ON THE OTHER SET OF THE BIORTHOGONAL POLYNOMIALS SUGGESTED BY THE LAGUERRE POLYNOMIALS

Tilak Raj Prabhakar

Recently Konhauser considered the biorthogonal pair of polynomial sets $\left\{Z_{n}^{\alpha}(x ; k)\right\}$ and $\left\{Y_{n}^{\alpha}(x ; k)\right\}$ over $(0, \infty)$ with respect to the weight function $x^{\alpha} e^{-x}$ and the basic polynomials x^{k} and x. For the polynomials $Y_{n}^{\alpha}(x ; k)$, a generating function, some integral representations, two finite sum formulae, an infinite series and a generalized Rodrigues formula are obtained in this paper.

Biorthogonality and some other properties of $Z_{n}^{\alpha}(x ; k)$ and $Y_{n}^{\alpha}(x ; k)$ for any positive integer k were discussed by Konhauser ([1], [2]). For $k=2$, the polynomials were discussed earlier by Preiser [4]. For $k=1$, the polynomials $Y_{n}^{\alpha}(x ; k)$, as also $Z_{n}^{\alpha}(x ; k)$, reduce to the generalized Laguerre polynomials $L_{n}^{\alpha}(x)$.

In a recent paper [3], we obtained generating functions and other results for the polynomials $Z_{n}^{\alpha}(x ; k)$ in x^{k}. The present paper is concerned only with the polynomials $Y_{n}^{\alpha}(x ; k)$ in x which form the other set of the biorthogonal pair. The results of the paper reduce, when $k=1$, to some standard properties of $L_{n}^{\alpha}(x)$. Simplicity of the procedure for deriving the generating relation (2.1) which may be regarded as our principal result, seems to be of some passing interest.
2. A generating function for $Y_{n}^{\alpha}(x ; k)$. We begin with the contour integral representation [2, (26)]

$$
\begin{equation*}
Y_{n}^{\alpha}(x ; k)=(k / 2 \pi i) \int_{C} e^{-x t}(t+1)^{\alpha+k n}\left[(t+1)^{k}-1\right]^{-(n+1)} d t \tag{2.1}
\end{equation*}
$$

where we take C as a closed contour enclosing $t=0$ and lying within $|t|<1$. If we make the substitution $u=1-(t+1)^{-k}$, we get another integral representation for $Y_{n}^{\alpha}(x ; k)$, viz.

$$
\begin{equation*}
Y_{n}^{\alpha}(x ; k)=(2 \pi i)^{-1} \int_{C^{\prime}}(1-u)^{-(\alpha+1) / k} \exp \left[x\left\{1-(1-u)^{-1 / k}\right\}\right] u^{-n-1} d u \tag{2.2}
\end{equation*}
$$

C^{\prime} being a circle with centre $u=0$ and a small radius. By standard arguments of complex analysis we obtain the generating relation

$$
\begin{equation*}
\sum_{n=0}^{\infty} Y_{n}^{\alpha}(x ; k) u^{n}=(1-u)^{-(\alpha+1) / k} \exp \left[x\left\{1-(1-u)^{-1 / k}\right\}\right] \tag{2.3}
\end{equation*}
$$

for $\operatorname{Re}(\alpha+1)>0,|u|<1$ and positive integers k.

Since the generating relation (2.3) is of the form

$$
A(u) \exp [x H(u)]=\sum_{n=0}^{\infty} Y_{n}^{\alpha}(x ; k) u^{n},
$$

it at once follows ([6], [5]) that the set $\left\{Y_{n}^{\alpha}(x ; k)\right\}$ is of Sheffer A-type zero. One of the several immediate consequences of this fact [5, Theorems 73-76] is that there exists a sequence $\left\{h_{i}\right\}$ independent of x and n such that

$$
\begin{equation*}
D Y_{n}^{\alpha}(x ; k)=\sum_{m=0}^{n-1} h_{m} Y_{n-m-1}^{\alpha}(x ; k) . \tag{2.4}
\end{equation*}
$$

In (2.2) putting $s=x^{k}(1-u)^{-1}$, we are led to still another integral representation

$$
\begin{equation*}
Y_{n}^{\alpha}(x ; k)=(2 \pi i)^{-1} e^{x} x^{k-\alpha-1} \int_{o} s^{n-1+(\alpha+1) / k} \exp \left(-s^{1 / k}\right)\left(s-x^{k}\right)^{-n-1} d s \tag{2.5}
\end{equation*}
$$

where σ denotes the circle $\left|s-x^{k}\right|=r$ with small r. Evidently σ may be any small closed contour encircling $s=x^{k}$.

