THE FUNCTIONS OF BOUNDED INDEX AS A SUBSPACE OF A SPACE OF ENTIRE FUNCTIONS

KEITH A. EKBLAW

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ be entire functions. Define $d(f, g) = \sup \{|a_0 - b_0|, (|a_n - b_n|)^{1/n} n = 1, 2, \cdots\}$. It is the purpose of this note to show that, in the topology generated by d, the entire functions of bounded index, B, are of the first category.

Further, for Γ , the corresponding space of all entire functions, and $B_n = \{f \in B | \text{the index of } f \text{ is } \leq n\}$ is shown that $B - B_n$ is dense in Γ for any nonnegative integer n. It is also shown that $\Gamma - B$ is dense in Γ . (For definition and main results see [2], [3].)

LEMMA 1. For any $f \in \Gamma$, $N \ge 0$, and $\varepsilon > 0$ there exists a $\delta > 0$ such that if $g \in \Gamma$ and $d(f, g) < \delta$ then $d(f^{(k)}, g^{(k)}) < \varepsilon$ for $k = 0, 1, \dots, N$.

Proof. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \Gamma$, $N \ge 0$, and $\varepsilon > 0$ be given. Let

It is straightforward to verify that if $g(z) = \sum_{n=0}^{\infty} b_n z^n \in \Gamma$ and $d(f, g) < \frac{\varepsilon}{T + \varepsilon}$ then

$$egin{aligned} &d(f^{\scriptscriptstyle (k)},\,g^{\scriptscriptstyle (k)})\ &= \mathrm{Sup}\Big\{k!\,|\,a_k-b_k\,|\,, \Big(rac{n+k)!}{n!}\,|\,a_{n+k}-b_{n+k}\,|\,\Big)^{\scriptscriptstyle 1/n}\,n=1,\,2,\,\cdots\Big\}\ &< I\cdotrac{arepsilon}{T+arepsilon}$$

REMARK. If $f \in \Gamma - B$ then f is said to be of unbounded index and the index of $f = \infty$.

LEMMA 2. If n is a nonnegative integer and f is of index > n (bounded or unbounded) then there exists a $\delta > 0$ such that if $g \in \Gamma$ and $d(f, g) < \delta$ then $g \in \Gamma - B_n$.

Proof. Let n be given such that $n \ge 0$. Let $f \in \Gamma$ be given such that the index of f (bounded or unbounded) is > n. Let k be

a positive integer > n and z_1 a complex number such that f is of index k at the point z_1 . Let $\delta_1 > 0$ be such that for

$$j < k, rac{|f^{\scriptscriptstyle (k)}(\pmb{z}_1)|}{k!} - \delta_{\scriptscriptstyle 1} > rac{|f^{\scriptscriptstyle (j)}(\pmb{z}_1)|}{j!} \; .$$

Let $R \ge |z_1|$. It is known that for every $j \le k$ there exists an ε_j such that if $g_j \in \Gamma$ and $d(f^{(j)}, g_j) < \varepsilon_j$ then $|f^{(j)}(z) - g_j(z)| < \delta_1/2$ for $|z| \le R$, and in particular at z_1 [1; p. 220]. In Lemma 1 we let N = k and $\varepsilon = \text{Min } \{\varepsilon_0, \varepsilon_1, \dots, \varepsilon_k\}$. Hence there exists a δ such that for $g \in \Gamma$ and $d(f, g) < \delta$ we have

$$rac{|\,g^{(k)}(\pmb{z}_1)\,|}{k!} > rac{|\,g^{(j)}(\pmb{z}_1)\,|}{j!} ext{ for } j=0,\,1,\,\cdots,\,k-1 \;.$$

Thus g is of index $\geq k > n$.

LEMMA 3. If p(z) is a polynomial of degree n then $h(z) = e^{z} + p(z)$ is of index $\leq n + 1$.

Proof. Let k > n + 1. Thus,

$$rac{|h^{(k)}(z)|}{k!} = rac{|e^z|}{k!} < rac{|e^z|}{(n+1)!} = rac{|h^{(n+1)}(z)|}{(n+1)!}$$

and hence h is of index $\leq n + 1$.

THEOREM 1. For any n, B_n is nowhere dense in B and thus $B = \bigcup_{k=0}^{\infty} B_k$ is of the first category.

Proof. Let n be given. Lemma 2 shows that B_n is closed. Thus let $f \in B_n$ and $\varepsilon > 0$. Let

$$e^{z^2} = \sum_{k=0}^{\infty} b_k z^k$$
, $f(z) = \sum_{k=0}^{\infty} a_k z^k$, and $f_j(z) = \sum_{k=0}^{j} a_k z^k + \sum_{k=j+1}^{\infty} b_k z^k$.

Since the order of f_j is two, for every j, we have that $f_j \in \Gamma - B$ [3]. Let i be such that $d(f, f_i) < \varepsilon/2$ and let $f_i = \sum_{k=0}^{\infty} c_k z^k$. For every j > 0 let $g_j(z) = \sum_{k=0}^{j} c_k z^k + \sum_{k=j+1}^{\infty} z^k/k!$. By the previous lemma the index of g_j is $\leq j + 1$. Thus, for every $j, g_j \in B$. In Lemma 2 we let $\delta < \varepsilon/2$ be such that if $g \in \Gamma$ and $d(f_i, g) < \delta$ then the index of g is $\geq n + 1$. Let m be such that $d(f_i, g_m) < \delta$. Thus $d(f, g_m) < \varepsilon$ and $g_m \in B - B_n$. Hence, for every integer n, B_n is nowhere dense in B and $B = \bigcup_{k=0}^{\infty} B_k$ is of the first category.

THEOREM 2. The following are dense in Γ : (a) $\Gamma - B$; and (b) $B - B_n$, for any integer n. Proof. Let $f(z) = \sum_{k=0}^{\infty} a_k z^k \in \Gamma$. (a) Let

$$e^{z^2} = \sum_{k=0}^\infty b_k z^k$$
, and $f_j = \sum_{k=0}^j a_k z^k + \sum_{k=j+1}^\infty b_k z^k$.

As in the proof of Theorem 1, $f_j \in \Gamma - B$ for every j and $\lim_{j\to\infty} d(f, f_j) = 0$. (b) Now let

$${f}_{j}(z) = \sum_{k=0}^{j} a_{k} z^{k} + \sum_{k=j+1}^{\infty} \frac{z^{k}}{k!}$$
 .

By Lemma 3, f_j is of bounded index for every j. For each j, if the index of f_j is > n let $g_j = f_j$. If the index of f_j is $\leq n$ then by Theorem 1 there exists a function $g \in B - B_n$ such that $d(f_j, g) < 1/j$. Let $g_j = g$. Hence the $\lim_{j\to\infty} d(f, g_j) = 0$ and for every $j, g_j \in B - B_n$.

In conclusion it should be noted that the polynomials could be excluded from the class of entire functions, Γ , and the proofs of the preceeding Lemmas and Theorems would remain valid.

References

1. C. Goffman and G. Pedrick, First Course in Functional Analysis, Prentice-Hall, Inc., 1965.

2. F. Gross, Entire functions of bounded index, Proc. Amer. Math. Soc., 18 (1967), 974-980.

3. S. M. Shah, Entire functions of bounded index, Proc. Amer. Math. Soc., 19 (1968), 1017-1022.

Received October 19, 1970 and revised form January 11, 1971. The results in this note form a part of the authors doctoral dissertation at the University of Kentucky prepared under the supervision of Professor S. M. Shah.

BOISE STATE COLLEGE