ-spaees, and Ίjr is an iϊ-map, so that B(Γ) is also a homotopy
associative and commutative iϊ-space.

By Eckmann-Hilton duality, the map ψ fits into a co-Puppe sequ-
ence P(Γ):

-> ΩB(Γ) -U ΩB(I) - ^ ΩB(J)

> B(Γ) -2-> B(I) — B(J) .

LEMMA 1.9. B and P are quasi-functors on injective resolutions
Γ and morphisms of short exact sequences.

Proof. Let Γ: 0 > G -^-> / ~^-> J > 0 and ΓΊ 0 > Gf -^->

Γ -^-> J ' > 0 be injective resolutions, and let /i be a morphism
from Γ to Γ

μ=(e,f,g): e\ f\

0 > G' -^-> Γ -^-> J' > 0 .

Now we may choose a map m: B(Γ) —> B(Γr) so that the diagram of
homotopy classes of maps

(1.10)

is commutative. Thus, m induces a morphism m from P(Γ) to P{Γ').
However, the homotopy class of m is not uniquely determined. We
now define B{μ) to be the set of all such homotopy classes m and
P(μ) to be the set of all corresponding morphisms m from P(Γ) to
P{Γf). B and P are quasi-functors because the composite of commu-
tative diagrams is a commutative diagram.

DEFINITION 1.11. We define for any injective resolution Γ the

QB(I)

K
• flβ(/) •

1 Λ

i ff
• ΩB(J') >

B(Γ)

m

B(Γ')

> ±j\±)

I '
—- £(/') -

I 5
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cohomology functor k(—;Γ) = [ —, B(Γ)]. By the preceding lemma,
k(—;Γ) is a quasi-functor of Γ.

2. The sequence* Now we are ready to state and prove our
main result.

THEOREM 2.1. Let h be any special homology functor, let Xe
ψ Φ

I W"* I, and let Γ: 0 > G > I > J > 0 be an injective resolution.

Then there is a short exact sequence

σ(X; Γ): 0 > Ext (h(ΣX)G) > k(X; Γ) > Horn (h(X), G) > 0

in which the arrows are natural in X and strongly quasi-natural in Γ.

REMARK 2.2. A word is necessary here to describe the second
and fourth terms of σ(X; Γ) as functors of Γ. If Γ is an injective
resolution of G, Γ' is an injective resolution of G', and μ = (e,f, g):
Γ—>Γ', then the corresponding morphisms from Ext(h(ΣX),G) to
Ext(h(ΣX), G') and from Hom(Λ(X), G) to Horn (MX), G') are, respec-
tively, Ext (1, e) and Horn (1, e).

Proof of 2.1. Applying the functor [X, —] to 1.8 and using the
adjointness of Ω and Σ, we obtain the exact sequence

[ΣX, B(I)]-^^ [ΣX, B(J)] — [X, B(Γ)]

> [X, B(I)] -^£U[X, B(J)]

and so, by homological algebra, a short exact sequence

(2.4) 0 > cok (ψ$(ΣX)) > k(X; Γ) > ker

which is natural in X and strongly quasi-natural in Γ.
But by 1.5 there are isomorphisms

s: cok {UΣX)) = cok {ψ

t: ker (fa(X)) = ker (f,

and these isomorphisms are natural in X and Γ. (Note that the above
groups are functor of Γ.) Moreover, there are also isomorphisms,
well-known from homological algebra,

u: cok (ir^h(ΣX))) = Ext (h(ΣX), G) ,
( 2 # 6 ) v: ker (^#(Λ(X))) = Horn (h(X), G) ,

which are natural in X and Γ'. There isomorphisms simply express
the independence of Horn and Ext of the resolution of G. Now the
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composite isomorphisms us and vt transform 2.4 into σ(X; G) and
preserve naturality in X and strong quasi-naturality in Γ.

The following lemma is well-known.

LEMMA 2.7. Let e: G —* G' be any homomorphism and let Γ and
Γf be ίnjectίve resolutions of G and G', respectively. Then e extends
(non-uniquely) to a morphism (e,f, g): Γ —> Γf of resolutions.

Now we can state a corollary to Theorem 2.1.

COROLLARY 2.8. Let Γ and Γ' be two injective resolutions of the
same group G, let h be a special homology theory 1 and let Xe\ CW%\.
Then there is a (non-unique) isomorphism σ(X; Γ) ~ σ(X; Γf).

Proof. By 2.7, 1: G-+G extends to (1,/, g): Γ-+Γ which yields
a morphism M: σ(X; Γ) —> σ(X; Γr). Neither process is unique. But
M induces the identity on the second and fourth terms, and therefore
M must be an isomorphism by the 5-lemma.

Select for every Abelian group G an injective resolution Γ(G) and
define σ(X; G) = σ(X; Γ{G)). By 2.7, Γ(G) is a quasi-functor of G and
so σ(X; G) is strongly quasi-natural in G. By 2.8, σ(X; G) is inde-
pendent, up to noncanonical isomorphism, of the resolution chosen.
We shall fix, for definiteness, a particular Γ(G) in 2.12.

