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SEMI-DEVELOPABLE SPACES AND QUOTIENT
IMAGES OF METRIC SPACES

CHARLES C. ALEXANDER

In this paper semi-developable spaces are defined and,
among T0-spaces, are shown to be the same as the semi-
metrizable spaces. Strongly semi-developable spaces are
defined in a natural way and proven to coincide with an
important class of semi-metric spaces, namely those in which
"Cauchy sequences suffice". These spaces are shown to
possess several other interesting properties. Probably the
most significant of these is that the strongly semi-developable
spaces are the hereditarily quotient P-images of metric spaces.
Other quotient images of metric spaces are similarly charac-
terized in terms of semi-developments.

!• Semi-developable spaces* Until fairly recently there were
almost no non-trivial topological restrictions on a space which guarantee
the space to be semi-metrizable. Work along this line was initiated
by Alexandrof and Niemytskii in their paper [l]Φ They proved that
the developable spaces are precisely the spaces having a semi-metric
satisfying the following condition. At each point there is a neigh-
borhood of arbitrarily small diameter. Or equivalently, every con-
vergent sequence is a Cauchy sequence. More recently Heath [10],
Ceder [6], McAuley [13], and ArhangeΓskii [3] have contributed
new results in this area. Moreover, several authors have observed
that there are numerous similarities between developable spaces and
semi-metrizable spaces. This is especially true since so many theorems
which hold for developable spaces are also valid for semi-metrizable
spaces. In Theorem 1.3, the semi-metrizable spaces are shown to be
the semi-developable T0-spaces. This indicates the nature of the
similarities between developable spaces and semi-metrizable spaces.
Strongly semi-developable spaces are defined and, in Theorems 1.5
and 1.6, are shown to form a natural intermediate class of spaces
between the semi-metrizable spaces and the developable spaces.

By a space we will mean a topological space as defined in [12].
All other definitions pertaining to topological spaces not specifically
given in this paper are as found in [12].

DEFINITION. A development for a space X is a sequence

4 = {gn\n = 1,2, . - }

of open covers of X such t h a t {St(x, gn)\n = 1, 2, •} is a local base
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at x, for each xeX. A space is developable if and only if there
exists a development for the space.

DEFINITIONS. Let Δ = {gn\n = 1, 2, •} be a sequence of (not
necessarily open) covers of a space X.

( i ) zf is a semi-development for X if and only if, for each xe X,
{St(x, gn)\n — 1, 2, •} is a local system of neighborhoods at #.

(ii) A semi-development Δ of X is a strong semi-development
if and only if for each M c X and β e M there exists a descending
sequence {Gn \ n = 1, 2, } such that xeGne gn and GΛ Π Λf =£ 0 .

(iii) A semi-development z/ for X is a point-finite semi-develop-
ment if and only if for each x e X and for each positive integer n, x
is contained in only a finite number of sets in gn.

A space X is called semi-developable if and only if there exists
a semi-development for X. Similarly, X is called strongly (and/or
point-finite) semi-developable if and only if there exists a strong
(and/or point-finite) semi-development for X. We note that all of
these properties are hereditary.

The following proposition clarifies the distinction between semi-
development and strong semi-development.

PROPOSITION 1.1. In order that a sequence Δ — {gn\n = 1, 2, •••}

of covers of a space X be a semi-development it is necessary and

sufficient that for each M c X, and xeM there exist a sequence

{Gn In = 1, 2, •} such that xeGnegn and GnΠ MΦ 0 .

Proof. Trivial.

Probably the first theorem concerning semi-developable spaces was
the modified form of the Alexandrof-Urysohn Metrization Theorem given
by Prink in [8]. It is stated here in terms of semi-developments.

THEOREM 1.2. A space X is metrizable if and only if there
exists a semi-development Δ — {gn | n = 1, 2, } for X such that
(a) Π {St(x, gn) I n = 1, 2, •} = {x} for each xeX, and (b) if G, He gn,
n > 1, and G Π H Φ 0 , then there is a set J e gn^ such that G U H c J.

A reasonable, but to our knowledge unconfirmed, conjecture is
that condition (b) is exactly what is needed to guarantee the triangular
property of the proposed metric. This is essentially the content of
Theorem 1.3.

For later use, we note that every (point-finite and/or strongly)
semi-developable space has a (point-finite and/or strong) semi-develop-
ment {gn\n = 1, 2, •} having the property that gn+ι < gn for each
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positive integer n. Hence, whenever the existence of a semi-develop-
ment is assumed in a theorem, we may assume that it has the
property mentioned above. Semi-developments having this property
shall be called refining semi-developments.

