ATOMIC AND DIFFUSE FUNCTIONALS ON A C*-ALGEBRA

G. K. Pedersen

It is shown that the notion and basic properties of atomic and diffuse measures have exact analogues in the theory of functionals on operator algebras.

We regard a C^* -algebra A as the non-commutative analogue of an algebra $C_0(T)$ of continuous functions vanishing at infinity on some locally compact space T. It has been shown in [3], [4], [5], [13] and [14] that, at least when A is separable, there is also a reasonable analogue of the Borel functions on T, namely the σ -closure \mathscr{B}_A of A. In this paper we prove that \mathscr{B}_A has an abundance of minimal projections, corresponding to points in T, and thus the notion of atomic and diffuse measures on T can be generalized to the non-commutative situation, since the diffuse measures are characterized as those measures that vanish at all points of T.

Let A be a separable C*-algebra and denote by P the set of pure states of A. Choose in P a maximal set $\{f_t: t \in T\}$ of pairwise inequivalent pure states of A. If (π_t, H_t) denotes the irreducible representation of A corresponding to f_t , we define the *reduced atomic* representation ρ of A as operators on the Hilbert space $H_a = \Sigma^{\oplus} H_t$ by

$$\rho(x)(\Sigma^{\oplus}\xi_t) = \Sigma^{\oplus}\pi_t(x)\xi_t .$$

The reduced atomic representation is faithful and each pure state of A is a vector functional from H_a . Since any other choice of a maximal set in P will give an equivalent representation, the reduced atomic representation is essentially unique. In particular the cardinality of T is uniquely determined as the cardinality of the set \hat{A} of equivalence classes of irreducible representations of A. In what follows we shall identify A with its image $\rho(A)$.

Let $\mathscr{B}_{A}^{\mathbb{R}}$ denote the monotone σ -closure of the self-adjoint part of A. Then $\mathscr{B}_{A}(=\mathscr{B}_{A}^{\mathbb{R}}+i\mathscr{B}_{A}^{\mathbb{R}})$ is a C^{*} -algebra in $B(H_{a})$ called the *Baire operators* of A [14, Theorem 1]. Each representation (π, H) of A extends to a σ -normal representation of \mathscr{B}_{A} ([3, Theorem 3.2]) such that $\pi(\mathscr{B}_{A})$ is the monotone σ -closure of $\pi(A)$ in B(H) ([13, Proposition 4.2]). In particular, if (π, H) is irreducible we have $\pi(\mathscr{B}_{A}) = B(H)$.

THEOREM 1. There is a bijective correspondence between pure states of A and minimal projections of \mathscr{B}_{4} .

Proof. Since A is separable, each point f in P is a closed G_s set. Hence there is a peaking element x in A^+ , with ||x|| = 1, such that f(x) = 1 and g(x) < 1 for each state $g \neq f$ ([7, Theorem 9]). We have $x^n \searrow p$, where p is a projection in \mathscr{B}_A . If ξ is a unit vector in H_a representing f, then $(p\xi|\xi) = 1$. For any unit vector η in H_a which is not a multible of ξ we have $(y\eta|\eta) \neq (y\xi|\xi)$ for some y in A; hence $(p\eta|\eta) < 1$. It follows that p is the one-dimensional projection on the subspace spanned by ξ , and consequently minimal.

If, conversely, p is a minimal projection in \mathscr{B}_A , then $p\mathscr{B}_A p$ is a commutative algebra, isomorphic with the complex field. The functional f on \mathscr{B}_A , defined by f(x) = pxp, is the unique state extension of the identity map on $p\mathscr{B}_A p$ ([11, Theorem 1.2]), which is pure; and therefore f is a σ -normal pure state of \mathscr{B}_A . But then $f \in P$. If ξ is a unit vector in pH_a , then $f(x) = (x\xi | \xi)$ and it follows from the first part of the proof that p is one-dimensional. Thus the correspondence is bijective, and the theorem follows.

COROLLARY 2. There is a bijective correspondence between elements in \hat{A} and minimal projections in the center \mathscr{C} of \mathscr{B}_{A} .

