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A STUDY OF ^-SPACES VIA LEFT TRANSLATIONS

ROBERT A. NOWLAN

iί-spaces are examined by studying left translations,
actions and a homotopy version of left translations to be
called homolations. If (F, m) is an iί-space, the map s: F->FF

given by s(x) = Lx, i.e. s(x) is left translation by x, is a
homomorphism if and only if m is associative. In general,
s is an An-map if and only if (F, m) is an An+i space.

The action r:FF x F-*F is given by r(φ, x) = φ(x). The
map s respects the action only of left translations. In
general, s respects the action of homolations up to higher-
order homotopies. Each homolation generates a family of
maps to be called a homolation family. Denoting the set of
all homolation families by H°°(F), s: F'-> FF factors through
F'—> H°°(F) and this latter map is a homotopy equivalence.

By a multiplication on a space F, we mean a continuous map
m: F x F—+F. Let m be a given multiplication on F. For any
two points x and y of F, m{x, y) will be denoted by xy and is called
the product of x and y. For any point x of F, the assignment
x—>yx and x—>xy determine respectively the maps

Ly: F > F , Ry: F • F

called the left and right translation of F by y.
This paper examines ff-spaces with strict units by studying left

translations and by the introduction of a homotopy version of left
translations to be called homolations. One way to use left transla-
tions is as follows. If (F, m) is an iϊ-space, the map

s:F >FF

given by s(x) — Lx1 i.e., s(x) is left translation by x, is a homo-
morphism if and only if m is associative. Other properties of iJ-
structures on a space F can also be interpreted in terms of properties
of the map s: F-* FF.

DEFINITION 1. A map f:F—+ Y is an if-map of the iϊ-space
(F, m) into the ίf-space (Y, w) if wo(f x /) ~ fom. (We always use
" ^ " to denote "is homotopic to".)

In §11 we prove that s is an iZ-map if and only if m is homo-
topy associative. In [2], and [3], Stasheff introduces the concepts
of A^-spaces and of A%-maps, the former generalizes homotopy
associativity and the latter generalizes iϊ-maps. We will show that s
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is an ^U-map if and only if (F, m) is an ^U+1-space.
In §111, iϊ-spaces are studied in terms of actions. The action

r: FF x F-+ F is given by r(φ, x) = φ(x). The cross-section s: F-+FF

respects the action only of left translations. The question arises: of
which maps in FF does s respect the action up to homotopy? This
leads to the introduction of T-maps, that is maps f:F—*F such
that fom ~ mo(f x 1). Such maps resemble left translations. De-
manding a closer resemblance leads to the introduction of homolations
which are maps / satisfying fom = m°(f x 1) up to higher order
homotopies.

If (F, m) is an associative iϊ-space, a map w: M x F—> F is a
transitive action if wo(l x m) = mo(f x 1). The action r: s(F) x
F—+F, where s(F) is the set of all left translations is an example
of a transitive action. A homotopy version of a transitive action is
given as follows.

DEFINITION 2. Let (F, m) be an associative ϋ-space. A map
w: M x F'—> F is a Γ-action if wo(l x m) = mo(f x 1).

If T(F) is the maximal subset of FF such that

r: TCP) x F > F

is a Γ-action, then I î*7) consists of T-maps. Generalizing the notions
of Γ-actions leads to the concept of Tractions and Tractions, that
is actions w: M x F—>F satisfying wo(l x m) ~ mo(w x 1) up to
higher order homotopies. It is then shown that a TL-action of the
set of homolations on F can be given such that s:F—>FF is a IL-
map of actions, i.e., s respects the actions of homolations up to higher
order homotopies.

Each homolation generates a family of maps to be called a
homolation family. Denote by H°°{F) the set of all homolation
families. In § IV, it is proven that s:F—>FF factors through
F~> F°°(F) and that this latter map is a homotopy equivalence.

Throughout this paper, we will be working in the category of
ά-spaces (i.e., compactly generated spaces) as developed in [5]. The
reason for this is to allow unlimited use of the "exponential law."
(c.f. Theorem 5, 6 in [5]).

Some of the work included in this paper is contained in my
doctoral thesis [1] completed at the University of Notre Dame.
Other parts of it were suggested by Professor James D. Stasheff.
I deeply appreciate his suggestions and many valuable comments
during the writing of this paper.

