A STUDY OF H-SPACES VIA LEFT TRANSLATIONS

Robert A. Nowlan

Abstract

H-spaces are examined by studying left translations, actions and a homotopy version of left translations to be called homolations. If (F, m) is an H-space, the map $s: F \rightarrow F^{F}$ given by $s(x)=L_{x}$, i.e. $s(x)$ is left translation by x, is a homomorphism if and only if m is associative. In general, s is an A_{n}-map if and only if (F, m) is an A_{n+1} space.

The action $r: F^{F} \times F \rightarrow F$ is given by $r(\varphi, x)=\varphi(x)$. The map s respects the action only of left translations. In general, s respects the action of homolations up to higherorder homotopies. Each homolation generates a family of maps to be called a homolation family. Denoting the set of all homolation families by $H^{\infty}(F), s: F \rightarrow F^{F}$ factors through $F \rightarrow H^{\infty}(F)$ and this latter map is a homotopy equivalence.

By a multiplication on a space F, we mean a continuous map $m: F \times F \rightarrow F$. Let m be a given multiplication on F. For any two points x and y of $F, m(x, y)$ will be denoted by $x y$ and is called the product of x and y. For any point x of F, the assignment $x \rightarrow y x$ and $x \rightarrow x y$ determine respectively the maps

$$
L_{y}: F \longrightarrow F, \quad R_{y}: F \longrightarrow F
$$

called the left and right translation of F by y.
This paper examines H-spaces with strict units by studying left translations and by the introduction of a homotopy version of left translations to be called homolations. One way to use left translations is as follows. If (F, m) is an H-space, the map

$$
s: F \longrightarrow F^{F}
$$

given by $s(x)=L_{x}$, i.e., $s(x)$ is left translation by x, is a homomorphism if and only if m is associative. Other properties of H structures on a space F can also be interpreted in terms of properties of the map $s: F \rightarrow F^{F}$.

Definition 1. A map $f: F \rightarrow Y$ is an H-map of the H-space (F, m) into the H-space (Y, w) if $w \circ(f \times f) \cong f \circ m$. (We always use "œ" to denote "is homotopic to".)

In § II we prove that s is an H-map if and only if m is homotopy associative. In [2], and [3], Stasheff introduces the concepts of A_{n}-spaces and of A_{n}-maps, the former generalizes homotopy associativity and the latter generalizes H-maps. We will show that s
is an A_{n}-map if and only if (F, m) is an A_{n+1}-space.
In § III, H-spaces are studied in terms of actions. The action $r: F^{F} \times F \rightarrow F$ is given by $r(\varphi, x)=\varphi(x)$. The cross-section $s: F \rightarrow F^{F}$ respects the action only of left translations. The question arises: of which maps in F^{F} does s respect the action up to homotopy? This leads to the introduction of T-maps, that is maps $f: F \rightarrow F$ such that $f \circ m \cong m \circ(f \times 1)$. Such maps resemble left translations. Demanding a closer resemblance leads to the introduction of homolations which are maps f satisfying $f \circ m \cong m \circ(f \times 1)$ up to higher order homotopies.

If (F, m) is an associative H-space, a map $w: M \times F \rightarrow F$ is a transitive action if $w \circ(1 \times m)=m \circ(w \times 1)$. The action $r: s(F) \times$ $F \rightarrow F$, where $s(F)$ is the set of all left translations is an example of a transitive action. A homotopy version of a transitive action is given as follows.

Definition 2. Let (F, m) be an associative H-space. A map $w: M \times F \rightarrow F$ is a T-action if $w \circ(1 \times m) \cong m \circ(w \times 1)$.

If $T(F)$ is the maximal subset of F^{F} such that

$$
r: T(F) \times F \longrightarrow F
$$

is a T-action, then $T(F)$ consists of T-maps. Generalizing the notions of T-actions leads to the concept of T_{n}-actions and T_{∞}-actions, that is actions $w: M \times F \rightarrow F$ satisfying $w \circ(1 \times m) \cong m \circ(w \times 1)$ up to higher order homotopies. It is then shown that $a T_{\infty}$-action of the set of homolations on F can be given such that $s: F \rightarrow F^{F}$ is a T_{∞} map of actions, i.e., s respects the actions of homolations up to higher order homotopies.

Each homolation generates a family of maps to be called a homolation family. Denote by $H^{\infty}(F)$ the set of all homolation families. In §IV, it is proven that $s: F \rightarrow F^{F}$ factors through $F \rightarrow F^{\infty}(F)$ and that this latter map is a homotopy equivalence.

Throughout this paper, we will be working in the category of k-spaces (i.e., compactly generated spaces) as developed in [5]. The reason for this is to allow unlimited use of the "exponential law." (c.f. Theorem 5, 6 in [5]).

