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THE DIOPHANTΪNE EQUATION

J. H. E. COHN

It is shown that the only solution in positive integers of
the equation of the title is X= 4, Y= 5.

Substituting y = 2Y +'3,x = 2X + 3 gives with a little manipula-
tion

and since the fundamental solution of v2 — 2u2 = — 1 is a = 1 + i/ 2 ,

we find that if β = 1 - V~2 and

(1) u% «^J£ ^ ^ l
a - β 2

we must have simultaneously

( 2 ) i/» = 5 + 4 ^ ,

and

( 3 ) x2 = 5 + AuN ,

where N is odd and iV^ 3.
We find easily from (1) since aβ = — 1 and α: + /S = 2, that

( 4 ) w_n = ( - l ) - ^

( 5 ) v_n = ( - l ) X

( 6 ) ^ w + w = umvw + u%^w

( 7 ) ΐW™ = ^m ŵ + 2umun .

Throughout k denotes an even integer, and then we find using
(4)—(7) that

( 8 ) v2k = 2vl-l = Aul + l

( 9 ) u2k = 2ukvk

(10) vik = vk(8u\ + 1) = vk(2v2k - 1)

(11) v*u - uk(8ul + 3) .

We then have, using (6)—(9) that
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(12) un+2k= -un (moάvk)

and

(13) vn+2k = -vn (rnodv*).

We have also the following table of values

n

0

1

2

3

4

5

6

7

8

9

10

11

12

Un

0

1

2

5

12

29

70

169

408

985

2378

5741

13860

Vn

1

1

3

7

17

41

99

239

577

1393

3363

8119

19601

The proof isjiow accomplished in eight stages:-
( a ) . (2) is impossible
For,

v*+β =

=

111

if N= 3

vnv6 + 2un

(mod 6).

uQ by (7)

99vΛ + U0un

-vn (mod 5 ) ,

and so if N = 3 (mod 6), vN = ±v 3 = ± 2 (mod 5), whence y2 = 5 + 4 ^
is impossible modulo 5.

( b ) . (2) is impossible if N= —3 or —5 (mod 16).
For, using (13) we find that for such N,

vN = v_3 or i;_5 (mod v4)

= — ̂ 3 or — v5 (mod 17), using (5)

Ξ= - 7 (mod 17).

But then 5 + AvN = - 6 (mod 17), and since the Jacobi-Legendre
symbol (— 6 117) = — 1 , (2) is impossible.

( c ) . (3) is impossible ifN~ ±7 (mod 16).
For, using, (12) we find that in this case

n = ±u±7

EΞ ±169 (mod 577).
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Thus we find that
5 + AuN ΞΞ 681 or -671 (mod 577), and since

(6811 577) = (-6711 577) = - 1 ,

(3) is impossible.
( d ) . (3) is impossible if N = ± 7 (mod 24).
For then

uN ~ u±7 (mod v6)

ΞΞ 169 (mod 99),

whence uN = —2 (mod 9), and then 5 + AuN = — 3 (mod 9), and so (3)
is impossible.

( e ) . (2) and (3) together are impossible if N = 3 (mod 16).
If JV = 3, then 5 + 4^lV = 33 ^ I/2. If NΦ 3, then we may write

AT - 3 = 2lk ,

where i is odd and k = 2r with r ^ 3. Then by using (13) Z times
we obtain

5 + AuN = 5 + 4tuz+2lk

= 5 + (-l) ι 4u 3 (modi;Λ)

= —15 (mod^), since i is odd.

But from (8) we find easily by induction upon r, that if k = 2r

with r Ξ> 3, that ^ = 1 (mod 4), ^ = 1 (mod 3) and vk = 2 (mod 5),
whence (~15|vΛ) = —1 and (3) is impossible.

Combining the results of (a)—(e) we find that we can only have

(14) JV Ξ= 1, 5, - 1 , 37 (mod 48) ,

and we deal with each of these in turn.
( f ) . (3) is impossible if N = 37 (mod 48).

For then uN = u_n = 5741 (mod v12) and then 5 + AuN = 22969

(mod 19601).

But

(22969 119601) = (3368 119601)

- (2
3
 i 19601)(421119601)

- (196011 421)

- (235 I 421)

- (4211 5)(4211 47)

= (-2|47) = - 1 ,

and so (3) is impossible.
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( g ) . (3) is impossible if N = 1 (mod 48), N Φ 1 or if N= — 1
(mod 48) and Nφ — 1.