DEFINITION. A metric on a space X is a function d: Xx X —> R
(R = real numbers) satisfying the following conditions:

For each x, y, z e X and 0 φ M c X.
( i ) d(x, x) = 0
(ii) d(x, y) > 0, if x Φ y
(iii) d{x, y) = d(y, x)
(iv) d(x, z) ^ d(x, y) + d(y, z)
(v) xe M if and only if d(x, M) = mί{d{x, m)\meM} = 0.

DEFINITION. A semi-metric on a space X is a function
d: X x X —*R satisfying conditions (i), (ii), (iii), and (v) above.

By a (semi-) metric space we mean a space X together with a
specific (semi-) metric on X. In this paper, whenever the (semi-)
metric is not specified it will be assumed to be denoted by the letter
d. The sphere about the point x of radius ε will be denoted by
S(x ε). Note that spheres need not be open but that α elnt S(x; ε)
if ε > 0.

It should be noted that in most of our theorems the To property
is assumed. This is usually done to insure that a semi-metric satisfies
(ii) in the previous definition. Hence, in all such cases another theorem
may be obtained by dropping the To assumption and stating the
theorem for a pseudo-metric space or a pseudo-semi-metric space,
whichever the case may be.

DEFINITION. Let (X, d) be a semi-metric space. A sequence
{xn\n — 1, 2, •••} in X is a Cauchy sequence if and only if for each
ε > 0 there exists an integer N such that d(xn, xm) < ε whenever
m, n > N.

Note that because of the lack of the triangle inequality not all
convergent sequences in a semi-metric space are necessarily Cauchy
sequences.

THEOREM 1.3. A space X is semi-metrizable if and only if it is
a semi-developable T0-space.

Proof. Let A = {gn\n — 1, 2, •} be a refining s.d. for the To-
space X where, without loss of generality, gγ = {X}. For x,yeX,
let n(x, y) denote the smallest integer n such that there is no element
of gn containing both x and y. If no such integer exists let
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n(x, y) = oo. Define d: X x X—> R as follows. For x,yeX, let
d(x, y) = 2~n{x'y\ where 2~°° = 0. Then clearly, for every x,yeX,
d{x, x) = 0 and <Z(α5, y) = d(y, x). Also, if x Φ y, then, since X is a
To-space, there is an open set U containing one of the points, say x,
but not the other. Then there is an integer n such that x e St(x, gn)(Z U.
Then y$U implies y £ St(x, gn) which implies y $ St(x, g{) for each
i ^ n. It follows that n(x, y) g n, and hence d(x, y) ^ 2~n > 0.

Now note that S(x; 2~n) = St(x, gn) for each x e X and each
integer n. For y e S(x; 2rn) if and only if d(x, y) < 2~n if and only if
n(x, y) > n if and only if there exists G e gn such that x, yeG if and
only if yeSt(x,gn). Now let MaX. Then xeM if and only if
St(x, gn) Π M Φ 0 for each integer n if and only if S(x; 2rn) n l Φ 0
for each integer n if and only if d{x, M) = 0. Hence, ί is a semi-
metric on X.

Conversely, assume that d is a semi-metric on X For each
positive integer n, let gn be the collection of all sets of diameter less
than 1/n. Then for each n, S(x; 1/n) = Sί(a;, gn). For let τ/e S(α;; 1/n).
Then G = {ίc, y}egn implies yeSt(x,gn). On the other hand, let
y e St(x, gn). Then there is Gegn such that x,yeG, and therefore,
d(&, y) ^ diam G < 1/n. Thus, ?/ e S(cc; 1/n).

Now let Z7 be an open set containing the point x. Then there
is an integer n such that x e Int S(x; 1/n) c S(x; 1/ri) c /7. Therefore,
x e Int Sί(a;, gn) c Sί(ίc, ^w) c U. Hence {gn \ n = 1, 2, •} is a semi-
development for X.

COROLLARY 1.4. Every To sewiί-developable specie is Tx.

NOTATION. Given a semi-development Δ for a jΓ0-space X, we
will let dj denote the semi-metric on X defined from Δ as above.
Similarly, given a semi-metric d on X, we will let Δd denote the
semi-development on X defined from d as above.

THEOREM 1.5. In a semi-metric spa?e the following conditions
are equivalent:

( 1 ) For eazh MaX and each xeM, there exists a descending
sequence of sets {Gn\n — 1, 2, •••} of arbitrarily small diameters such
that for each n, xeGn and xeGnΠ M Φ 0 .

( 2 ) For each MaX and each xeM, there exists a Cauchy
sequence in M converging to x.

( 3 ) Every convergent sequence has a Cauchy subsequence.

Proof. Let d be a semi-metric on X.