Some of the work included in this paper is contained in my doctoral thesis [1] completed at the University of Notre Dame. Other parts of it were suggested by Professor James D. Stasheff. I deeply appreciate his suggestions and many valuable comments during the writing of this paper.
II. \mathbf{A}_{n}-maps and \mathbf{A}_{n}-spaces We first study H-spaces in relation
to cross-sections to evaluation maps. Let F be any space. Let the evaluation map $v: F^{F} \rightarrow F$ be defined by $v(\varphi)=\varphi(e)$, where φ is in F^{F} for some e in F. The map v has a cross-section $s: F \rightarrow F^{F}$ if and only if F admits a multiplication with right unit e. Given such a cross-section s we can define

$$
m(x, y)=s(x)(y) \quad \text { for } x, y \text { in } F
$$

so that m has e as a right unit. Since

$$
s(x)(e)=v(s(x))=x
$$

this multiplication has a two-sided unit if s is a base point preserving map, that is $s(e)=$ identity. We will make this assumption throughout this paper.

If F has a multiplication m with e as right unit, we define $s(x)=$ L_{x}, where L_{x} is left translation by x. It follows that s is a homomorphism if and only if m is associative.

Thus certain properties of H-structures on a space F can be interpreted in terms of properties of the map $s: F \rightarrow F^{F}$. As an example we have the following proposition.

Proposition 1. The map $s: F \rightarrow F^{F}$ is an H-map if and only if m is homotopy associative.

Proof. If s is an H-map of (F, m) into (F^{F}, c) (where c is composition of maps), there exists a homotopy

$$
G: I \times F^{2} \longrightarrow F^{F}
$$

such that

$$
G(0, x, y)=c \circ(s \times s)(x, y)=L_{x} \circ L_{y}
$$

and

$$
G(1, x, y)=\operatorname{s\circ }(x, y)=L_{x y}
$$

Then m can be shown to be homotopy associative by defining a homotopy

$$
G^{\prime}: I \times F^{3} \longrightarrow F
$$

by

$$
\begin{equation*}
G^{\prime}(t, x, y, z)=G(t, x, y)(z) \tag{1}
\end{equation*}
$$

Conversely, if m is homotopy associative, a homotopy G^{\prime} exists such that

$$
G^{\prime}(0, x, y, z)=x(y z)
$$

and

$$
G^{\prime}(1, x, y, z)=(x y) z
$$

and the homotopy G can be defined as in (1).
In seeking to generalize this proposition, we first need generalizations of the concepts of homotopy associativity and of H-map. In [2] and [3], Stasheff introduces the concepts of A_{n}-spaces and of A_{n}-maps; the former generalizes homotopy associativity and the latter generalizes H-maps. A space which is an A_{n}-space for all n is said to be an A_{∞}-space. Any associative H-space is an A_{∞}-space. A_{∞} spaces are homotopy equivalent to associative H-spaces.

Definition 3. An A_{n}-structure on a space X consists of an n-tuple of maps

such that $p_{i_{*}}: \pi_{q}\left(E_{i}, X\right) \rightarrow \pi_{q}\left(B_{i}\right)$ is an isomorphism for all q, together with a contracting homotopy $h: C E_{n-1} \rightarrow E_{n}$ of the cone of E_{n-1}, $C E_{n-1}$ such that $h\left(C E_{i-1}\right) \subset E_{i}$. Such an A_{n}-structure will be denoted by $\left(p_{1}, \cdots, p_{n}\right)$. If there exists an infinite collection p_{1}, p_{2}, \cdots such that for each $n,\left(p_{1}, \cdots, p_{n}\right)$ is an A_{n}-structure, then we call $\left(p_{1}, p_{2}, \cdots\right)$ an A_{∞}-structure.

Theorem 5 of [2] asserts that an A_{n}-structure on a space X is equivalent to an " A_{n}-form", that is a family of $\operatorname{maps}\left\{M_{2}, \cdots, M_{n}\right\}$ where each

$$
M_{i}: I^{i-2} \times X^{i} \longrightarrow X
$$

is suitably defined on the boundary I^{i-1} in terms of M_{j} for $j<i$.
Definition 4. A space X together with an A_{n}-form will be called an A_{n}-space.

In this paper, we are more interested in A_{n}-forms than A_{n} structures, so we introduce the former in some detail. It is first necessary to become acquainted with a special cell-complex K_{i} which is homeomorphic to I^{i-2} for $i \geqq 2$. The standard cells K_{i} are objects
similar to standard simplices Δ^{i} and standard cubes I^{i}, having faces and degeneracies. The difference between the K_{i} and the simplices and the cubes is that:
(1) The index i does not refer to the dimension of the cell but rather to the number of factors X with which K_{i} is to be associated.
(2) K_{i} has degeneracy operators s_{1}, \cdots, s_{i} defined on it. and
(3) K_{i} has $(i(i-1) / 2)-1$ faces.