II* A^-maps and Aw-sρaces We first study JEΓ-spaces in relation
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to cross-sections to evaluation maps. Let F be any space. Let the
evaluation map v: FF —> F be defined by v(φ) = φ(e), where φ is in
FF for some e in F. The map v has a cross-section s:F—+FF if
and only if F admits a multiplication with right unit β. Given such
a cross-section s we can define

m(α, y) = s(x)(y) for a?, y in F

so that m has e as a right unit. Since

s(x)(e) = φ θ ) ) = a; ,

this multiplication has a two-sided unit if s is a base point preserving
map, that is s(e) = identity. We will make this assumption through-
out this paper.

If F has a multiplication m with β as right unit, we define s(x) =
IΛ,, where L,. is left translation by x. It follows that s is a homo-
morphism if and only if m is associative.

Thus certain properties of iί-structures on a space F can be
interpreted in terms of properties of the map s:F—>FF. As an
example we have the following proposition.

PROPOSITION 1. The map s: F—> FF is an H-map if and only if
m is homotopy associative.

Proof. If s is an iϊ-map of (F, m) into (FF, c) (where c is com-
position of maps), there exists a homotopy

G:Ix F2 • FF

such that

(?(0, x, y) = co(s x s)(x, y) = LxoLy

and

, x, y) = som(x, y) = Lxy .

Then m can be shown to be homotopy associative by defining a
homotopy

GΊIx F 3 >F

by

(1) G'(t,x,y,z) = G<fi,x,y)(z)

Conversely, if m is homotopy associative, a homotopy Gf exists such
that
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G'(0, x, y, z) - x(yz)

and

G'(l, x, y, z) = (xy)z

and the homotopy G can be defined as in (1).

In seeking to generalize this proposition, we first need generali-
zations of the concepts of homotopy associativity and of ίZ-map. In
[2] and [3], Stasheff introduces the concepts of A%-spaces and of
^U-maps; the former generalizes homotopy associativity and the latter
generalizes iϊ-maps. A space which is an ^4%-space for all n is said
to be an .A^-space. Any associative iί-space is an Aco-space. Ao*-
spaces are homotopy equivalent to associative iϊ-spaces.

DEFINITION 3. An ^-structure on a space X consists of an
%-tuple of maps

X = Eλ c E2 c . c En

Pi Pi \P»

* - B, c B2 c c Bn

such that pu: πq(Ei} X) —> πq(Bi) is an isomorphism for all q, together
with a contracting homotopy h: CEn_γ —> En of the cone of En_19

CEn^ such that Λ(C£r

ί_1) c E{. Such an ^-structure will be denoted
by (PL, ' m,pn) If there exists an infinite collection pu p2, ••• such
that for each n, (pu , pn) is an .A^-structure, then we call (pL, p2, •)
an Aco-structure.

Theorem 5 of [2] asserts that an A%-structure on a space X is
equivalent to an "AΛ-form", that is a family of maps {ikΓ2, •• ,Mft}
where each

Mil Γ~2 x Xi • X

is suitably defined on the boundary Γ~ι in terms of M3- for j < i.

DEFINITION 4. A space X together with an An-ίorm will be
called an ^4%-space.

In this paper, we are more interested in An-ΐorms than A%-
structures, so we introduce the former in some detail. It is first
necessary to become acquainted with a special cell-complex K{ which
is homeomorphic to I*~2 for i ^ 2. The standard cells K{ are objects



A STUDY OF iί-SPACES VIA LEFT TRANSLATIONS 783

similar to standard simplices Δi and standard cubes I \ having faces
and degeneracies. The difference between the K{ and the simplices
and the cubes is that:

( 1 ) The index i does not refer to the dimension of the cell but
rather to the number of factors X with which Kt is to be associated.

(2) Ki has degeneracy operators su •• ,s ί defined on it.
and

( 3 ) Ki has (i(i - l)/2) - 1 faces.
The following description of the indexing of the faces of Ki is

due to Stasheff. Consider a word with i letters, and all meaningful
ways of inserting one set of parentheses. To each such insertion
except for (xl9 ••-,#<), there corresponds a cell of Li9 the boundary
of Kt. If the parentheses enclose xk through xk+8-19 we regard this
cell as the homeomorphic image of Kr x Ks (r + s = i + 1) under a
map which we denote by dk(r, s). Two such cells intersect only on
their boundaries and the "edges" so formed correspond to inserting
two sets of parentheses in the word. We obtain Kζ by induction,
starting with K2 — * (a point), supposing K2 through K^ have been
constructed. Then construct L{ by fitting together copies of Kr x Ks

subject to certain conditions given in §2 of [2], that is the fitting
together of copies of Kr x Ks as dictated by the above description of
the indexing. Finally, take Ki to be the cone on L{.