( 1 ) implies (3). Let S = {xn\n = 1, 2, •} be a sequence in X
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converging to the point xe X. If xn = x for infinitely many n, then
clearly we can define a Cauchy subsequence of S. Otherwise let
M = {xn\n = 1, 2, •• }\{β}. Then x e M implies, by (1), that there is
a descending sequence of sets {Gn\n — 1, 2, •••} of arbitrarily small
diameters such that for each n, xeGn and GnΠ M Φ 0 . We now
define a subsequence of {xn\n = 1, 2, •} inductively. Choose
xni e Gx Π M. Suppose xn. has been chosen for each i = 1, 2, , k — 1,
such that #n i e G i f l M and % > w ^ . Now observe that Gk Π M is
infinite. For suppose not; say Gkf]M={al1' ,am\. Then there
exists n0 > k such that diam GnQ < min{d(x, a{) \ί = 1, 2, , m}.
Clearly a{ g GWo for each i = 1, 2, , m. But then

implies M n G ^ — 0 , which is a contradiction. Hence we can choose
xnjc eGkf] M such that nk > nk-γ. Thus we have defined a subsequence
{θ5WA;|A; = 1, 2, •••} of S which is Cauchy. For let ε > 0 be given.
Then there is an integer N such that diam GN < ε. For i, j ^ N we
then have xn. eGiCZ GN and xn. e G3 c G,v. Thus d(xn., xnj) ^ diam
G ^ < ε .

( 3 ) implies (2): Assume MaX and xeM. Since X is first
countable there is a sequence {xn\n = 1, 2, •••} in Λf which converges
to a;. By (3), this sequence has a Cauchy subsequence {xnjc \k — 1, 2, •}.
Then {α?ΛA.|A; = 1, 2, •••} is a Cauchy sequence in M converging to x.

( 2 ) implies (1): Let MaX and assume xeM. Then, by (2),
there is a Cauchy sequence {xn\n = 1, 2, •••} in ikf which converges
to £. For each w, let Gn = {xi\i>: n}\i{x). Then {Gw|w = 1, 2, •}
is a descending sequence of sets of arbitrarily small diameters such
that for each n, xeGn and GnΓ)M Φ 0 .

DEFINITION. A space X is strongly semί-metrίzable if and only
if a semi-metric satisfying any one of the conditions of the previous
theorem can be realized on X. Such a semi-metric is called a strong
semi-metric.

THEOREM 1.6. A space X is strongly semί-metrίzable ίf and only
if ίt is a strongly semi-developable TQ-space.

Proof. Let d be a strong semi-metric for X. Then, by Theorem
1.5, d satisfies condition (1). Now consider the semi-development Δd

defined in Theorem 1.3. By the definition of Ad and the fact that d
satisfies the condition (1), it follows immediately that Ad is a strong
semi-development.

Conversely, let Δ = {gn\ = 1, 2, •} be a refining strong semi-
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development for the T0-space X. Let dΔ be the semi-metric on X as
defined in Theorem 1.3. Observe that with this semi-metric, diam
G <̂  2rn for each Gegn and n = 1, 2, . Thus it follows from the
definition of a strong semi-development that dΔ satisfies condition (1)
of the previous theorem and hence all of the conditions.

In [13], example 3.2 exhibits a paracompact, hereditarily separable
semi-metric space which is not developable. It is easy to see that
the semi-metric defined there is a strong one. This shows that a
strongly semi-developed space need not be developable.

In [5], Morton Brown noted the open question: "Does every
semi-metrizable space have a semi-metric under which all spheres are
open?" He then mentioned that such semi-metric spaces have the
property that every convergent sequence has a Cauchy subsequence,
i.e., are strongly semi-metrizable. R. W. Heath answered Brown's
question negatively in [9]. However in doing so he implicitly raised
two questions: (1) Does every strongly semi-metrizable space have a
semi-metric under which all spheres are open, and (2) Is every semi-
metrizable space strongly semi-metrizable? It can be shown that
Heath's space in [9] is strongly semi-metrizable and hence serves to
supply a negative answer to (1). The answer to (2) remains unknown.
Applying Theorems 1.5 and 1.6, we see that (2) is equivalent to the
following question: Is every semi-developable Γ0-space strongly semi-
developable?

The Urysohn Metrization Theorem [12; page 125] states that a
regular TΊ-space with a countable base is metrizable. However it is
not true that every separable regular Trspace is metrizable. Indeed
the Example 3.2 in [13] mentioned above exhibits a paracompact,
hereditarily separable, semi-metrizable space which is not metrizable.
It is in this light that the following theorem is of interest.

THEOREM 1.7. Every separable regular T0-space with a point-
finite semi-development is metrizable.

Proof. Let X be a separable regular TVspace and let

Δ = {gn\n= 1,2, . . . }

be a point-finite semi-development for X. Let Q be a countable dense
subset of X. Since, by Corollary 1.4, X is a regular 7\-space, it
suffices to show that X has a countable base, by the Urysohn
Metrization Theorem.