Since if N is odd, u_N = ^ by (4) it suffices to consider N = 1
(mod 48), NΦI. Then we may write ΛΓ = 1 + 3&(2£ + 1), where
k = 2r and r ^ 4, and so using (12) we find that

Ξ ± (w3fc + v3fc) (mod v3k) using (6)

+ 3) (mod vk(Su\ + 1)),

using (10) and (11). Thus

uN = ±2wΛ (mod 8tt| + 1) .

But now, writing u = %Λ, we find

(5 + 4uN I 8t62 + 1) = (5 ± 8w I 8u2 + 1)

= (8% ± 5 18u2 + 1)

= (8u2 + 11 8u ± 5)

= (8 I 8M ± 5)(8V + 8 I 8π ± 5)

- - ( 3 3 | 8 u ± 5)

- - ( 8 u ± 5 I 33).

But u — uk with k = 2r and r ^ 4, and we find that 3 | u8, whence
3 I uk in view of (9). Also v8 = 5 (mod 11) whence by induction, using
(8), vn = 5 (mod 11) for w = 2r and r ^ 3. Thus u2n = -un (mod 11)
in view of (9), and so since u8 = 1 (mod 11), U Ξ ± 1 (mod 11). Thus
we have u= ±12 (mod 33) whence 8 ^ = + 3 (mod 33). Considering
therefore the right hand side of (15), we observe that 8u ± 5 = ± 2 or
± 8 (mod 33) and in any one of the four cases the right hand side of
(15) equals — 1 , and accordingly (3) is impossible.

(h). (2) and (3) together are impossible ifN=5 (mod 48), N Φ 5.
Suppose if possible that (2), (3) hold with N= 5 (mod 48), N Φ 5.

Let N = 5 + 21M where k = 2r, r ^ 3 and ϊ is odd. Then we have
using (12) and (13)

(16) x2 = 5 + ±uN = 5 - 4^5 = - 111 (mod v3fc)

(17) / = 5 + AvN = 5 - Av, = -159 (mod v3Λ) .

Now we have from (10) v3k = vk(2v2k — 1), and as before vk = 1 (mod 12)
whence also 2v2k - U l (mod 12). Thus ( - 3 | vk) = ( - 3 12v2k - 1) = 1,
and so (16) and (17) imply (since as we shall see presently neither vk

nor 2v2k — 1 is ever divisible by either 37 or 53) that
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(18) (vk I 37) = (2v2k - 11 37) = (vk | 53) = (2v2k — 11 53) = 1 ,

for some k = 2r, r >̂ 3. We shall demonstrate that (18) occurs for no
such k.

In view of (8) it is clear that the residues modulo p for any
prime p, of vk with k — 2r are eventually periodic with respect to r.
It transpires that if p — 37 or if p = 53, the length of the period is
9, and that the sequence of residues has already become periodic by
the time r = 3. It is fortunately the case that in no one of the nine
cases that arise are all the four conditions of (18) satisfied, and this
concludes the proof. A table showing these calculations follows:-

Vk

2v2k -

Vk

2V2k -

(Vk

(2V2k

(Vk

(2V2k

k = 2r

(mod 37)

- 1 (mod

(mod 53)

- 1 (mod

137)

- 11 37)

153)

- 11 53)

37)

53)

r - 3

-15

9

- 6

-18
1

4- 1
+ 1
- 1

4

5

- 1 4

18

21

- 1

- 1

- 1

- 1

5

12

18

11

4

4- 1
- 1

+ 1
4- 1

6

- 9

- 1 2

- 2 4

22

4- 1

4- 1

4- 1

- 1

7

13

7

- 1 5

- 4

- 1

4- 1

+ 1
4- 1

8

4

- 1 3

25

6

4- 1
1

4- 1

4- 1

9

- 6

- 7

- 2 3

- 7

- 1

4- 1
- 1

+ 1

10

- 3

- 4

- 3

- 2 0

+ 1
4- 1
- 1

- 1

11 12

17 -15

6

17 - 6

- 1 3

- 1

- 1

4- 1

4- 1

Summarising the results, we see that (2) and (3) can hold simul-
taneously for N odd, N ^ 3 only for N = 5, and this value does indeed
satisfy (2) and (3) with x = 11, y = 13. Thus X = 4, T = 5 is the
only solution of the given equation in positive integers. The complete
solution in integers can now be written down; it consists of the
sixteen ' 'trivial'' pairs of solutions obtained by equating both sides
of the given equation to zero, and the four pairs X = 4 o r — 7, Y — ζ>
or - 8 .
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