THE DIOPHANTINE EQUATION Y(Y+1)(Y+2)(Y+3) = 2X(X+1)(X+2)(X+3)J. H. E. Cohn

It is shown that the only solution in positive integers of the equation of the title is X = 4, Y = 5.

Substituting y = 2Y + 3, x = 2X + 3 gives with a little manipulation

$$\Big\{rac{y^2-5}{4}\Big\}^2 - 2\Big\{rac{x^2-5}{4}\Big\}^2 = -1$$
 ,

and since the fundamental solution of $v^2 - 2u^2 = -1$ is $\alpha = 1 + \sqrt{2}$, we find that if $\beta = 1 - \sqrt{2}$ and

(1)
$$u_n = \frac{lpha^n - eta^n}{lpha - eta}; \quad v_n = \frac{lpha^n + eta^n}{2}$$

we must have simultaneously

$$(\,2\,) \hspace{1.5cm} y^{_2} = 5 \,+\, 4 v_{_N} \;,$$

and

$$(3) x^2 = 5 + 4u_N,$$

where N is odd and $N \ge 3$.

We find easily from (1) since $\alpha\beta = -1$ and $\alpha + \beta = 2$, that

$$(4) u_{-n} = (-1)^{n-1} u_n$$

$$(5)$$
 $v_{-n} = (-1)^n v_n$

$$(6) u_{m+n} = u_m v_n + u_n v_m$$

$$(7) v_{m+n} = v_m v_n + 2u_m u_n \, .$$

Throughout k denotes an even integer, and then we find using (4)—(7) that

 $(\,8\,) \hspace{1.5cm} v_{_{2k}}=2v_{_k}^{_2}-1=4u_{_k}^{_2}+1$

$$(9) u_{2k} = 2u_k v_k$$

(10) $v_{3k} = v_k(8u_k^2 + 1) = v_k(2v_{2k} - 1)$

(11)
$$u_{3k} = u_k(8u_k^2 + 3)$$
.

We then have, using (6)—(9) that

J. H. E. COHN

(12) $u_{n+2k} \equiv -u_n \pmod{v_k}$

and

(13)
$$v_{n+2k} \equiv -v_n \pmod{v_k}.$$

We have also the following table of values

n	Un	v_n			
0	0	1			
1	1	1			
2	2	3			
3	5	7			
4	12	17			
5	29	41			
6	70	99			
7	169	239			
8	408	577			
9	985	1393			
10	2378	3363			
11	5741	8119			
12	13860	19601			

The proof is now accomplished in eight stages:-(a). (2) is impossible if $N \equiv 3 \pmod{6}$. For, $v_{n+n} = v_n v_n + 2u_n u_n$ by (7)

and so if $N \equiv 3 \pmod{6}$, $v_N \equiv \pm v_3 \equiv \pm 2 \pmod{5}$, whence $y^2 = 5 + 4v_N$ is impossible modulo 5.

(b). (2) is impossible if $N \equiv -3$ or $-5 \pmod{16}$. For, using (13) we find that for such N,

> $v_N \equiv v_{-3}$ or v_{-5} (mod v_4) $\equiv -v_3$ or $-v_5$ (mod 17), using (5) $\equiv -7$ (mod 17).

But then $5 + 4v_N \equiv -6 \pmod{17}$, and since the Jacobi-Legendre symbol (-6 | 17) = -1, (2) is impossible.

(c). (3) is impossible if $N \equiv \pm 7 \pmod{16}$. For, using, (12) we find that in this case

$$u_n \equiv \pm u_{\pm 7} \pmod{v_8} \ \equiv \pm 169 \pmod{577}.$$

332

Thus we find that

 $5 + 4u_N \equiv 681$ or $-671 \pmod{577}$, and since

(681 | 577) = (-671 | 577) = -1,

(3) is impossible.

(d). (3) is impossible if $N \equiv \pm 7 \pmod{24}$. For then

$$u_N \equiv u_{\pm 7} \pmod{v_6} \equiv 169 \pmod{99},$$

whence $u_N \equiv -2 \pmod{9}$, and then $5 + 4u_N \equiv -3 \pmod{9}$, and so (3) is impossible.

(e). (2) and (3) together are impossible if $N \equiv 3 \pmod{16}$.

If N=3, then $5+4v_N=33 \neq y^2$. If $N\neq 3$, then we may write

$$N-3=2lk$$
 ,

where l is odd and $k = 2^r$ with $r \ge 3$. Then by using (13) l times we obtain

But from (8) we find easily by induction upon r, that if $k = 2^r$ with $r \ge 3$, that $v_k \equiv 1 \pmod{4}$, $v_k \equiv 1 \pmod{3}$ and $v_k \equiv 2 \pmod{5}$, whence $(-15 | v_k) = -1$ and (3) is impossible.

Combining the results of (a)—(e) we find that we can only have

(14)
$$N \equiv 1, 5, -1, 37 \pmod{48}$$
,

and we deal with each of these in turn.

(f). (3) is impossible if $N \equiv 37 \pmod{48}$.

For then $u_N \equiv u_{-11} \equiv 5741 \pmod{v_{12}}$ and then $5 + 4u_N \equiv 22969 \pmod{19601}$.

But

$$\begin{array}{l} (22969 \mid 19601) \ = \ (3368 \mid 19601) \\ \ = \ (2^3 \mid 19601)(421 \mid 19601) \\ \ = \ (19601 \mid 421) \\ \ = \ (235 \mid 421) \\ \ = \ (421 \mid 5)(421 \mid 47) \\ \ = \ (-2 \mid 47) \ = \ -1 \ , \end{array}$$

and so (3) is impossible.