Let S = {GI q e G e gk for some q e Q and some integer k). Then S
is countable since each point of the countable set Q is contained in
only countably many sets of the semi-development Δ. Thus it suffices
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to show that the interiors of the closures of finite unions of members
of S is a base for X.

Let U be an open set in X containing the point xe X. Since X
is regular, there is an open set V such that x e V c U. Define a
subcollection £' of S as follows:

Sf = {GeS\xeGaV} .

Now S' Φ 0 . For xe V and F is open implies there is an integer
N such that x e Int St{x, gN) c St{x, gN) c F. Since Q is dense in X,
S£(*τ, fc)ΠQ^ 0 . Hence, there is an element qeQ and GegN such
that a?, q e G and C c F . Then clearly GeS'

Let S' = {Gu G2, •••} be an enumeration of S\ For each n, let
Γn = U {Gi I i = 1, , n}. Now let {Wn \ n = 1, 2, } be an open local
base at x such that for each n, Wn+1 c Wn c F. It suffices to show

that for some n0, WnQaTnQ. For in that case α e l n t TnQaV a U and
Int T%0 is a member of the proposed base. Suppose that this is not

the case, i.e., that for each integer n, Wn\Tn Φ 0 . Then for each

n, since Wn\Tn is an open set and Q is dense, there exists

xne(Wn\Tn)nQ .

Then the sequence {xn | n = 1, 2, } so defined clearly converges to
x. Observe that for each n, xn£ Tn and the sets {Tk\k = 1, 2, •}
are ascending. Thus xn $ Tk for each k ̂  n.

Now let N be an integer chosen as before such that St(x, gN) a V.
Notice that the only way elements of gN which contribute to St(x, gN)
might be excluded from Sr is by not containing an element of Q. As
was seen before there is at least one element of gN which belongs to
S'. Since there are only finitely many such elements there is one
which has a larger index in the enumeration of S' than any of the
others. If n0 is the index of that element, we see that Tno contains
the union of these elements. By a comment above, for n >̂ n0 we
have xn £ Tno. It follows that xn ί St(x, gN) for n ^ n0, since xn e Q for
each n and Q ΓΊ T%Q ZD Q n St(x, gN). But this contradicts the convergence
of the sequence {xn\n = 1, 2, •} to x.

Hence we must have that there exists an integer n0 such that

WnQ c T%0, and the theorem is proved.

DEFINITION. A space X is collectionwίse normal [4] if and only
if for each discrete collection S of subsets of X there is a collection
S' of mutually exclusive open sets covering \J{D\D e S} such that no
element of S' meets two elements of S.

In [14], McAuley proved that for semi-metric spaces collectionwise
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normality is equivalent to paracompactness.

COROLLARY 1.8. Every collectionwise normal locally separable
T0-space ivith a point-finite semi-development is metrizable.

Proof. Such a space is locally metrizable by Theorem 1.7 and is
paracompact by McAuley's result and Theorem 1.3. Therefore, it is
metrizable by a theorem of Smirnov [17].

PROPOSITION 1.9. Every Lindelof semi-developable space is
separable.

Proof. Let X be a Lindelof space with a semi-development
A = {gn\n = 1, 2, •}. For each integer n, consider the open cover
of X, Sn = {Int St{x, gn)\xeX}. Since X is a Lindelof space, there
is a countable subset of X, Qn = {yι

n, y\, •} such that Δn = {Int
St{yi, gn)\i = 1, 2, •} covers X. Let Q = U{QJw = 1, 2, • .}. Then
Q is a countable subset which is dense in X. For suppose not, and
let xeX\Q. Then there is an integer n such that St(x, gn)ΠQ = 0 .
But Δn covers X, and so there is some y\ eQnczQ such that x e Int
St(yi, gn) c £ % ; , gn). Hence ?/! e S φ , gn) n Q. Contradiction.

COROLLARY 1.10. Every regular Lindelof T0-space with a point-
finite semi-development is a separable metric space.

Proof. Theorem 1.7 and Proposition 1.9.

COROLLARY 1.11. Every collectionwise normal locally Lindelof
To-spaoe with a point-finite semi-development is metrizable.

Proof. Corollary 1.8 and Proposition 1.9.

Example 3.3 in [13] is an example of a separable semimetric
space which is not hereditarily separable. The following proposition
shows that this cannot happen in a point-finite s.d. space.

PROPOSITION 1.12. A separable space with a point-finite semi-
development is hereditarily separable.

