$$
\begin{gathered}
\text { THE DIOPHANTINE EQUATION } \\
Y(Y+1)(Y+2)(Y+3)=2 X(X+1)(X+2)(X+3)
\end{gathered}
$$

J. H. E. Cohn

It is shown that the only solution in positive integers of the equation of the title is $X=4, Y=5$.

Substituting $y=2 Y+3, x=2 X+3$ gives with a little manipulation

$$
\left\{\frac{y^{2}-5}{4}\right\}^{2}-2\left\{\frac{x^{2}-5}{4}\right\}^{2}=-1
$$

and since the fundamental solution of $v^{2}-2 u^{2}=-1$ is $\alpha=1+\sqrt{2}$, we find that if $\beta=1-\sqrt{2}$ and

$$
\begin{equation*}
u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} ; \quad v_{n}=\frac{\alpha^{n}+\beta^{n}}{2} \tag{1}
\end{equation*}
$$

we must have simultaneously

$$
\begin{equation*}
y^{2}=5+4 v_{N}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{2}=5+4 u_{N}, \tag{3}
\end{equation*}
$$

where N is odd and $N \geqq 3$.
We find easily from (1) since $\alpha \beta=-1$ and $\alpha+\beta=2$, that

$$
\begin{equation*}
u_{-n}=(-1)^{n-1} u_{n} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
v_{-n}=(-1)^{n} v_{n} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
u_{m+n}=u_{m} v_{n}+u_{n} v_{m} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
v_{m+n}=v_{m} v_{n}+2 u_{m} u_{n} \tag{7}
\end{equation*}
$$

Throughout k denotes an even integer, and then we find using (4)-(7) that

$$
\begin{equation*}
v_{2 k}=2 v_{k}^{2}-1=4 u_{k}^{2}+1 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
u_{2 k}=2 u_{k} v_{k} \tag{9}
\end{equation*}
$$

$$
\begin{align*}
& v_{3 k}=v_{k}\left(8 u_{k}^{2}+1\right)=v_{k}\left(2 v_{2 k}-1\right) \tag{10}\\
& u_{3 k}=u_{k}\left(8 u_{k}^{2}+3\right) \tag{11}
\end{align*}
$$

We then have, using (6)-(9) that

$$
\begin{equation*}
u_{n+2 k} \equiv-u_{n} \quad\left(\bmod v_{k}\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{n+2 k} \equiv-v_{n} \quad\left(\bmod v_{k}\right) \tag{13}
\end{equation*}
$$

We have also the following table of values

n	u_{n}	v_{n}
0	0	1
1	1	1
2	2	3
3	5	7
4	12	17
5	29	41
6	70	99
7	169	239
8	408	577
9	985	1393
10	2378	3363
11	5741	8119
12	13860	19601

The proof is now accomplished in eight stages:-
(a). (2) is impossible if $N \equiv 3(\bmod 6)$.
For,

$$
\begin{aligned}
v_{n+6} & =v_{n} v_{6}+2 u_{n} u_{6} \quad \text { by }(7) \\
& =99 v_{n}+140 u_{n} \\
& \equiv-v_{n} \quad(\bmod 5),
\end{aligned}
$$

and so if $N \equiv 3(\bmod 6), v_{N} \equiv \pm v_{3} \equiv \pm 2(\bmod 5)$, whence $y^{2}=5+4 v_{N}$ is impossible modulo 5.
(b). (2) is impossible if $N \equiv-3$ or $-5(\bmod 16)$.

For, using (13) we find that for such N,

$$
\begin{array}{rllll}
v_{N} & \equiv v_{-3} & \text { or } & v_{-5} & \\
& \left.\equiv \bmod v_{4}\right) \\
& \equiv-v_{3} & \text { or } & -v_{5} & \\
& \equiv-7 & & & \\
& \equiv \bmod 17), \text { using }(5)
\end{array}
$$

But then $5+4 v_{N} \equiv-6(\bmod 17)$, and since the Jacobi-Legendre symbol $(-6 \mid 17)=-1$, (2) is impossible.
(c). (3) is impossible if $N \equiv \pm 7(\bmod 16)$.

For, using, (12) we find that in this case

$$
\begin{aligned}
u_{n} & \equiv \pm u_{ \pm 7} & & \left(\bmod v_{8}\right) \\
& \equiv \pm 169 & & (\bmod 577) .
\end{aligned}
$$

THE DIOPHANTINE EQUATION $Y(Y+1)(Y+2)(Y+3)=2 X(X+1)(X+2)(X+3) \quad 333$
Thus we find that
$5+4 u_{N} \equiv 681$ or $-671(\bmod 577)$, and since

$$
(681 \mid 577)=(-671 \mid 577)=-1
$$

(3) is impossible.
(d). (3) is impossible if $N \equiv \pm 7(\bmod 24)$.