(g). (3) is impossible if $N \equiv 1 \pmod{48}$, $N \neq 1$ or if $N \equiv -1 \pmod{48}$ and $N \neq -1$.

Since if N is odd, $u_{-N} = u_N$ by (4) it suffices to consider $N \equiv 1 \pmod{48}$, $N \neq 1$. Then we may write N = 1 + 3k(2l + 1), where $k = 2^r$ and $r \geq 4$, and so using (12) we find that

$$egin{aligned} & u_N &= u_{1+3k+21.3k} \ &\equiv (-1)^1 u_{1+3k} & (\mathrm{mod} \; v_{3k}) \ &\equiv \pm (u_{3k} + v_{3k}) & (\mathrm{mod} \; v_{3k}) \; \mathrm{using} \; (6) \ &\equiv \pm u_{3k} & (\mathrm{mod} \; v_{3k}) \ &\equiv \pm u_k (8u_k^2 + 3) & (\mathrm{mod} \; v_k (8u_k^2 + 1)) \; , \end{aligned}$$

using (10) and (11). Thus

But now, writing $u = u_k$, we find

But $u = u_k$ with $k = 2^r$ and $r \ge 4$, and we find that $3 | u_s$, whence $3 | u_k$ in view of (9). Also $v_s \equiv 5 \pmod{11}$ whence by induction, using (8), $v_n \equiv 5 \pmod{11}$ for $n = 2^r$ and $r \ge 3$. Thus $u_{2n} \equiv -u_n \pmod{11}$ in view of (9), and so since $u_s \equiv 1 \pmod{11}$, $u \equiv \pm 1 \pmod{11}$. Thus we have $u \equiv \pm 12 \pmod{33}$ whence $8u \equiv \mp 3 \pmod{33}$. Considering therefore the right of (15), we observe that $8u \pm 5 \equiv \pm 2$ or $\pm 8 \pmod{33}$ and in any one of the four cases the right hand side of (15) equals -1, and accordingly (3) is impossible.

(h). (2) and (3) together are impossible if $N \equiv 5 \pmod{48}$, $N \neq 5$. Suppose if possible that (2), (3) hold with $N \equiv 5 \pmod{48}$, $N \neq 5$. Let N = 5 + 2l.3k where $k = 2^r$, $r \ge 3$ and l is odd. Then we have using (12) and (13)

(16) $x^2 = 5 + 4u_N \equiv 5 - 4u_5 \equiv -111 \pmod{v_{3k}}$

(17)
$$y^2 = 5 + 4v_N \equiv 5 - 4v_5 \equiv -159 \pmod{v_{3k}}$$
.

Now we have from (10) $v_{3k} = v_k(2v_{2k} - 1)$, and as before $v_k \equiv 1 \pmod{12}$ whence also $2v_{2k} - 1 \equiv 1 \pmod{12}$. Thus $(-3 | v_k) = (-3 | 2v_{2k} - 1) = 1$, and so (16) and (17) imply (since as we shall see presently neither v_k nor $2v_{2k} - 1$ is ever divisible by either 37 or 53) that

334

(1

THE DIOPHANTINE EQUATION Y(Y+1)(Y+2)(Y+3) = 2X(X+1)(X+2)(X+3) 335

$$(18) \qquad (v_{\scriptscriptstyle k}\,|\,37) = (2v_{\scriptscriptstyle 2k}-1\,|\,37) = (v_{\scriptscriptstyle k}\,|\,53) = (2v_{\scriptscriptstyle 2k}-1\,|\,53) = 1$$
 ,

for some $k = 2^r$, $r \ge 3$. We shall demonstrate that (18) occurs for no such k.

In view of (8) it is clear that the residues modulo p for any prime p, of v_k with $k = 2^r$ are eventually periodic with respect to r. It transpires that if p = 37 or if p = 53, the length of the period is 9, and that the sequence of residues has already become periodic by the time r = 3. It is fortunately the case that in no one of the nine cases that arise are all the four conditions of (18) satisfied, and this concludes the proof. A table showing these calculations follows:-

$k=2^r$	r=3	4	5	6	7	8	9	10	11	12
$v_k \pmod{37}$	-15	5	12	- 9	13	4	- 6	- 3	17	-15
$2v_{2k} - 1 \pmod{37}$	9	-14	18	-12	7	-13	- 7	-4	6	
$v_k \pmod{53}$	- 6	18	11	-24	-15	25	-23	- 3	17	- 6
$2v_{2k} - 1 \pmod{53}$	-18	21	4	22	- 4	6	- 7	-20	-13	
$(v_k 37)$	- 1	- 1	+ 1	+ 1	- 1	+ 1	- 1	+ 1	- 1	
$(2v_{2k} - 1 \mid 37)$	+ 1	- 1	- 1	+ 1	+ 1	- 1	+ 1	+ 1	-1	
$(v_k 53)$	+ 1	- 1	+ 1	+ 1	+ 1	+ 1	- 1	- 1	+ 1	
$(2v_{2k} - 1 \mid 53)$	-1	- 1	+ 1	- 1	+ 1	+ 1	+ 1	- 1	+ 1	

Summarising the results, we see that (2) and (3) can hold simultaneously for N odd, $N \ge 3$ only for N = 5, and this value does indeed satisfy (2) and (3) with x = 11, y = 13. Thus X = 4, Y = 5 is the only solution of the given equation in positive integers. The complete solution in integers can now be written down; it consists of the sixteen "trivial" pairs of solutions obtained by equating both sides of the given equation to zero, and the four pairs X = 4 or -7, Y = 5or -8.

Received October 13, 1970.

ROYAL HOLLOWAY COLLEGE ENGLEFIELD GREEN, SURREY