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INVERSION OF THE HANKEL POTENTIAL TRANSFORM

FRANK M. CHOLEWINSKI AND DEBORAH TEPPER HAIMO

We consider the Hankel potential transform

(i.i) Λx) = j " {χί+\i)v+ιΦ(Qdμ(.t), v > o ,

where

α.2) ***) = lF^i+Ί/2) ̂
This transform is intimately related to the Hankel transform.
Indeed, its kernel is the Hankel transform

(1.3)

where

J7(z) being the ordinary Bessel function of order γ. Our object
is to develop an inversion theory for (1.1) and to exploit the
relationship of (1.1) to the Hankel transform.

When v = 0, some of our results reduce, modulo a constant, to
those of D. V. Widder in [6], a paper on which the present work is
closely based. In [7], Widder derived an inversion theory for the
general transform

(1.4) Λ) \ft
Jo \ t / t

which includes his result in [6] as a special case; however, the trans-
form (1.1) for v > 0 is not covered by that development.

2 Preliminaries• The differential operator Lx which is to effect
the desired inversion of (1.1) is defined as follows:

(2.1)
n-*<χ>

where, with D denoting differentiation with respect to x,

L \ Π - V^Γ{2v + 1) p 5+2,. p 1 m n

L ΓfΊ- (-irV^A2y + l) j^ + , , + i
"' 2 2 t ι + " + 1 / 2 [Γ(% + v/2 + l)γ3fM+tv-1

( 2 . 2 ) pTC_i i -i 1

n-Ίi=zϊrD*k+t '+1 \D-D[f], w = 2, 3,

319



320 FRANK M. CHOLEWINSKI AND DEBORAH TEPPER HAIMO

the operations to be performed in order of increasing k, k — 1, 2,
n — 1. It may readily be established that

(2 3) L -[f] = κ^hw^Dx"t""D^L-lf] •
Hence, an induction argument establishes the validity of

(2 ά) L Γ X Ί = 2*+1'2/> + l/2)Γ(2n + v + 2) x^Ψn

' ' ""Ί. (x2 + ?y+ι J [Γ(n + v/2 + I)]2 {x2 + f ) 2 κ + ι + 2 '

We note that an alternative form for the operator Ln>x is given by

(2 Si L -(2 5) ^' " [Γ(n + v/2 + I ) ] 2 ^ f i V1 2*

where

(2.6) θ = xD and ^2 = xD(xD) .

Since ^[xα] = axa and ^2[xα] = Λ f f , we have, from (2.5), that

L M - 2-^2Γ(v + l/2)Γ(n + v + l)n\

( 2 7 ) [An + v/2

MV 2k A 2k + 2vJ2k Λ 2A; + 2y.

so that it is clear that the operator Ln,x annihilates positive even
powers of x. Letting « - + « in (2.7), we find that

(2.8) Lx[xa] = -Γ VπΓ{2v + 1) 1 a

L 2"+1/2Γ(y + 1 + α/2)Γ(l - α/2) J

See p. 5 of [1].
A function φ(x) will belong to L for xe [0,12), 0 < R sΞ co, if

(2.9)

3* Inversion* We establish our principal inversion formula for
the transform (1.1).

THEOREM 3.1. Let φ(t) belong to L for te [0, R] for every positive
R, and let the integral

(3.1) f(x) - S * Φ(t)dμ(t)
v ; ^ ; Jo (x2 + t2y+ι

converge for some x Φ 0. Then
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(3.2) MmLn,x[f{x)\ = φ{x),
W->oo

at all points x of the Lebesgue set for the function φ(x).

Proof. We seek to prove (3.2) for all t for which

\φ{u) - φ(t) I dμ(u) = o(|a? - ί I) , x > t .