For then

$$
\begin{aligned}
u_{N} & \equiv u_{ \pm 7} & & \left(\bmod v_{6}\right) \\
& \equiv 169 & & (\bmod 99),
\end{aligned}
$$

whence $u_{N} \equiv-2(\bmod 9)$, and then $5+4 u_{N} \equiv-3(\bmod 9)$, and so (3) is impossible.
(e). (2) and (3) together are impossible if $N \equiv 3(\bmod 16)$.

If $N=3$, then $5+4 v_{N}=33 \neq y^{2}$. If $N \neq 3$, then we may write

$$
N-3=2 l k,
$$

where l is odd and $k=2^{r}$ with $r \geqq 3$. Then by using (13) l times we obtain

$$
\begin{aligned}
5+4 u_{N} & =5+4 u_{3+2 l l} & & \\
& \equiv 5+(-1)^{l} 4 u_{3} & & \left(\bmod v_{k}\right) \\
& \equiv-15 & & \left(\bmod v_{k}\right), \text { since } l \text { is odd. }
\end{aligned}
$$

But from (8) we find easily by induction upon r, that if $k=2^{r}$ with $r \geqq 3$, that $v_{k} \equiv 1(\bmod 4), v_{k} \equiv 1(\bmod 3)$ and $v_{k} \equiv 2(\bmod 5)$, whence $\left(-15 \mid v_{k}\right)=-1$ and (3) is impossible.

Combining the results of (a)-(e) we find that we can only have

$$
\begin{equation*}
N \equiv 1,5,-1,37 \quad(\bmod 48) \tag{14}
\end{equation*}
$$

and we deal with each of these in turn.
(f). (3) is impossible if $N \equiv 37(\bmod 48)$.

For then $u_{N} \equiv u_{-11} \equiv 5741\left(\bmod v_{12}\right)$ and then $5+4 u_{N} \equiv 22969$ $(\bmod 19601)$.

But

$$
\begin{aligned}
(22969 \mid 19601) & =(3368 \mid 19601) \\
& =\left(2^{3} \mid 19601\right)(421 \mid 19601) \\
& =(19601 \mid 421) \\
& =(235 \mid 421) \\
& =(421 \mid 5)(421 \mid 47) \\
& =(-2 \mid 47)=-1,
\end{aligned}
$$

and so (3) is impossible.
(g). (3) is impossible if $N \equiv 1(\bmod 48), N \neq 1$ or if $N \equiv-1$ $(\bmod 48)$ and $N \neq-1$.

Since if N is odd, $u_{-N}=u_{N}$ by (4) it suffices to consider $N \equiv 1$ $(\bmod 48), \quad N \neq 1$. Then we may write $N=1+3 k(2 l+1)$, where $k=2^{r}$ and $r \geqq 4$, and so using (12) we find that

$$
\begin{aligned}
u_{N} & =u_{1+3 k+21.3 k} & & \\
& \equiv(-1)^{1} u_{1+3 k} & & \left(\bmod v_{3 k}\right) \\
& \equiv \pm\left(u_{3 k}+v_{3 k}\right) & & \left(\bmod v_{3 k}\right) \text { using }(6) \\
& \equiv \pm u_{3 k} & & \left(\bmod v_{3 k}\right) \\
& \equiv \pm u_{k}\left(8 u_{k}^{2}+3\right) & & \left(\bmod v_{k}\left(8 u_{k}^{2}+1\right)\right)
\end{aligned}
$$

using (10) and (11). Thus

$$
u_{N} \equiv \pm 2 u_{k} \quad\left(\bmod 8 u_{k}^{2}+1\right)
$$

But now, writing $u=u_{k}$, we find

$$
\begin{align*}
\left(5+4 u_{N} \mid 8 u^{2}+1\right) & =\left(5 \pm 8 u \mid 8 u^{2}+1\right) \\
& =\left(8 u \pm 5 \mid 8 u^{2}+1\right) \\
& =\left(8 u^{2}+1 \mid 8 u \pm 5\right) \tag{15}\\
& =(8 \mid 8 u \pm 5)\left(8^{2} u^{2}+8 \mid 8 u \pm 5\right) \\
& =-(33 \mid 8 u \pm 5) \\
& =-(8 u \pm 5 \mid 33)
\end{align*}
$$