The following is part of Theorem 5 of [2].

THEOREM 2. A space X admits an An-structure if and only if
there exist maps M{: K{ x Xi —• X for 2 <J i ^ n such that

(1) M2(*9 e, x) = ΛΓ2(*, x, e) = x Jor x in X, * = K2 and
( 2 ) For peKr,σeK8,r + s = i + l, we have

Mi(dk(r,s)(p,σ),xl9 •••,&*)

= Mr(ρ, x, , %_1? M.(σ, xk, , Xk+s-0, •••,»») .

We note that an A2-space is just an Jϊ-space. In the case i =
3, K3 is homeomorphic to / and (2) asserts that M3 is a homotopy
between M2o(M? x 1) and Λf2o(l x Λf2), to be imprecise between (xy)z
and x(yz). Thus Ms is an associating homotopy and M2 is a homotopy
associative action.

In the case i = 4, we consider the five ways of associating a
product of four factors. If the multiplication M2 is a homotopy
associative multiplication, the five products are then related by the
following string of homotopies:

x{y(zw)) = x((yz)w) = (x(yz))w ~ ((xy)z)w = (xy)(zw) ~ x(y(zw)) .

Thus we have defined a map of S1 x X4—>X and the map M4 can
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be regarded as an extension of the map to P x X4.
If X is an associative iϊ-space, it admits A^-forms; it is only

necessary to define

Mi(τ, xl9 — xγx2 Xi for τ in Ki and 1 ^ i .

This will be called a trivial A^-form. If X is an A^-space then there
is an associative iϊ-space Y of the homotopy type of X.

DEFINITION 5. Let (X, {Mi}) be an Au-space and (Y, w) be an
associative iJ-space. A m a p / : X — > F is an Aw-map if there exists
maps hii K^γ x X* —> Y, 1 <L i <^ n, called sputnik homotopies, such
that hλ = f and for p in Kr, σ in Ks(r + s = i + 1), we have

hi(dk(r, s)(p, σ), xu . . . , x%)

= hr^(ρ, xu , xk+1, Ms(σ, xk,

= K_λ (p, xly , Xr^hs^iσ, xr,

^)9 , xτ) if A; ̂  r

if A; = r .

Note that when w = 2, / i s just an ϋΓ-map, as h2 is a homotopy
between f<>M2 and wo(f x f). In the case ^ = 3, since iΓ4 is homeo-
morphic to I 2 , we have a map of S1 x X 3 —> F and Λ3: ϋΓ4 x X 3 —> F
can be thought of as an extension of this map to P x X4.

Consider the following cross-section of P x X 4 showing a typical
P. Assign to the "faces" of P the homotopies h2o(M2xl), wo(h2xh^),
wo (hi x h2), h2o(l x M2) and hλoM3 as indicated

h2o(M2xl)

The broken line represents a point. The map hs then appropriately
fills in the figure.

A map which is an Au-map for all n will be called an ^L-map.
We are now in a position to prove the following generalization

of proposition 1.

THEOREM 3. (A) Let (F, {Mi}) be an An-space; then s:F—>FF

is an An^ map.
(B) s can be shown to be an An-map if and only if (F, {Mt}) can
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be given the structure of an An+1 space.

Proof. (A) Given that (F, {Mi}) is an An-space, all that is
necessary to show that s is an An^ map is to define hγ — s and
hii KM x Fι -> FF 1 ^ i < n - 1 by

hi(dk(r, t)(ρ, σ), xl9 , xMy) = Mi+I(dk(r, f)(p, σ), xl9 , xi9 y) .

(B) It is clear that (F, {Mi}) can be extended to an An+1-space
(that is there exists a map Mn+1: Kn+1 x Fn+ί —> F) if and only if
there exists a map hn: Kn+1 x Fn —> FF given by

K(dk(r, t)(ρ, σ), xl9 , xn)(y) = Mn+I(dk(r, t)(p, σ), xl9 , xn, y) .