Now we need a lemma.

LEMMA 2.9. Let G — Gλ@G2 and let /,•: Gά—*G denote the canoni-
cal injection (j = 1, 2). Let Xe | Wlω\ be fixed but arbitrary. Choose
TYij e k(X; /3) so that by strong quasi-naturality we have the commuta-
tive diagram

0 .

(2.10)

Then

is an

0 >Ext(h(ΣX),G})-
1

0 >Ext (h(ΣX),G) •

W>1 Θ ^2-' k(X\

isomorphism.

> k(X; Gj) —

> k(X; G) -

GO 0 k(X; G2)

—> Horn {h{X),

Horn (1, /j

—> Horn (h(X),

> k(X; G)

Gj)

\

G)

Proof. Ext and Horn are additive and, therefore, by the 5-lemma,
wi>i 0 ^2 is an isomorphism.

This lemma permits us to apply an elegant theorem of Hilton [3]
to the sequence σ(X; G).
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THEOREM 2.11. (Universal Coefficient Theorem). Let h be any
special homology theory, let Xe\ Ύ/^i°\, and let G be an Abelίan group.

(a) Then there is a representable cohomology functor k(X; G) which
is a quasi-functor of G and a short exact sequence

σ(X; G): 0 > Ext (h(ΣX), G) — k(X; G) — Horn (h(X), G) > 0

in ivhich τXG and ηXG are natural in X and strongly quasi-natural
in G.

(b) Moreover, if for some fixed Xe \ Ύ/r*\ we have
( i ) k(X; G) is a functor of G and
(ii) Horn (h(X, G) is a direct sum of cyclic groups, then σ(X G)

splits for that X and every G.

Proof. Part (a) is simply 2.1 with Γ = Γ{G). Part (b) follows
from [3] since Horn is a left-exact functor and, by (i) and 2.9, k(X; G)
is an additive functor of G so that σ(X; G) is pure. Condition (ii)
yields splitting.

2.12 Construction of Γ(G)

The following construction of Γ(G) was related to me by Peter
Hilton. Let G be any Abelian group. Then G has a canonical free

resolution 0 > RG -^-> FG -£-> G > 0, where FG = free Abelian
group on underlying set of G and RG — kernel (FG—+G). Let QG —
UgeoQg where Qg = Q, the rationals, for every geG, and define π:
FG —> QG by π(g) = 1 e Qg where g is the generator of FG corres-
ponding to g. Then setting πX — λ: RG—+QG, we have the following
commutative exact diagram

0 0 0

rv IRC1 TΓC* C* 0

(2.13) j l ^ I* Wo
0 > RG —U QG • ΓG * 0

I
J'G

I
0

where I'G = cok (λ), φ'G is induced by (1, π), and J'G = cok (φ'G) with
ψ'G: I'G—> J'G the canonical map. Put Γ(G) = right-hand column in
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2.13. Then Γ(G) is an injective resolution of G since injective Abelian
groups are closed under coproducts and quotients. Moreover, Γ(G) is
even functorial in G.

REMARK 2.14. The epimorphism ηXG of 2.11(a) can be interpreted
as providing a weak adjunction from h to B( —), where B{G) is the
space which represents k(—;G). Thus, B( — ):Ab—> Ύ/^t is a weak
right adjoint (in the sense of [5]) to h: W*ω—> Ab, just as K(—, n):
Ab —• 5^;ω, which associates to a group G the Eilenberg-MacLane
space K(G, n), is a weak right adjoint to Hn: W~*'—• Aδ, the ordinary
homology functor.

REMARK 2.15. The results of this section hold for theories as
well as functors. Moreover, they can also be modified to hold for
other categories than 5^Λ Finally, there is nothing special about
using Ab as a target; we could just as well do everything for R-
module-valued homology and cohomology functors where R is a (com-
mutative) ring of cohomological dimension 1.

3* The universal coefficient theorem for stable cohomotopy*
Let G be a finitely generated Abelian group. Then there is a standard
projective resolution p(G) of G

(3.1) 0 > RG — FG-^G > 0

where FG is the free Abelian group on a set SG of generators of
G, τG is the canonical projection, RG is the kernel of τG, and σG is
the canonical injection of RG into FG. As in Lemma 2.7 p{G) is a
quasi-functor of G. Define

(3.2) FnG = V S?t), S?t) = S«, t e SG, n ^ 0 ,
teSG

and, similarly, define

(3.3) RnG = V S(

w

7), Sfg) = S M , % ^ 0 , g e Γ = set of generators of RG .
qeΓ

LEMMA 3.4. Let n^>l. Then there exists a map σG: FnG—>RnG
(unique up to homotopy) which induces σG upon applying Hn(—;Z).

Proof. If φ: Z -+ Z, then φ is just multiplication by some integer
m (m — 0 is not excluded), and we write φ = m. Then any map /
of degree m from Sn to Sn induces φ in nth cohomology, and we can
write φn ~ m.