But $u=u_{k}$ with $k=2^{r}$ and $r \geqq 4$, and we find that $3 \mid u_{8}$, whence $3 \mid u_{k}$ in view of (9). Also $v_{8} \equiv 5(\bmod 11)$ whence by induction, using (8), $v_{n} \equiv 5(\bmod 11)$ for $n=2^{r}$ and $r \geqq 3$. Thus $u_{2 n} \equiv-u_{n}(\bmod 11)$ in view of (9), and so since $u_{8} \equiv 1(\bmod 11), u \equiv \pm 1(\bmod 11)$. Thus we have $u \equiv \pm 12(\bmod 33)$ whence $8 u \equiv \mp 3(\bmod 33)$. Considering therefore the right hand side of (15), we observe that $8 u \pm 5 \equiv \pm 2$ or $\pm 8(\bmod 33)$ and in any one of the four cases the right hand side of (15) equals -1 , and accordingly (3) is impossible.
(h). (2) and (3) together are impossible if $N \equiv 5(\bmod 48), N \neq 5$.

Suppose if possible that (2), (3) hold with $N \equiv 5(\bmod 48), N \neq 5$. Let $N=5+2 l .3 k$ where $k=2^{r}, r \geqq 3$ and l is odd. Then we have using (12) and (13)

$$
\begin{array}{ll}
x^{2}=5+4 u_{N} \equiv 5-4 u_{5} \equiv-111 & \left(\bmod v_{3 k}\right) \\
y^{2}=5+4 v_{N} \equiv 5-4 v_{5} \equiv-159 & \left(\bmod v_{3 k}\right) \tag{17}
\end{array}
$$

Now we have from (10) $v_{3 k}=v_{k}\left(2 v_{2 k}-1\right)$, and as before $v_{k} \equiv 1(\bmod 12)$ whence also $2 v_{2 k}-1 \equiv 1(\bmod 12)$. Thus $\left(-3 \mid v_{k}\right)=\left(-3 \mid 2 v_{2 k}-1\right)=1$, and so (16) and (17) imply (since as we shall see presently neither v_{k} nor $2 v_{2 k}-1$ is ever divisible by either 37 or 53) that

THE DIOPHANTINE EQUATION $Y(Y+1)(Y+2)(Y+3)=2 X(X+1)(X+2)(X+3) 335$

$$
\begin{equation*}
\left(v_{k} \mid 37\right)=\left(2 v_{2 k}-1 \mid 37\right)=\left(v_{k} \mid 53\right)=\left(2 v_{2 k}-1 \mid 53\right)=1, \tag{18}
\end{equation*}
$$

for some $k=2^{r}, r \geqq 3$. We shall demonstrate that (18) occurs for no such k.

In view of (8) it is clear that the residues modulo p for any prime p, of v_{k} with $k=2^{r}$ are eventually periodic with respect to r. It transpires that if $p=37$ or if $p=53$, the length of the period is 9 , and that the sequence of residues has already become periodic by the time $r=3$. It is fortunately the case that in no one of the nine cases that arise are all the four conditions of (18) satisfied, and this concludes the proof. A table showing these calculations follows:-

$k=2^{r}$	$r=3$	4	5	6	7	8	9	10	11	12
$v_{k}(\bmod 37)$	-15	5	12	-9	13	4	-6	-3	17	-15
$2 v_{2 k}-1(\bmod 37)$	9	-14	18	-12	7	-13	-7	-4	6	
$v_{k}(\bmod 53)$	-6	18	11	-24	-15	25	-23	-3	17	-6
$2 v_{2 k}-1(\bmod 53)$	-18	21	4	22	-4	6	-7	-20	-13	
$\left(v_{k} \mid 37\right)$	-1	-1	+1	+1	-1	+1	-1	+1	-1	
$\left(2 v_{2 k}-1 \mid 37\right)$	+1	-1	-1	+1	+1	-1	+1	+1	-1	
$\left(v_{k} \mid 53\right)$	+1	-1	+1	+1	+1	+1	-1	-1	+1	
$\left(2 v_{2 k}-1 \mid 53\right)$	-1	-1	+1	-1	+1	+1	+1	-1	+1	

Summarising the results, we see that (2) and (3) can hold simultaneously for N odd, $N \geqq 3$ only for $N=5$, and this value does indeed satisfy (2) and (3) with $x=11, y=13$. Thus $X=4, Y=5$ is the only solution of the given equation in positive integers. The complete solution in integers can now be written down; it consists of the sixteen "trivial" pairs of solutions obtained by equating both sides of the given equation to zero, and the four pairs $X=4$ or $-7, Y=5$ or -8 .

Received October 13, 1970.

Englefield Green, Surrey

