THE FUNCTIONS OF BOUNDED INDEX
 AS A SUBSPACE OF A SPACE OF ENTIRE FUNCTIONS

Keith A. Ekblaw

Abstract

Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ be entire functions. Define $d(f, g)=\operatorname{Sup}\left\{\left|a_{0}-b_{0}\right|,\left(\left|a_{n}-b_{n}\right|\right)^{1 / n} n=1,2, \cdots\right\}$. It is the purpose of this note to show that, in the topology generated by d, the entire functions of bounded index, B, are of the first category.

Further, for Γ, the corresponding space of all entire functions, and $B_{n}=\{f \in \mathcal{B} \mid$ the index of f is $\leqq n\}$ is shown that $B-B_{n}$ is dense in Γ for any nonnegative integer n. It is also shown that $\Gamma-B$ is dense in Γ. (For definition and main results see [2], [3].)

Lemma 1. For any $f \in \Gamma, N \geqq 0$, and $\varepsilon>0$ there exists a $\delta>0$ such that if $g \in \Gamma$ and $d(f, g)<\delta$ then $d\left(f^{(k)}, g^{(k)}\right)<\varepsilon$ for $k=0,1, \cdots, N$.

Proof. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in \Gamma, N \geqq 0$, and $\varepsilon>0$ be given. Let

$$
T>\operatorname{Sup}\left\{\left.\left(\frac{(n+k)!}{n!}\right)^{1 / n} \right\rvert\, n=1,2, \cdots \text { and } k=0,1, \cdots, N \cdot\right\} .
$$

It is straightforward to verify that if $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n} \in \Gamma$ and $d(f, g)<\frac{\varepsilon}{T+\varepsilon}$ then

$$
\begin{aligned}
& d\left(f^{(k)}, g^{(k)}\right) \\
& \quad=\operatorname{Sup}\left\{k!\left|a_{k}-b_{k}\right|,\left(\frac{n+k)!}{n!}\left|a_{n+k}-b_{n+k}\right|\right)^{1 / n} n=1,2, \cdots\right\} \\
& \quad<7 \cdot \frac{\varepsilon}{7+\varepsilon}<\varepsilon \text { for } k=0,1, \cdots, N .
\end{aligned}
$$

Remark. If $f \in \Gamma-B$ then f is said to be of unbounded index and the index of $f=\infty$.

Lemma 2. If n is a nonnegative integer and f is of index $>n$ (bounded or unbounded) then there exists $a \delta>0$ such that if $g \in \Gamma$ and $d(f, g)<\delta$ then $g \in \Gamma-B_{n}$.

Proof. Let n be given such that $n \geqq 0$. Let $f \in \Gamma$ be given such that the index of f (bounded or unbounded) is $>n$. Let k be
a positive integer $>n$ and z_{1} a complex number such that f is of index k at the point z_{1}. Let $\delta_{1}>0$ be such that for

$$
j<k, \frac{\left|f^{(k)}\left(z_{1}\right)\right|}{k!}-\delta_{1}>\frac{\left|f^{(j)}\left(z_{1}\right)\right|}{j!}
$$

Let $R \geqq\left|z_{1}\right|$. It is known that for every $j \leqq k$ there exists an ε_{j} such that if $g_{j} \in \Gamma$ and $d\left(f^{(j)}, g_{j}\right)<\varepsilon_{j}$ then $\left|f^{(j)}(z)-g_{j}(z)\right|<\delta_{1} / 2$ for $|z| \leqq R$, and in particular at $z_{1}[1 ; \mathrm{p} .220]$. In Lemma 1 we let $N=k$ and $\varepsilon=\operatorname{Min}\left\{\varepsilon_{0}, \varepsilon_{1}, \cdots, \varepsilon_{k}\right\}$. Hence there exists a δ such that for $g \in \Gamma$ and $d(f, g)<\delta$ we have

$$
\frac{\left|g^{(k)}\left(z_{1}\right)\right|}{k!}>\frac{\left|g^{(j)}\left(z_{1}\right)\right|}{j!} \text { for } j=0,1, \cdots, k-1
$$

Thus g is of index $\geqq k>n$.
Lemma 3. If $p(z)$ is a polynomial of degree n then $h(z)=e^{z}+p(z)$ is of index $\leqq n+1$.