COROLLARY 4. An A^-form on F is equivalent to the existence
of sputnik homotopies h{: Ki+ι x Fι —> FF for all i making s an A^-map.

III . ΊVmaps and Homolations* We assume throughout this
section that (F, m) is an associative fZ-space with a strict unit. In
that case, the map

s:F >FF

given by

s(f)(y) = m(f, y)

is a homomorphism.
We now study left translations via actions. The space FF acts

on F by

r:FF x F > F

r(<P,f)=<P(f).

The cross-section s respects the action only of left translations,
for consider the diagram:

FF x F — > FF x FF

( 1 ) r | Jo
F f > FF .

Suppose

S(φ(f))=φoS(f) .

Since s is left translation, we have φ{fy) = φ(f)y, that is the
following diagram is commutative.
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(2

In

)

particular,

F

ψ

F
JL

Ψ

X

X

'(4

F-

Ί
F
±

ι) =

m

m

φ(ey) =

>F

1'
> F
' JL .

φ(e)y

and φ is left translation by φ{e). So diagram (1) commutes only on
s(F) x FaFF x F where s(F) is the set of left translations. Thus
s is a map of spaces on which s(F) acts.

The result tells us something about the action

r:s(F) x F > F

namely, it is transitive.
Note that the following diagram is commutative

s(F) x Fx F 1^Π/ > s(F) x F

(3) r x l r

i . X F — 5 — > F

Let us consider the following question: what is the nature of
the action r when diagram (1) is only required to be homotopy
commutative. Denote by T2(F) the maximal subset of maps φ in
FF such that

S[φ(f)] = φos(f)

in the sense that there exists a homotopy

Θ2:lx T2(F) x F >FF

such that

θ*(0,φ,f) =φos(f)

and

0,(1, φ, f) = S[φ(f)] .

In this case, it follows that for each φ in T2(F) there exists a
homotopy

φ2:1 x F2 > F

depending continuously on φ such that
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and

9>2(1, /, y) = φ(fy)y .

DEFINITION 6. Let (F, m) be an associative iϊ-space. A map
f: F —> F is a T-map if there exists a homotopy I x F2 —* F such
that /om = mo(/x 1).

Thus we see that the maps in T2(F) are T-maps. The homotopy
is given by

Φ*(t,f,v) = 02$, <P, f)(y) .

In particular, we note that for each φ in T2(F)

<p(v) = ψifiy) = <p(e)y

indicating that up to homotopy φ acts like left translation by φ{e).
Thus the maps in T2(F) in this sense resemble left translations. We
will investigate this resemblance further.

Our results show that the action

7IFr: T2(F) x F > FF

is a Γ-action in the sense that there exists a homotopy

\:I x T2(F) x F2 >F

such that

λ2: ro(l x m) = mo(r x 1) .

In fact, we can take λ2 to be adjoint to 02:

\(t,<P,f,v) = θ2(t,φ,f){y).

If φ is a true left translation, it follows that

φ(xyz) = φ(xy)z — φ(x)yz for x, y, z in F

however for a map φ in T2(F), the most we can claim using a
rather loose notation is that:

φixyz) ~ φ{xy)z ~ φ(x)yz ~ φ(xyz) .

This string of homotopies defines a map

Γ x F >F

where P is the boundary of I 2 .
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This can be illustrated in the following diagram, representing
P x F3 showing only P with "faces" labeled by the homotopies
connecting the maps given above. Note that the edge of I 2 re-
presented by the broken line is just a point. (This is because F is
an associative ϋΓ-space. If F were only homotopy associative, this
face would be labeled by the associating homotopy applied to φ(x),y,z.
The following discussion could be carried out for A%-spaces but the
details are bad enough in the associative case, which is the case of
interest for applications [1].)

φ(xy)z

φ2(mxl)

mo(φ2χl)

φ(xyz)

φ{x)yz

The problem of making a map φ in T2(F) more closely "resemble"
a left translation, requires that we be able to extend the map

to a map

P x F3

Γ x F3

F

F .

Thus we will need higher homotopy conditions on the maps φ in
T2(F). Suppose for the moment that there exists a map

such that

and

<p3: P x F 3 > F

9>3(0, t2, x, y, z) = φ2{t2, xy, z)

φ,(tly 0, x, y, z) = φ2(tl9 x, yz)

9>3(1, K α, y, z) = φ(χ)yz

φ3(tl9 1, x, y, z) = φ2(tu x, y)-z .