REMARK. Since \mathscr{G}_A has a unit, we can identity \mathscr{C} with a σ closed algebra of bounded functions on \hat{A} . The projections in \mathscr{C} then constitute the sets in a σ -field on \hat{A} , called the *Davies-Borel structure* on \hat{A} . The above corollary tells us that points in \hat{A} are Davies-Borel sets (cf. [5, Theorem 2.9]).

Let \mathscr{F} denote the smallest monotone closed C^* -subalgebra of \mathscr{B}_A , which contains all minimal projections of \mathscr{B}_A . Then \mathscr{F} can be indentified with the set of operators x in the direct sum $\Sigma_{t \in T}^{\oplus} B(H_t)$, such that $x_t = 0$ except for countably many t in T. In particular, \mathscr{F} is an ideal of \mathscr{B}_A .

DEFINITION. A positive functional f on A is called *atomic* if there is a projection p in \mathscr{F} such that f(1-p) = 0; f is called *diffuse* if it vanishes at all minimal projections of \mathscr{B}_A .

PROPOSITION 3. Each positive functional f on A has a unique decomposition $f = f_a + f_d$ such that f_a is atomic and f_d is diffuse. Moreover, f_a and f_d are centrally orthogonal.

Proof. Let α be the norm of the functional $f | \mathscr{F}$ on \mathscr{F} . There is then a sequence $\{p_n\}$ in the unit ball of \mathscr{F}^+ such that $f(p_n) \nearrow \alpha$. Replacing p_n with its range projection, we may assume that all p_n are projections. Let p be the central support of $\lor p_n$. Then

 $p \in \mathscr{C} \cap \mathscr{F}$ and $f(p) = \alpha$. Put $f_a(x) = f(px)$ and $f_d(x) = f((1-p)x)$. Then $f_a(1-p) = 0$, hence f_a is atomic; and for each x in \mathscr{F}^+ , with $||x|| \leq 1$, we have $f(x(1-p)+p) \leq \alpha$, hence $f_d(x) = 0$, and thus f_d is diffuse. By construction f_a and f_d are centrally orthogonal.

REMARK. We see from the proof that a bounded functional will be atomic (respectively diffuse) if and only if the restriction to \mathscr{C} induces an atomic (respectively diffuse) measure on the Davies-Borel structure of \hat{A} .

PROPOSITION 4. A positive functional f on A is atomic exactly if it has the form $f = \Sigma \alpha_n f_n$, with f_n in P. Moreover, the summands can be chosen such that $f_n \perp f_m$ for $n \neq m$.

Proof. If f is atomic and f(1-p) = 0 for a projection p in \mathscr{F} , then, assuming that $p \in \mathscr{C}$, we have $p = \Sigma p_k$, where each p_k is a minimal projection in \mathscr{C} . Thus $f = \Sigma f_k$, where $f_k(x) = f(p_k x)$, and each f_k is a σ -normal functional on $B(H_k)(=p_k \mathscr{D}_A)$. There is then for each k an orthonormal basis $\{\xi_{nk}\}$ for H_k and a sequence $\{\alpha_{nk}\}$ of positive constants such that $f_k(x) = \Sigma \alpha_{nk}(x\xi_{nk}|\xi_{nk})$, for all x in \mathscr{D}_A . If f_{nk} denotes the pure state of A determined by ξ_{nk} , then $f = \Sigma \alpha_{nk} f_{nk}$, and since the f_{nk} 's are supported by pairwise orthogonal (minimal) projections in \mathscr{D}_A , they are themselves orthogonal.

Conversely, if $f = \Sigma \alpha_n f_n$, with all f_n in P, then for each n let p_n be the minimal projection in \mathscr{B}_A such that $f_n(p_n) = 1$. Then $p = \bigvee p_n \in \mathscr{F}$ and f(1 - p) = 0. Hence f is atomic, completing the proof.

DEFINITION. An atom for a positive functional f on A is a projection p in \mathscr{B}_A , such that f(p) > 0, but f(q)f(p-q) = 0, for any projection q in \mathscr{B}_A smaller than p.

PROPOSITION 5. A positive functional is diffuse exactly if it has no atoms.