Proof. Let X be a space with a point-finite semi-development
Δ — {gn\n = 1, 2, •} and a countable dense subset Q. Let YczX.
Define S = {G\Gegn for s o m e n, Gf)Q^0^Gf)Y}. T h e n , s i n c e
Δ is point-finite and Q is countable, S is countable. For each Ge S

choose peG f]Y and let P be the set of all points so chosen. Then
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P is a countable subset of Y. Also P is dense in Y. For let U be
an open set in Y containing the point ye Y. Let g'n = {Gπ Y\Ge gn}
for each integer. Then {g'n\n = 1, 2, •••} is a semi-development for
Y, and therefore, there is an integer n such that y e St{y, g'n) (z U.
Since Q is dense in X, there is some Gegn such that G Π Q ^ 0 and
yeG. Then G e S, and hence, there is a point p e P contained in G,
by definition of P. Therefore pe G n Γ c St{y, gf

n)aU,Le, Uf]P^ 0
Hence, y e Pγ which was to be proved.

It should be noted that this theorem is also true for point-
countable semi-developable spaces, by the same proof.

2Φ Some quotient images of metric spaces* We will consider
in this section the images of metric spaces under certain kinds of
maps. We will be primarily interested in pseudo-open maps. This
class of functions was first defined by McDougle in [15] and has
recently been rediscovered by ArhangePskii [2] and Din' N'e T'ong
[18]. P-maps were defined by Ponomarev [16]. In [11], Heath proves
that among 2\-spaces, the developable spaces are precisely the open
P-images of metric spaces. The main results of this section are
characterizations, among T0-spaces, of pseudo-open P-images and
pseudo-open compact images of metric spaces in terms of semi-develop-
ments. In addition, Int P-maps are defined, and, among Γ0-spaces,
the images of metric spaces under Int P-maps are shown to be the
semi-developable spaces.

Throughout the remainder of this paper, by a map we shall mean
a continuous function.

DEFINITIONS. Let X and Y be topological spaces, and let / be
a map from X onto Y. In (2) and (3), let X be a metric space.

(1) / i s pseudo-open if and only if for each y e Y and each
open neighborhood U of f~ι{y) in X, yelnt f(U).

(2) / is a P-map if and only if for each y e Y and each open
neighborhood V of y, there is ε > 0 such that f[S{f~ι{y); ε)] c V,
where S(f-\y); e) = {x e X\d(x, f~\y)) < ε}.

(3) / is an Int P-map if and only if / is a P-map such that
for each ε > 0 and each yeY, ye Int f[S{f~ι{y)\ ε)].

(4) / is a compact map if and only if for each yeY, f~ι(y) is
a compact subset of X.

Note that P-map and Int P-map are metric and not topological
properties. However, the definitions and the following related
theorems may easily be restated topologically in terms of the existence
of an appropriate metric.

A map / from a space X onto a space Y is said to have a
property hereditarily if and only if the restriction of / to every
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saturated subset of X has that property, i.e., for each ΛfcF, /
restricted to f~~ι(M) has the property.

THEOREM 2.1. Let f be a map from the space X onto the space
Y. Then the following conditions are equivalent.

( 1 ) f is pseudo-open.
( 2 ) f is hereditarily quotient.

( 3 ) For each MaY,yeM if and only if f~ι{y) n f"\M) Φ 0 .

Proof. The equivalence of (1) and (2) is due to ArhangeFskii
[2] and that of (1) and (3) is due to McDougle [15].

LEMMA 2.2. Let Δ — {gn\n = 1, 2, •} be a semi-development for
a T0-space X. If {Gn\n = 1, •••} is a sequence of sets such that
Gnegn for each n, then Π{Gn\n — 1, 2, •} contains at most one
point.

Proof. Trivial.

In the proofs of the subsequent theorems we need the following
lemma. The proof of the lemma is routine and is omitted.

LEMMA 2.3. Let {gn\n — 1, 2, ••} be a sequence of sets, and let
Z = x {gnIn = 1, 2, •} = {G = GXG2 -*-\Gnegnίoτ each n}. Give Z the
product topology p determined by giving each gn the discrete topology.
Define d: ZxZ->R as follows: For G = G,G2 , H - H,H2 e Z,
let d(G, H) = 1/n where n is the least integer such that GnΦ Hn.
Then d defines a metric on Z which is compatible with the product
topology p defined above.

THEOREM 2.4. A T0-space Y is semi-developable if and only if it
is the image of a metric space under an Int P-map.

Proof. Let Δ — {gn\n — 1, 2, •••} be a refining semi-development
for Y. Construct the metric space Z from Δ as in Lemma 2.3. Let
X be the subspace of Z consisting of all points G = GXG2 e Z such
that for some ye Y,f){Gn\n = 1, 2, •••} = {y}. Let d denote the
metric on X obtained by restricting the metric on Z to X. Define a
function / from X into Y as follows: For G = GLG2 e X, let
f(G) = Γi{Gn\n = 1, 2, •••}. Then / takes X onto Y by Lemma 2.2.
Also, / is an Int P-map. For suppose ye Y and U is an open
neighborhood of y. Since Δ is a semi-development for Y, there is an
integer n such that y e Int St(y, gn) c St(y, gn) c U. Let
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H = H,H2 . . . e l

be such t h a t d(H, f~ι{y)) < 1/n. Then there is G = G,G2- . e l such
that f(G) = y and d(G, H) < 1/n, i.e., G{ = H, for i = 1, -- ,n.
Hence, y eGi = Ht for ί = 1, 2, •••, n, and so

f(H)= Π{Hi\i = 1,2, '-}dHn(zSt(y,gn)czU.