An appeal to Theorem 2c, p. 328, of [5] establishes that the integral
(3.1) converges for all x Φ 0 and that differentiation under the inte-
gral sign is valid. Hence, using (2.4), we find that

( 3 8 ) lΓ(n + v/2 + !)]•

2Γ(2n + v + 2) f~ / t Yπ+2 φ(xt)

{ t ) d { t )+ ^ v\> y\>

[Γ(n + v/2 + I)]2 Jo \ 1 + fJ ty-^{\ + tfy

We may now apply the asymptotic estimate of Corollary 2b.2, p. 279,
of [5] to

tι~2\i + t2y

and that of Theorem 2b, p. 278, of [5] to

S / f

0 0 (

to obtain

(3.4) Ln,[/(«)] Γ(2^ + v + 2)l/¥ ( )

Using Stiring's formula, we find that

lim Lu,,[f(x)] = Φ(*) '
n—>oo

a n d t h e proof is c o m p l e t e .

C O R O L L A R Y 3.2. (3.2) holds for almost all x,xe (0, oo).

COROLLARY 3.3. (3.2) holds for all x for which φ(x) is continuous.

COROLLARY 3.4. At all points x in a neighborhood of which φ(x)
is of bounded variation, we have

Lχ[f(x)] = ^ x + ) + ^ ~ ) .
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An additional result which follows by the method of Theorems 3b,
3c of [9], pp. 282-283, is the following.

COROLLARY 3.5. Let φ(t) belong to L for te (ε, R) for every ε, R,
0 < ε < JB, and let the integral

fix) = ]t + " Φ(t)dμ{t)

converge for some x Φ 0, and the integral

\ φ(x)xrdx
Jo+

converge for some fixed r. Then

lim LnJf(x)] = φ(x)

at all points x of the Lebesgue set for the function φ(x).

As an example illustrating the theorem, consider the Hankel
transform

(3.5) ^L^MI 1 dμ(t) =
V } Jo t (x2 + t2y+ί P V ; 2»+ίl2Γ(v + 1 ) x
Now

Ml x J [Γ(n + W2 + I)]2 W ϋ
( } ^ / ί - 1

)(1 +
2k A 2k + 2v

A straightforward computation gives

(3.7) LJ£^\ = 2'+ 1»J> + i) .^(«y) ,
L a; J V7Γ X

since taking the limit under the summation sign in (3.6) is valid due
to the fact that the series of (3.6) is dominated by the series

Σ
3=0

which converges for all x. Hence the result predicted by the theorem
is derived.

Other examples where the validity of the theorem may likewise
be verified are
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(3.8) f(x) = ( - ^ * dμ(t) = EL±HM

where

L.[ar''-lltKt+Uι(x)] = Γ(2v + I ) * - 2 - 1 cos x

and

(3.9) = { I 1 ~ vϊ iF2(2v; v, 2v + 1; —

where
Lx[f(x)] - α;-2J2,(α;) .

4* Relation to the Hankel transform* The relation of the
Hankel potential transform to the Hankel transform enables us to
derive an inversion of the latter in terms of the operator Lt. We
have the following result.

T H E O R E M 4 . 1 . // ψ(u) belongs to L f o r O ^ K o o , and if

(4.1) φΛ(x) - (~ J"(xu)φ(u)dμ(u) ,
Jo

then, for almost all t,

(4.2) φ(t) = Y^l LI^LX 0 < t < - ,
2 v + 1 / 2Γ(y + 1) L ί J '

where

(4.3) R{t) = [" e-tuψA(u)dμ(u) .
Jo

Proof. An appeal to Fubini's theorem establishes that

R{t) = \~ e-^dμ(u) \
JO jQ

= j J φ(y)dμ{y)

π

and the proof is complete on application of Theorem 3.1.
If in addition to the conditions of the theorem, we assume that
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φA(x) e L for 0 <^ x < c«, we obtain the familiar inversion of the Hankel
transform given in the following corollary.

COROLLARY 4.2. If <ρ(u) belongs to L for 0 <: u < <*>, αwd ΐ /

(4.5) ^Λ(x)

w i t t c5Λ(&) G L /or 0 ^ x <

(4.6) p(π) -

Proof. We have, with the notation of the theorem,

(4.7) L\Jψ-~\ = lim LnΛ Γ £ΪLφ*(y)dμ(y) .