Evaluating the integral in (2.5) by the residue theorem, we obtain a generalized Rodrigues formula:

$$
\begin{equation*}
Y_{n}^{\alpha}(x ; k)=(n!)^{-1} e^{x} x^{k-\alpha-1}\left[D^{n} s^{n-1+(\alpha+1) / / b} \exp \left(-s^{1 / k}\right)\right]_{s=x^{k}} . \tag{2.6}
\end{equation*}
$$

For $k=1$, it reduces to the Rodrigues formula for $L_{n}^{\alpha}(x)$.
3. Applications. In this section we apply the generating relation of the previous section to obtain two finite sum formulae for $Y_{n}^{\alpha}(x ; k)$ and also to prove a result involving an infinite series of these polynomials.
a. Two finite sums involving $Y_{n}^{\alpha}(x ; k)$. From the generating relation (2.3) and the simple relation

$$
(1-u)^{-(\alpha+1) / k}=(1-u)^{-(\beta+1) / k} \sum_{m=0}^{\infty}(m!)^{-1}\left(\frac{\alpha-\beta}{k}\right)_{m} u^{m},
$$

if follows that

$$
\begin{equation*}
Y_{n}^{\alpha}(x ; k)=\sum_{m=0}^{n}(m!)^{-1}\left(\frac{\alpha-\beta}{k}\right)_{m} Y_{n-m}^{\beta}(x ; k) \tag{3.1}
\end{equation*}
$$

where α and β are arbitrary.
Also from (2.3), on using

$$
\begin{aligned}
&(1-u)^{-((\alpha+\beta+1)+1) / k} \exp \left[(x+y)\left\{1-(1-u)^{-1 / k}\right\}\right] \\
&=(1-u)^{-(\alpha+1) / k} \exp \left[x\left\{1-(1-u)^{-1 / k}\right\}\right] \cdot(1-u)^{-(\beta+1) / k} \\
& \quad \times \exp \left[y\left\{1-(1-u)^{-1 / k}\right\}\right]
\end{aligned}
$$

we get that

$$
\begin{equation*}
Y_{n}^{\alpha+\beta+1}(x+y ; k)=\sum_{m=0}^{n} Y_{m}^{\alpha}(x ; k) Y_{n-m}^{\beta}(y ; k) \tag{3.2}
\end{equation*}
$$

for arbitrary α and β.
b. A series of polynomials $Y_{n}^{\alpha}(x ; k)$. We show that

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(n+m)!}{n!m!} Y_{n+m}^{\alpha}(x ; k) u^{n} \\
& \quad=(1-u)^{-(\alpha+m k+1) / k} \exp \left[x\left\{1-(1-u)^{-1 / k}\right\}\right] Y_{m}^{\alpha}\left(x(1-u)^{-1 / k} ; k\right) . \tag{3.3}
\end{align*}
$$

Using the obvious result

$$
1-u-v=(1-u)\left\{1-v(1-u)^{-1}\right\}
$$

we have that

$$
\begin{aligned}
F(u, v) \equiv & (1-u-v)^{-(\alpha+1) / k} \exp \left[x\left\{1-(1-u-v)^{-1 / k}\right\}\right] \\
= & (1-u)^{-(\alpha+1) / k} \exp \left[x\left\{1-(1-u)^{-1 / k}\right\}\right] \cdot\left(1-v(1-u)^{-1}\right)^{-(\alpha+1) / k} \\
& \cdot \exp \left[x(1-u)^{-1 / k}\left\{1-\left(1-v(1-u)^{-1}-1 / k\right\}\right]\right. \\
= & (1-u)^{-(\alpha+1) / k} \exp \left[x\left\{1-(1-u)^{-1 / k}\right\}\right] \\
& \cdot \sum_{m=0}^{\infty} Y_{m}^{\alpha}\left(x(1-u)^{-1 / k} ; k\right)\left[v(1-u)^{-1}\right]^{m},
\end{aligned}
$$

applying (2.3). But using (2.3), we also find that

$$
\begin{aligned}
F(u, v) & =\sum_{n=0}^{\infty} Y_{n}^{\alpha}(x ; k)(u+v)^{n} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} u^{n-m} v^{m} Y_{n}^{\alpha}(x ; k) \\
& =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(m+n)!}{m!n!} Y_{n+m}^{\alpha}(x ; k) u^{n} v^{m} .
\end{aligned}
$$

Comparing the coefficients of v^{m} in the two expansions obtained for $F(u, v)$, we obtain (3.3).

This result is analogous to a property possessed by almost all the classical orthogonal polynomials [5; 95(7), 111(1), 120(9), 144(23)] except possibly by the Jacobi polynomials.

References

1. J. D. E. Konhauser, Some properties of biorthogonal polynomials, J. Math. Anal. Appl., 11 (1965), 242-260.
2. —, Biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math., 21 (1967), 303-314.
3. Tilak Raj Prabhakar, On a set of polynomials suggested by Laguerre polynomials, Pacific J. Math., 35 (1970), 213-219.
4. S. Preiser, An investigation of biorthogonal polynomials derivable from ordinary differential equations of the third order, J. Math. Anal. Appl., 4 (1962), 38-64.
5. E. D. Rainville, Special Functions, Macmillan, New York, 1960.
6. I. M. Sheffer, Some properties of polynomial sets of type zero, Duke Math. J., 5 (1939), 590-622.

Received June 29, 1970.
Ramjas College
University of Delhi