Thus, f(S(f~ι(y); 1/n)) c £/. It follows that / is a P-map. If we
show that for each integer n and for each yeY,

St(y,gn)<zf(S(f-\yy,l/n)),

then clearly / is an Int P-map. Let n be any integer, let y e Y,
and let z e St(y, gn). Then there is Gn e gn such that z, y e Gn. Hence,
for ί = 1, 2, , n, there is G* e gt such that z,ye Gi9 since gt < g^
for each i. Then choosing iJ£ e ̂  such that ze H{ for each i > n and
letting if,: = Gi for i = 1, 2, , n, we see that

H=HιH2- -eS(f-1(y);l/n)

and / ( i ϊ ) - «. Hence z e f(S(f-\y)', 1/ri)). Therefore,

St(y,gn)(zf(S(f^(y);l/n))

which was to be shown.
Conversely, let X be a metric space and let / be an Int P-map

from X onto Y. For each integer n, let gn = {f(S(x; l/n))\xe X}.
Then Δ — {gn\n = 1, 2, •} is a semi-development for F. For let
y e Yy and let U be an open neighborhood of y. Since / is an Int
P-map, there is an integer n such that f{S{f~~ι(y)\ 1/ri)) is a neigh-
borhood of y contained in U. Then St(y, g2n) c ίλ For assume
y e f(S(x; l/2n)) for some α e X Then S(a?; l/2w) Π/"'(l/) Φ 0, and
therefore, S(α;; l/2n) c Sif-'iy); 1/ri). Hence,

/(S(aj; l/2w)) c /(S(/-1(τ/);l/7^)) c U .

Therefore, St(y, g2n)(zU. Finally for each integer n and each y e Y,
y e Int St(y, gn). This is so since for each integer n and yeY,yeInt
f{S{f-\y)) 1/n)) - Int (U {f(S(x; 1/n)) \ x e f~\y)}) c Int St(y, gn). Thus
Δ is a semi-development for Y.

The same proof yields the following.

THEOREM 2.5. A T0-space is semi-developable if and only if it is
the image of a subspace of a zero-dimensional complete metric space
under an Int P-map.

REMARKS. An Int P-map need not be a quotient map as may be
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seen from the following example. Let R = real numbers,

X = {(Xy y)eRxR\0 < x ^ 1 and y = I/a;, or x = 0},

and F = { c c G i 2 | 0 ^ ί c ^ l } . Let X and F have the usual topologies,
and let X have the metric inherited from RxR. Let / be the projection
from X onto Y defined by f((x, y)) = a?. Then / is not a quotient
map since f~\A) is closed in X, but A is not closed in Y, where
A = {y e Y\0 < y <^ I}. It is easy to see that / is an Int P-map.

One important class of P-maps are the compact maps. If an Int
P-map is a compact map, then it is also pseudo-open. Furthermore,
every quotient Int P-map onto a Γ2-space is a pseudo-open P-map.
These statements are verified in Corollaries 2.10 and 2.11 below.

THEOREM 2.6. A T0-space is strongly semi-developable if and only

if it is a pseudo-open P-image of a metric space.

Proof. Let Δ = {g%\n = 1,2, •••} be a strong refining semi-
development for the TVspace X. Define the metric space X and the
P-map / from X onto Y as in Theorem 2.4. It remains to be shown
that / is pseudo-open. Let MaY and yeM. By Theorem 2.1, it

suffices to show that f~ι{y) Π f~ι{M) Φ 0 . Now yeM implies there
is a descending sequence {Gn \ n — 1,2, } of sets such that for each
n, yeGne gn and Gnf]Mφ 0 , since Δ is a strong semi-development.
Thus G = GiG2 G f~\y). Now let ε > 0 and let n be an integer
such that 1/n < ε. Let z e GnΠ M. For i > n, we can choose Hi e ^
such that z e H{. For i ^ n, let H{ = G{. Thenn{flί | i = 1, 2, •} = z,
by Lemma 2, and therefore, H = -HΊ-Hi e X. In particular,
He f-\M) since z e M. Also Hi = G< for i = 1, , w implies

ϊ, G) ^ 1/rc < ε. Hence we have shown that S(G; ε) f] f~ι{M) Φ 0

for each ε > 0. Thus Gef~ι(M), and therefore, Ge f-\y)[\f-ι{M).
Conversely, let X be a metric space, and let / be a pseudo-open