Since όA(«τ) e ί/, the operator Ln,t may be taken under the integral
sign, and, by the argument used to establish (3.7), the limit in (4.7)
may be applied to the integrand directly. Hence we have, on taking
note of (3.7),

(4.8)
t J V π t Jo

Substituting (4.8) in (4.2), we derive the desired inversion (4.6).
Since the Hankel transform of the Hankel potential transform is

a Laplace transform, we may use the inversion algorithm of the latter
to obtain another inversion formula for the Hankel potential trans-
form, as in the following result.

THEOREM 4.3. Let φ(u) belong to L for 0 £ u < oo, and let

f{x) = \

Then, for almost all t,

(4.10) φ(t) = Γ(2v + l ) r 2 * lim

where

(4.11) j ^ ^ {

and

(4.12)
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Proof. Since ψ(u) e L, it follows that f(x) eL for 0 < x < co.
Hence, clearly, fA(t) exists, and by Fubini's theorem, we have

fA(z) = \°° F{zu)dμ{u) ί°° ό(t)dμ(t)
J w Jo ̂  v } rκ J Jo (f + < ^ + 1 ' w ^ w

But the right hand side is a Laplace transform, and by Theorem 6a,
p. 288 of [5], (4.10) follows.

The following example illustrates the theorem. Let

Hence

fA(t) =
(t

, t [ / Λ ( ί ) ] = r(2v + l + fe) f fe y + γ t
fc! Γ(2y + 1) V fc + t / V ft + t

~ Γ(2v + 1) 6 ί? * ' °° '

We thus have

Γ(2v + l ) r 2 " lim J*fktt[fA(t)] = ^~έ

= ί6(t)

as predicted.

5* Inversion for a function having a power series expansion*
If f(x) represented by the transform (1.1) has an expansion in powers
of x, the inversion of (3.2) becomes especially simple. Indeed, an
elementary, practical algorithm may be illustrated by the following
example:

/tdt
(x2 + t2)2 t ( l + t2) K π 23/2 α;(l + x)2

To invert this transform, we expand 1/#(1 + α;)2 in powers of x, cancel
the odd powers, change the alternate signs, and replace the absolute
value of each coefficient by 23/2/v/lτ'. Illustrating each of the steps
in this case, we have, on expanding in a power series
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— ( l - 2x + 3x2 - Ax" + 5x< - 6x* + Λ

cancelling odd powers and changing alternate signs, we obtain

— ί l - Zx2 + 5a; 4- 7α6 + .
a; I

and, finally, replacing the absolute value of each coefficient by 23/2/l/ it,
we find

93/2 1 93/2 1
Δ L{1 α» + x* x* + } Δ ι

V π x " V π x(l + a?) '

so that the algorithm applied to (1/ π /23/2)/#(l + x2) yields l/a?(l + α;2)
as desired.

The general result which describes this algorithm is given in the
following.

THEOREM 5.1. Let

(5.2) f(x) = \~ (χ2+*fy+iψ(t)dμ(t) ,

the integral converging for x Φ 0, and let

(5.3) f{x) = — Σ «^fe, 0 < a < |0 .

Vπ

iώ m some interval 0 < a < pe~κli.

Proof. Since termwise differentiation is valid, we have

L.,.1^)] _ _ _ _ _ _ Σ ak(k - a)

x Π (l ^ A ) ( l +
iΛ V 2j A 2i + 2v /2j A 2i +

or, if we take the limit as n—> oo under the summation sign, we find
that
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χ

(fe -

(5.6)

Γ(l + v + k/2 - a/2)Γ(l - k/2 - a/2)

= -2>~1/2r(v + — \r{v + l)x~«

x\±a (2*-«)
I k — 0

α
2*+

A; - α/2)Γ(l -k

(2fe

a/2)
- «) ^ 4 + 1 l

1Γ(3/2 - α/2 + v + k)Γ(l/2 + a/2-k) ί '

The left hand side of (5.6) is equal to φ(x) by Theorem 3.1, and the
right hand side reduces to that given in (5.4) by a simple computation.