Proof. Assume that p is an atom for f. Then the state g of A given by $g(x) = f(p)^{-1}f(pxp)$ is multiplicative, hence pure, on $p \mathscr{D}_A p$. Since g is the unique state extension from $p \mathscr{D}_A p$ to \mathscr{D}_A ([11, Theorem 1.2]), we conclude that $g \in P$. There is then a minimal projection q in \mathscr{D}_A such that g(q) = 1. Since $pqp \in \mathscr{T}$, f is not diffuse.

Conversely, if $f = f_a + f_d$, with $f_a \neq 0$, then from Proposition 4 there is a minimal projection p in \mathscr{B}_A such that $f_a(p) > 0$. Clearly p is an atom for f, completing the proof.

The following proposition generalizes a well-known theorem from measure theory.

PROPOSITION 6. If f is a diffuse functional on A then, corresponding to each projection p in \mathscr{B}_{A} and each positive $\alpha < f(p)$, there is a projection q in \mathscr{B}_{A} , with $q \leq p$ and $f(q) = \alpha$.

Proof. Since p is not an atom for f, there is a projection $p_0 < p$ such that $0 < f(p_0) < f(p)$. Then either $f(p_0) \leq \frac{1}{2}f(p)$ or $f(p - p_0) \leq \frac{1}{2}f(p)$. Repeating this procedure we see that for any $\varepsilon > 0$ there is a projection $q_0 \leq p$ such that $0 < f(q_0) < \varepsilon$.

Now let (π_f, H_f) be the representation of A corresponding to f, and let ξ_f be a vector in H_f such that $f(x) = (\pi_f(x)\xi_f|\xi_f)$, for all x in \mathscr{B}_A . Let $\{p_i\}$ be a maximal family of nonzero, orthogonal projections in $\pi_f(\mathscr{B}_A)$ such that $\Sigma p_i \leq \pi_f(p)$, and $\Sigma(p_i\xi_f|\xi_f) \leq \alpha$ for all finite sums. Since $\pi_f(\mathscr{B}_A)$ is a von Neumann algebra ([8, Theorem 2]), $p_0 = \Sigma p_i \in \pi_f(\mathscr{B}_A)$. It follows from spectral theory that there is a projection q in \mathscr{B}_A , with $q \leq p$ and $\pi_f(q) = p_0$.

If we had $f(q) < \alpha$, then from the above we could find a projection $q_0 \leq p - q$, such that $0 < f(q_0) < \alpha - f(q)$. But then $\pi_f(q_0)$ could be adjoined to the family $\{p_i\}$; a contradiction. Therefore $f(q) = \alpha$, completing the proof.

For the sake of convenience we have stated all theorems in terms of bounded functionals. However, it is quite easy to extend the results to a large and important class of unbounded functionals.

Let f be an extended valued, positive, σ -normal functional on \mathscr{D}_{A}^{+} which is majorized by an invariant convex functional ρ on \mathscr{D}_{A}^{+} (see [13, §2] for definition). Assume furthermore that there is a sequence $\{e_n\}$ in \mathscr{D}_{A}^{+} such that $\Sigma e_n = 1$, and $\rho(e_n) < \infty$ for each n. These conditions are satisfied if f is a σ -finite σ -trace on \mathscr{D}_{A} ([4], [5]) – take $\rho = f$ – or f is a C^* -integral of A ([1, Proposition 4.4] and [13, Theorem 2.5]).

For each x in \mathscr{D}_A and each n, the element $e_n x$ belongs to the set of definition for f, and

$$||f(e_nx)|^2 \leq f(e_n)f(x^*e_nx) \leq \rho(e_n)\rho(x^*e_nx) \leq ||x||^2\rho(e_n)^2$$
.

If $f_n(x) = f(e_n x)$, then $\{f_n\}$ is a sequence of ρ -normal bounded functionals on \mathscr{B}_A such that $f(x) = \Sigma f_n(x)$ for all x in \mathscr{B}_A^+ . For each n there is a central projection p_n in \mathscr{F} such that $f_n(p_n \cdot)$ is atomic and $f_n((1 - p_n) \cdot)$ is diffuse. Using $p = \bigvee p_n \ (\in \mathscr{C} \cap \mathscr{F})$ we see that Proposition 3 is valid for f.