P-map onto the Γ0-space Y. For each integer n, let

g» = {f(S(x;l/n)\xeX},

and let Δ = {gn\n — 1, 2, •}. As was seen in Theorem 2.4, J is a

semi-development for Y. There only remains to be shown that Δ is

a strong semi-development for Y. Let MaY, and yeM. Then /

is pseudo-open implies Z" 1 ^) Π f~\M) Φ 0 , by Theorem 2.1. Let

xef-\y)ΐ)f-ι{M). Hence S(α; 1/w)Π/""W) ^ 0 f o r e a c h integer n
implies f(S(x; 1/n)) f]M Φ 0 for each integer n. Then letting
GM = f(S(x; 1/n)) for each integer n, we have that {G%|^ = 1, 2, •••}
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is a descending sequence of sets such that for each n, y eGne gn and
GnΓ\MΦ 0 . Hence, A is a strong semi-development for Y.

As before, the same proof yields.

THEOREM 2.7. A TV-space is strongly semi-developable if and
only if it is the image of a subspace of a zero-dimensional complete
metric space under a pseudo-open P-map.

Recall that a Frechet space is a space X which satisfies the
following condition: For each J l ί c l , xeM if and only if there is a
sequence in M converging to x.

The following theorem is due to ArhangeΓskii [2] and is proved
by Franklin in [7].

THEOREM 2.8. // X and Y are Hausdorff spaces, X is a Frechet
space, and f is a quotient map from X onto Y, then Y is a Frecht
space if and only if f is pseudo-open.

THEOREM 2.9. Let X be a metric space, Y a T2-space and f a
quotient P-map from X onto Y. Then the following are equivalent:

( 1 ) Y is a Frechet space.
( 2 ) Y is 1st countable.
( 3 ) Y is ssmi-metrizable.
( 4 ) Y is strongly semί-metrizable.
( 5 ) f is pseudo-open.

Proof. (1) implies (5). Theorem 2.8, since metric spaces are
Frechet.

( 5 ) implies ( 4 ). Theorem 1.8 and Theorem 2.6.
( 4 ) implies ( 3 ). Immediate.
( 3 ) implies ( 2 ) . Immediate.
( 2 ) implies ( 1 ) . Well-known.

COROLLARY 2.10. Let X be a metric space and Y a T2-space.
Then an Int P-map f from X onto Y is a quotient map if and only
if it is a pseudo-open P-map.

COROLLARY 2.11. Let X be a metric space, Y a space, and f a
compact Int P-map from X onto Y. Then f is pseudo-open.

Proof. Let X, Y and / be as stated, and let U be an open set
containing f~ι{y), for some y e Y. Then since f~\y) is compact, there
is ε > 0 such that S{f~ι{y)', e) c U. Then, since / is an Int P-map,
yelnt f(S(f"'(y); e)) clnt f(U).
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THEOREM 2.12. A TQ-space is point-finite strongly semi-developable
if and only if it is a pseudo-open compact image of a metric space.

Proof. Let A = {gn\n = 1, 2, •} be a refining point-finite strong
semi-development for the T0-space Y. Since A is a strong semi-
development for Y, we can define a metric space X and a pseudo-
open map / from X onto Y just as was done in the proof of Theorem
2.6. Hence the proof will be complete if it can be shown that / is
a compact map. Let yeY. For each integer n, let

Then, for each n, gn(y) is a finite set, by assumption. It is clear
that for each sequence G = Gfii such that Gn e gn(y) for each nf

we have thatf]{Gn\n = 1, 2, •••} = {y}, i.e., GeX and, in particular,
Gef-'iy). Hence it is clear that f~\y) = {G = G& | Gn e gn(y)}
By Lemma 2.3, the metric topology on X is compatible with the
subspace topology of Z = x {gn\n = 1, 2, •} where each gn is given
the discrete topology and Z is given the product topology. Hence
we have that f~1(y):= x {gn(y)\n = 1, 2, •••} is compact, being the
product of compact sets, since each gn(y) is a finite discrete set.
Thus / is a compact map.

Conversely, let X be a metric space, and let / be a pseudo-open
compact map from X onto Y. For each positive integer n, let JK
be an open cover of X which is a locally finite refinement of
{S(x; 1/n) I x e X}. This can be done since X is a paracompact space.
Let ^ = JK> and for n > 1, let ^ = ^n-x Λ JK For each positive
integer n, let gn = {/(£) | £ e .^} , and let J = {gn \ n = 1, 2, •}. Then
A is a semi-development. For let U be an open neighborhood of a
point | / G Γ . Since / is a compact map and consequently a P-map,
there is an integer n such that f{S{f~ι{y)\ l/n))aU. Then St(y, g2n)aU.
F o r l e t yef(B) w h e r e Be.^2n. B y def in i t ion of ^ 2 w , t h e r e is xeX
s u c h t h a t 5 c S(α; 1/2%). T h e n # e /(S(α;; 1/2%)); so

^ ) ^ 0 ,

and therefore, S(#; 1/2%) c S(f~x(y); 1/n). Hence,

f(B) c /(S(a;; 1/2)) c f(S(f~\y); 1/n)) c C7 .