Let T3(F) denote the maximal subset of T2(F) such that for
each φ in T2(F)y there exists φ2 and <p3 depending continuously on
φ and φ2 subject to the conditions already mentioned. In this case,
the action r: TZ(F) x F—>F is such that there exist maps
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λ 2 : 1 x TZ(F) x F2 > F

such that

λ2: r(l x m) = m(r x 1)

and

λ3: P x T3(F) x F3 > F

such that

λ 3(0, ί2, <p, a?, i/, 2) = λ?(£2, φ , a;?/, 2)

λ 3(ίi, 0, 9 , α, 1/, z) = λ2(ί,, <p, x, yz)

λs(l, ί2, ^ , α;, 2/, 2) = r(9>, α ; ) . ^

and

λsfe, 1, φ, a;, y, z) = X2(tu φ, x, y) z .

This latter map is given by

λ s(ίi, ί2, Ψ* x, V, z) = <P&i, tz, », 1/, s)

On the other hand, there exist maps

^ 2 : ί x TZ(F) x JP >FF

such that

θ2l φos(f) = S[φ(f)]

and

θ3: Γ x TS(F) x F 2 > FF

such that

^ 3: (ίi, t2, φ, x, y)(z) = X,(tu K φ, x, y, z) .

Parallel to every demand that a map φ: F'—> F more closely
resemble a left translation by satisfying higher homotopy conditions
will be the requirement of higher homotopy conditions on the action
r and similar higher homotopy conditions on the map s.

DEFINITION 7. Let (X, m) be an associative ίZ-space. A map
φ:X—> X is a TV-map of X into itself if there exists a family of
maps

<Pii Γ-1 x Xi > X l ^ ί ^ n

such t h a t φγ~ψ and
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•, ί « - i , Xl9 •••, a?i)

, tk, , ί i - i , Xi, , % % - ι - i , • • • , » < ) if 4 = 0

In case φt exists for all i, we call ςp a homolation, that is, a
homotopy translation. Denote the set of all homolations by

DEFINITION 8. Let (F, m) be an associative iϊ-space. A homo-
lation family on F is a collection of maps {φ^ I*"1 x Fί —> i*7, V̂  ^ 1}
where φγ is a homolation and φλ: F—> F is a homotopy equivalence.
We will denote by H°°(F), the set of all homolation families. H°°(F)
is a subspace of C(F; F) x C(I x F2; F) x where C(P x Fi+1; F)
is the set of all continuous maps /: I3 x Fj+ί—>F (with the fc-topology
derived from the compact-open topology).

DEFINITION 9. Let (X, m) be an associative iϊ-space. A map

w:Mx X >X

of M on X is said to be a T^-action if there exist maps

WΪ. Γ-1 x M x X* > X 1 ^ i ^ n

such that w1 = iv and

Wifo, ••-, fi-!, flr, xl9 •••, ίCi)

= ^ i - i f t , • • - , ? * , • • • , ί i - i , ^, XkXk+i, , ^ ) i f ^ = 0

If a map w: M x X—*X is a ΪV-action for all w, then t«; is said to
be a T

THEOREM 5. Let Tn(F) denote the maximal subset of FF such
that there exist maps λ*: P~ι x Tn{F) x Fί —• F for 1 <£ i <; n making
r: Tn(F) x F-+F a Traction; then Tn(F) consists of Tn-maps.

Proof. We may define the maps

Ψii P-1 x Fι > F l ^ i ^ n

by

<Pi{tl9 , ίi^i, f19 , fi) = \i(t19 , ti-l9 φ9fι9 , fd .

DEFINITION 10. Let (X, m) and (M, v) be associative iί-spaces
and w:Mx X—>X be a ^-action. A homomorphism f:X—>M is
said to be a TVmap of actions if there exist maps
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θii I*-1 x M x X1-1 > M

such that θγ — 1M and

θi(tl9 •••, t ^ g , xl9 •••, Xi-J

= θi^fa, , tk, , ^_!, flr, , xkxk+ί, , ^-0

if tk = 0, /b ̂  i - 1

= ^[^-i^:, , *ί_2, flr, »i, , ίCi-a), /fe-0] if ίi-! = 0

= f[m(wk(tu , **_!, g, x1? , xk), Xu^Xk+z Xi)\ ittk = l .

If β4 exists for all ί, then f is said to be a T^-map of actions.