To show that most of Proposition 4 holds also for an unbounded atomic functional f of the above type, we notice that, as in the proof of Proposition 4, we can write $f = \Sigma f_k$, where each f_k is a σ -normal (unbounded) functional on an algebra $B(H_k)$. If p is a onedimensional projection in H_k , then $e_n p \neq 0$ for some n and therefore $p = ||pe_n p||^{-1}pe_n p$. It follows that

$$ho(p) = || p e_n p \, ||^{-1}
ho \! \left(e_n^{rac{1}{2}} p e_n^{rac{1}{2}}
ight) \leq || p e_n p \, ||^{-1}
ho(e_n) < \infty \; .$$

This proves that f_k on $B(H_k)$ is majorized by an invariant convex functional, which is finite at each operator in $B(H_k)$ of finite rank. Thus f_k is a C^* -integral on the C^* -algebra of compact operators on H_k , and from [10, Theorem 3.8] there is a b_k in $B(H_k)^+$ such that $f_k(x) = \operatorname{tr}(b_k x)$, for all x in $B(H_k)^+$. Hence f_k (and f) can be expressed as a sum $\Sigma \alpha_{nk} f_{nk}$ with f_{nk} in P for all n (and k). If each b_k can be diagonalized in $B(H_k)$ then f can be written as a weighted sum of mutually orthogonal pure states. This is trivially the case if f is a trace, since then each f_k is a multible of tr. In general b_k can not be diagonalized, hence a decomposition in mutually orthogonal bounded functionals is not possible.

Proposition 5 and 6 can be generalized with the same ease. We leave the details to the reader.

Finally we notice that the condition of separability for the C^* algebra A is used primarily to ensure that \mathscr{M}_A is "large enough" under irreducible representations of A. When A is nonseparable there may be irreducible representations of A on nonseparable Hilbertspaces. The pure states of A will then correspond to minimal projections in the Jordan algebra of *Borel operators* of A defined in [2, § 2.4]. This provides a method for studying atomic functionals on nonseparable C^* -algebras. Another way is to define an atomic functional on A as one which is supported on a sequence of minimal projections from the enveloping von Neumann algebra of A. But in this case the relation to measure theory becomes less clear.

References

1. F. Combes, Poids sur une C*-algèbre, J. Math. Pures et Appl., 47 (1968), 57-100.

2. ____, Quelques propriétés des C*-algèbres, Bull. Sc. Math. 2^e série, **94** (1970), 165-192.

3. E. B. Davies, On the Borel structure of C*-algebras, Commun. Math. Phys., 8 (1968), 147-163.

<u>—</u>, Decomposition of traces on separable C*-algebras, Quart. J. Math., (Oxford)
 (2) 20 (1969), 97-111.

7. J. Glimm, Type I C*-algebras, Ann. Math., 73 (1961), 572-612.

8. R. V. Kadison, Operator algebras with a faithful weakly-closed representation,

^{5.} _____, The structure of Σ^* -algebras, Quart. J. Math., (Oxford) (2) **20** (1969), 351-366.

^{6.} J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris 1964.

G. K. PEDERSEN

Ann. Math., 64 (1956), 175-181.

9. ____, Unitary invariants for representations of operator algebras, Ann. Math., **66** (1957), 304–379.

10. G. K. Pedersen, Measure theory for C*-algebras, Math. Scand., 19 (1966), 131-145.

 11. _____, Measure theory for C*-algebras II, Math. Scand., 22 (1968), 63-74.
 12. _____, A decomposition theorem for C*-algebras, Math. Scand., 22 (1968), 266-268.

13. ____, Measure theory for C*-algebras III, Math. Scand., 25 (1969), 71-93.

14. _____, On weak and monotone σ -closures of C*-algebras, Commun. Math. Phys, **11** (1969), 221–226.

Received May 4, 1970

UNIVERSITY OF COPENHAGEN, DENMARK

800