Proof. Let $k>n+1$. Thus,

$$
\frac{\left|h^{(k)}(z)\right|}{k!}=\frac{\left|e^{z}\right|}{k!}<\frac{\left|e^{z}\right|}{(n+1)!}=\frac{\left|h^{(n+1)}(z)\right|}{(n+1)!}
$$

and hence h is of index $\leqq n+1$.
Theorem 1. For any n, B_{n} is nowhere dense in B and thus $B=\bigcup_{k=0}^{\infty} B_{k}$ is of the first category.

Proof. Let n be given. Lemma 2 shows that B_{n} is closed. Thus let $f \in B_{n}$ and $\varepsilon>0$. Let

$$
e^{z^{2}}=\sum_{k=0}^{\infty} b_{k} z^{k}, f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, \text { and } f_{j}(z)=\sum_{k=0}^{j} a_{k} z^{k}+\sum_{k=j+1}^{\infty} b_{k} z^{k}
$$

Since the order of f_{j} is two, for every j, we have that $f_{j} \in \Gamma-B$ [3]. Let i be such that $d\left(f, f_{i}\right)<\varepsilon / 2$ and let $f_{i}=\sum_{k=0}^{\infty} c_{k} z^{k}$. For every $j>0$ let $g_{j}(z)=\sum_{k=0}^{j} c_{k} z^{k}+\sum_{k=j+1}^{\infty} z^{k} / k!$. By the previous lemma the index of g_{j} is $\leqq j+1$. Thus, for every $j, g_{j} \in B$. In Lemma 2 we let $\delta<\varepsilon / 2$ be such that if $g \in \Gamma$ and $d\left(f_{i}, g\right)<\delta$ then the index of g is $\geqq n+1$. Let m be such that $d\left(f_{i}, g_{m}\right)<\delta$. Thus $d\left(f, g_{m}\right)<\varepsilon$ and $g_{m} \in B-B_{n}$. Hence, for every integer n, B_{n} is nowhere dense in B and $B=\bigcup_{k=0}^{\infty} B_{k}$ is of the first category.

Theorem 2. The following are dense in Γ :
(a) $\Gamma-B$; and
(b) $B-B_{n}$, for any integer n.

Proof. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k} \in \Gamma$.
(a) Let

$$
e^{z^{2}}=\sum_{k=0}^{\infty} b_{k} z^{k}, \text { and } f_{j}=\sum_{k=0}^{j} a_{k} z^{k}+\sum_{k=j+1}^{\infty} b_{k} z^{k} .
$$

As in the proof of Theorem $1, f_{j} \in \Gamma-B$ for every j and $\lim _{j \rightarrow \infty} d\left(f, f_{j}\right)=0$.
(b) Now let

$$
f_{j}(z)=\sum_{k=0}^{j} a_{k} z^{k}+\sum_{k=j+1}^{\infty} \frac{z^{k}}{k!}
$$

By Lemma 3, f_{j} is of bounded index for every j. For each j, if the index of f_{j} is $>n$ let $g_{j}=f_{j}$. If the index of f_{j} is $\leqq n$ then by Theorem 1 there exists a function $g \in B-B_{n}$ such that $d\left(f_{j}, g\right)<1 / j$. Let $g_{j}=g$. Hence the $\lim _{j \rightarrow \infty} d\left(f, g_{j}\right)=0$ and for every $j, g_{j} \in B-B_{n}$.

In conclusion it should be noted that the polynomials could be excluded from the class of entire functions, Γ, and the proofs of the preceeding Lemmas and Theorems would remain valid.

References

1. C. Goffman and G. Pedrick, First Course in Functional Analysis, Prentice-Hall, Inc., 1965.
2. F. Gross, Entire functions of bounded index, Proc. Amer. Math. Soc., 18 (1967), 974-980.
3. S. M. Shah, Entire functions of bounded index, Proc. Amer. Math. Soc., 19 (1968), 1017-1022.

Received October 19, 1970 and revised form January 11, 1971. The results in this note form a part of the authors doctoral dissertation at the University of Kentucky prepared under the supervision of Professor S. M. Shah.

[^0]
[^0]: Boise State College