Thus, St(y, g2n) c Z7. Now for each 7/ e Y and each integer %, let
έ&n(y) = {Be . ^ I f~ι{y) n ΰ ^ 0 } . Then ^ ( y ) = {B e . ^ 11/ e /(£)}.
Hence, U {/(i?) | B e &n(y)} = St(y, gn). Now U {B \ B e &n(y)} is an open
set containing f~\y) and / is pseudo-open, and so

y eIntf(Ό{B\Be <5&(y)}) = Int (U{f(B)\Be <&n(y)}) = Int St(y, gn) .
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Thus we have shown that A is a semi-development for Y.
A is also a strong semi-development for Y. First note that for

any HcX, xeH implies there exists a descending sequence of sets
{BnIn = 1, 2, } such that for each n, xe Bne &n and BnΓ\Hφ 0 .
This is true because each s/n is an open cover and, by construction,

for each n. Now assume J l ί c Γ and yeM.

Since / is pseudo-open we have f~\y) Π f~ι{M) Φ 0 . So let

Then xef~ι{M) implies, by the comment above, that there is a
descending sequence of sets {Bn\n = 1, 2, •••} such that for each n,
xeBne,^n and BnΠ f"W) Φ <Z. Then {f(Bn)\n = 1, 2, . •} is a
descending sequence of sets such that f(Bn) Π Λf Φ 0 and /(!?») e £/n

for each w. Also, x e f~ι{y) Π -β% for each n, and hence, y e f(Bn) for
each n. Thus J is a strong semi-development for Y.

Finally A is point-finite. For let y e Y and let n be any integer.
&n is locally finite and f~ι{y) is compact. Therefore, there is an
open set containing f"\y) which meets only finitely many members
of ^ . Hence f~ι{y) Π B Φ 0 for only finitely many B e &n9 and
therefore, yef(B) for only finitely many B e . ^ .

As before, the same proof yields

THEOREM 2.13. A T0-space is point-finite strongly semi-developable
if and only if it is the image of a subspace of a zero-dimensional
complete metric space under a pseudo-open compact map.

COROLLARY 2.14. Let X be a regular separable TQ-space which is
a pseudo-open compact image of a metric space. Then X is metrizable.

Proof. Theorem 1.7 and Theorem 2.12 above.

COROLLARY 2.15. [3; page 128]. Let X be a regular Lindelof
T0-space which is a pseudo-open compact image of a metric space.
Then X is metrizable.

Proof. Proposition 1.9 and Corollary 2.14 above.

ArhangeΓskii has asked the following question: Is a paracompact
Γ2-space that can be expressed as a pseudo-open compact image of a
metric space metrizable?

Corollary 2.15 answers a weakened version of his question
affirmatively, and it is thought that Theorem 2.12 may aid in the
eventual resolution of the problem.
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THEOREM 2.16. A collectionwise normal T^space Y is metric and
locally separable if and only if Y is a pseudo-open compact image of
a metric locally separable space.

Proof. The necessity of the condition is immediate. For the
sufficiency, let X be a metric locally separable space, and let / be a
pseudo-open compact map from X onto Y. By Theorem 2.12 and
Corollary 1.8, it suffices to show that Y is locally separable. Let
y G Y. Now X is locally separable implies that for each x e f~ι{y)
there is an open separable subset of X, U(x), containing x. Since
f~ι(y) is compact there exist xu , xn e f~ι(y) such that

f-\y)aU= U{U(xi)\i = l, •••,!*}.

Then U is clearly separable, and hence, so is f(U) since / is
continuous. Also U is an open set containing f~ι{y), and therefore,
f(U) is a neighborhood of y, since / is pseudo-open. Thus, since
separability is hereditary in a T0-spac9 with a point-finite semi-
development, by Proposition 1.12, Y is locally separable.

THEOREM 2.17. A colleztionwίse normal T0-space Y is a locally
compact metric space if and only if Y is a pssudo-opsn, compact
image of a locally compact mctrij spazc.

Proof. The necessity is trivial. Note, by Proposition 1.9, that
a locally compact TV-space with a point-finite semi-development is
locally separable. Therefore it is metrizable, by Corollary 1.8, if it
is collectionwise normal. Hence it suffices to show that local com-
pactness is preserved by pseudo-open compact maps. An argument
analogous to that in the previous theorem shows this.
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