The validity of taking the limit in (5.5) and obtaining (5.6) follows
from the fact that

+ v + ΐ)nl

x

[Γ(n + v/2

- «l Π (l +

l/2)Γ(n

(fe α ) 'V" g

π[Γ(w + υ/2 + I)]2

so that the series of (5.6) converges uniformly in n if

But this is so for 0 < x < ^e"<T/2 and hence the proof is complete.
Note that if p is replaced by ^ in the hypothesis of the theorem,

the conclusion holds in (0, ©o). Further, if φ is known to be analytic
at the start in (0, ©o), then (5.4) will determine φ completely by ana-
lytic continuation. For example, applying the theorem to (5.1), we
note that a = 1 so that the second sum of (5.4) vanishes and we have

— Σ
X k=o

x(l + a;2)

Here φ{x) = 1/*(1 + x2) is analytic for 0 < x < oo. Even though
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ΣΓ=o( — l)kx2k is valid only for \x\ < 1, it nonetheless determines φ
for all positive x by analytic continuation.

For f(x) having a power series expansion in terms of negative
powers of xy we have the following companion result whose proof is
analogous to that of the preceding theorem and hence will be omitted.

THEOREM 5.2. Let

the integral converging for x Φ 0, and let

(5.8) fix) = ~ Έ akχ-\ p<x<
tϋ K —0

Then

φ{x) = 1

(5.9) xΓsmτr(^-y) ± (-1)^,
α/2)

- v2 / ίro v ; 2&+1 Γ(l/2 + a/2 + £)

id in some interval pez{% < x < co.

We may illustrate this theorem with example (5.1) by expanding
l/α(l + x)2 in the series x~3Σj=o(-l)j(J + l)^~y. In this case a = 3,
and the second sum of (5.9) vanishes so that we have

= or a?(l + x2)

as expected.

6* Hankel harmonic functions* Formula (1.3) shows that the
kernel of the Hankel potential transform (1.1) is the Abel mean of
the Bessel function associated with the Hankel transform. Thus, the
kernel of (1.1) is the Poisson kernel, in its non-Hankel translated form,
associated with the Hankel convolution of Hirschman and Delsarte [2].
The inversion formula for the Hankel potential transform can be ap-
plied to the Hankel harmonic functions associated with the Hankel-
Poisson kernel. The Hankel harmonic functions also appear as a
special case of the generalized axially symmetric potential theory of
A. Weinstein [4].

Let u{x, t) be of class C2 in a region R of t ^ 0 such that, if R
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contains a segment of the line x = 0, then u(x, t) = u( — x, t) in a
neighborhood of such segments. The function u(x, t) is said to be
Hankel harmonic in R if and only if

(6.1)

for all (x, t) e R, where

(6.2) ΔJ{x) = f"(x) + ^-f\
x

The Hankel-Poisson kernel is given by

(6.3) P(x, y, t) = 2 v + 1 /

Note that, by (1.3), we have

t
P(x, 0, ί) = P(x, t) -

+ ty+ι

Since Δx^(xu) — — uz^{xu), it may readily be verified that P(x, t)
is a Hankel harmonic function in the half plane t > 0.

We establish the following inversion for Hankel harmonic functions.

THEOREM 6.1. Let u(x, t) be an even function of x and a bounded
Hankel harmonic function in the half plane t Ξ> 0. Then

(6.4)
L x A Vπ

Proof. From [3], it follows that

, t) - 2 + / / } - + λ) ( P(x, y, t)u(y, 0)dμ(y), t > 0 .
V π Jo

Therefore,

or, equivalently,

y u(y, 0)

"^T 7 —Y-
for all £ > 0. Applying the inversion formula, we obtain (6.4), and
the proof is complete.

As an illustrative example, consider the function
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(6.5) u(x, t) = e~

Then u(x, t) is even in x and is a bounded Hankel harmonic function
for t ^ 0. An appeal to (3.7) provides the verification of the inversion
(6.4).
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