COROLLARY 6. The map r: TJF) x F is a Traction and s is
then a T^-map of actions.

Proof. Define λ*: P" 1 x T^{F) x Fι -> JP by

λiίίi, , ίί-i, ^, /i, , Λ) = Ψiik, , ίί-!, Λ, , fi)

and

0<: I'" 1 x T~{F) x F ^ 1 > FF

by

F

IV* The homotopy equivalence of F and H°°(F). As we
have seen, we can identify an associative if-space with the set of
left translations of that space. We note that this identification of
F in FF as left translation is not homotopy invariant: φ(fx) = φ(f)x
is not a homotopy statement. Our definition of homolation is homo-
topy invariant and it characterizes F' —> FF from a homotopy point
of view.

We are now in a position to prove the following theorem. Re-
call that H°°(F) is the set of all homolation families.

THEOREM 7. If (F, m) is a connected associative H-space, the
map s: F—>FF factors through H°°(F), and the factor F —> H°°(F) is a
homotopy equivalence.

Proof. Define a map

τ:F >H

as follows:
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where

φ{:F >F

is given by

<p{(g) = fg

that is left translation of F. φ{ is a homotopy equivalence since F
is connected (see [4]).

The remaining maps are given by

9ί(K •..,^- 1 ,/ 1 , ••-,/*)=//,•••/, for all k.

The map τ is continuous, since the composition of maps

F-—> C(F; F) x C(I x F2; F) ---> C(Ik~ι x Fk; F)

is continuous for each k and p{k) is projection onto the corresponding
factor.

On the other hand, define the map

μ: H°°(F) > F

by

μ(Γ) = ΊM

where Γ = {7X, 72, •} is in H~{F) and e is the unit of F.
The map /̂  is continuous, since it is the composition of maps

H~{F) - - i * H-iF), - ^(.F7) —-> F

where pL is projection of H°°(F) on that part of H°°(F) contained in
FF, namely the set of homolations, here denoted by H^iF)^ and the
map we is the evaluation map at e (continuous in the A -topology).

Note that μ{τ(f)) = μ(Φf) = <p{(e) = fe = f so that μoτ = 1F.
On the other hand

τoμ(Γ) =

We claim that Toμ ^ 1Π°*{F)1 that is there exists a map

# t : H~(F) > H~{F)

such that Ho — lH~lF) and Hx = ro//.
To see this, let H°°(F)k be the subspace of i ί 0 0 ^ ) which is

contained in C(Ik-1 x i ^ ; F). The map iJ f - {Ht\ HI •} will consist
of homotopies
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{23?}: H~(F) > H~(F)k for each k

such that Ho

k = lH-[F)k and H{ = ro//1 H~(F)k and the 22? are
compatible.

Define 22?: H°°(F) — 22^(2^)* as follows:

27?(/τ)(ί1, 4-i, /i, , Λ) - τ*+1(<, 4, , 4-i, β, /i, , Λ)

The map is continuous as each yk+1 in Γ is continuous and Γ
is continuous being projection.

Note if 4 = 0

= 7,(4 4, 4,-, 4-i, e, /i, /j/i+i, , Λ)

- Ht

k-ι(Γ)&, ,«y, , ίfc-i, /i, , ΛΛ+i, •••/*)

while if ^ = 1

ι, ,Λ) .
Thus {#?} is in ^ - ( F ) . F u r t h e r

HQ

k(Γ)(tί9 , 4-i, Λ, ••-,/*) = 7,(4, , 4-i, e/lf •••/,)

= 7 , ( 4 , •••, 4 - i , / i , •••,/*)

Thus flo* = lffoo(ί.)jfc {^(Γ)} - Γ and

= τoμ(Γ)(tlf

Thus fl? = τoμ \ iίTO(F)/c, {^(Γ)} = τoμ(Γ). This completes the proof
that F and H°°{F) are homotopy equivalent.

Now HCO(F) is itself an iJ-space; we can define composition of
families as well as just maps F—>F (see [1]). The map F'—> HCO(F)
is an .̂co-map and hence induces BF —> BH«>(F) which is again a homo-
topy equivalence if F is a Cffl̂ -complex.

In my thesis [1], I show that BH<~{F) is a classifying space for
fibrations with Aoo-actions of F on the total space. The above homo-
topy equivalence then shows a fibre space admits such an A^-action
if and only if it admits an associative action.
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