Thus, by stable additivity, [FnG, RnG] is in one-to-one correspond-
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ence with integer matrices (mtq), and the set Horn (RG, FG) of homo-
morphisms is in one-to-one correspondence with integer matrices (mqt).
Moreover, (mqt) is induced by its transpose (mtq) so we let

(3.5) σl = (mtq) ,

where (mqt) is the matrix corresponding to σG.

Since Σ FnG = Fn+1G, Σ RnG = £W + 1G, and Σ °l = * S+S we have
the following Pupps sequence pG for ^ , w ^ 1

(3.6) FnG — RnG > L(G, n + 1) > F%+1G — £% + 1G

where L(G, w + 1) = (reduced) mapping cone of σn

G. Thus, L(G, n + 1)
is just the co-Moore space of type (G, π + 1); i.e. Hq(L(G, n + 1); Z) = 0
9 =£ n + 1, Hn+ι(L{G, n + 1); Z) = G, and T Γ ^ G , w + l)) = 0 b y Van
Kampen when n ^ 2. Since jθ(G) is a quasi-functor of G, so is ^(G)
and, hence, L(G, n + 1).

Let Ύ/^^Γ denote the category of based connected finite-dimen-
sional CW complexes. If Xe \ W~\ and Ye \ Ύ/^*\, then we define

{X, Y} = \im[ΣkX,ΣkY] ,
~k

and we recall that {X, —} is a special homology functor on 5 ^ ω .
Therefore, applying {X, —} to 3.6, we obtain an exact sequence

{X, FnG) - ^ {X, RnG) —^+{X, L(G, n + 1)}

> {X, FΛ+1G} — {X, Rn+ιG} .

But clearly {X, FnG) ^ Horn (JPG, 7ΓJ(X)) by an isomorphism which is
natural in X and also natural in G(7r£(X) = {X, Sn}). Therefore, as
in § 2 we obtain the following theorem.

THEOREM 3.8. Let G be a finitely generated Abelian group. Let
n^> 2 and let Xe\ Wl°°|. Then there is a short exact sequence

0 > Ext (G, πrι{X)) > {X, L(G, n)}

> Horn (G, πn

s(X)) > 0

which is natural in X and strongly quasi-natural in G. The sequence
splits if, for some fixed X, {X, L(G, n)} is a functor of G.

As a corollary of this theorem, we have the following result of
Hilton-Olum-see [4].

COROLLARY 3.10. Let Gι and G2 be finitely generated Abelian
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groups and n ^ 4. Then there is a short exact sequence

0 > T(Gy ® G2 ® Z2 > [L(G2, n), L{GU n)]
( ' ' »Horn (Gu G2) > 0

which is strongly quasi-natural in Gx and G2, where T(G) = torsion
subgroup of G and G* = Horn (G, Q/Z)(=G if G is finite).

Proof. Applying 3.9 to G = G1 and X = L(G2, n), we get

0 — ^ Ext (G1( π Γ W G , Λ)) > {L(G2, n), L(GU %)}
( ' ' > ΈLom(Gu πl{L{G2, n)) > 0 .

But for n Ξ> 4

π

{L(G2, n), L{GU n)} = [L(G2, n), L(GU n)] ,

and

πn

s(L{G2i n)) — G2 , so we have for n >̂ 4

0 > Ext (Gl9 G2 (8) Z2) > [L(G2, n), L{GU n)]
1 ' } > Horn (Gly G2) > 0 .

Now we are done since Ext (G19 —) = TyGJ* (g) — as functors on the
category of finitely generated Abelian groups.

4* Some examples and a conjecture* The general problem of
computing k*(X; G), for a given homology theory h* and group G,
is very difficult, even when the group is injective. For example, if
hq = πs

q = {S9, -} and G = Q, then

(4.1) ^(X; Q) ~ H«(X; Q)

by an easy argument based on Serre's result [6] that πf (Sr) is finite
for r Φ q. With h* as above and G — Q/Z it is easy to establish

(4.2) WβίxlΓ
(Q/Z, r = q.

Thus computing &*(X; Q/Z) in this case amounts to knowing the stable
homotopy groups of spheres!

If the homology theory h* is represented by a spectrum B, then
the spectrum B(G) which represents k*(— G) can be thought of as
obtained from B by introducing G coefficients. The spectrum B also
represents a cohomology theory, and we have the following

CONJECTURE 4.3. If π*B is a ring of cohomological dimension 1,
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then there is a homotopy equivalence of spectra B ~ B(Z).
This conjecture simply says that our method and Adams' [1]

coincide over rings of cohomological dimension 1-where his spectral
sequence collapses to a Universal Coefficient Sequence.

REMARK 4.4. It is not true in general that k*( — ;Z) is the co-
homology theory associated to the spectrum B which represents h*.
For example, if, as above, B — sphere spectrum and h* = stable
homotopy is the homology theory represented by 5, then

(4.5) fc»(S«; Z) = 0 for all q > n .

But the cohomology functor associated to the sphere spectrum is stable
cohomotopy, and certainly

(4.6) πn

s(Sq) ΦO for all q > n .

In particular, kn(Sn+i; Z) = 0 & Z2 = πn,(Sn+1).
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