The following description of the indexing of the faces of K_{i} is due to Stasheff. Consider a word with i letters, and all meaningful ways of inserting one set of parentheses. To each such insertion except for $\left(x_{1}, \cdots, x_{i}\right)$, there corresponds a cell of L_{i}, the boundary of K_{i}. If the parentheses enclose x_{k} through x_{k+s-1}, we regard this cell as the homeomorphic image of $K_{r} \times K_{s}(r+s=i+1)$ under a map which we denote by $\partial_{k}(r, s)$. Two such cells intersect only on their boundaries and the "edges" so formed correspond to inserting two sets of parentheses in the word. We obtain K_{i} by induction, starting with $K_{2}={ }^{*}$ (a point), supposing K_{2} through K_{i-1} have been constructed. Then construct L_{i} by fitting together copies of $K_{r} \times K_{s}$ subject to certain conditions given in § 2 of [2], that is the fitting together of copies of $K_{r} \times K_{s}$ as dictated by the above description of the indexing. Finally, take K_{i} to be the cone on L_{i}.

The following is part of Theorem 5 of [2].
Theorem 2. A space X admits an A_{n}-structure if and only if there exist maps $M_{i}: K_{i} \times X^{i} \rightarrow X$ for $2 \leqq i \leqq n$ such that
(1) $\quad M_{2}\left({ }^{*}, e, x\right)=M_{2}\left(^{*}, x, e\right)=x$ for x in $X,^{*}=K_{2}$ and
(2) For $\rho \in K_{r}, \sigma \in K_{s}, r+s=i+1$, we have

$$
\begin{aligned}
& M_{i}\left(\partial_{k}(r, s)(\rho, \sigma), x_{1}, \cdots, x_{i}\right) \\
= & M_{r}\left(\rho, x, \cdots, x_{k-1}, M_{s}\left(\sigma, x_{k}, \cdots, x_{k+s-1}\right), \cdots, x_{i}\right) .
\end{aligned}
$$

We note that an A_{2}-space is just an H-space. In the case $i=$ $3, K_{3}$ is homeomorphic to I and (2) asserts that M_{3} is a homotopy between $M_{2} \circ\left(M_{2} \times 1\right)$ and $M_{2} \circ\left(1 \times M_{2}\right)$, to be imprecise between $(x y) z$ and $x(y z)$. Thus M_{3} is an associating homotopy and M_{2} is a homotopy associative action.

In the case $i=4$, we consider the five ways of associating a product of four factors. If the multiplication M_{2} is a homotopy associative multiplication, the five products are then related by the following string of homotopies:

$$
x(y(z w)) \cong x((y z) w) \cong(x(y z)) w \cong((x y) z) w \cong(x y)(z w) \cong x(y(z w))
$$

Thus we have defined a map of $S^{1} \times X^{4} \rightarrow X$ and the map M_{4} can
be regarded as an extension of the map to $I^{2} \times X^{4}$.
If X is an associative H-space, it admits A_{∞}-forms; it is only necessary to define

$$
M_{i}\left(\tau, x_{1}, \cdots, x_{i}\right)=x_{1} x_{2} \cdots x_{i} \text { for } \tau \text { in } K_{i} \text { and } 1 \leqq i
$$

This will be called a trivial A_{∞}-form. If X is an A_{∞}-space then there is an associative H-space Y of the homotopy type of X.

Definition 5. Let $\left(X,\left\{M_{i}\right\}\right)$ be an A_{n}-space and ($\left.Y, w\right)$ be an associative H-space. A $\operatorname{map} f: X \rightarrow Y$ is an A_{n}-map if there exists maps $h_{i}: K_{i+1} \times X^{i} \rightarrow Y, 1 \leqq i \leqq n$, called sputnik homotopies, such that $h_{1}=f$ and for ρ in K_{r}, σ in $K_{s}(r+s=i+1)$, we have

$$
\begin{aligned}
& h_{i}\left(\partial_{k}(r, s)(\rho, \sigma), x_{1}, \cdots, x_{i}\right) \\
= & h_{r-1}\left(\rho, x_{1}, \cdots, x_{k+1}, M_{s}\left(\sigma, x_{k}, \cdots, x_{k+s-1}\right), \cdots, x_{i}\right) \text { if } k \neq r \\
= & h_{r-1}\left(\rho, x_{1}, \cdots, x_{r-1}\right) h_{s-1}\left(\sigma, x_{r}, \cdots, x_{i}\right) \text { if } k=r .
\end{aligned}
$$

Note that when $n=2, f$ is just an H-map, as h_{2} is a homotopy between $f \circ M_{2}$ and $w \circ(f \times f)$. In the case $n=3$, since K_{4} is homeomorphic to I^{2}, we have a map of $S^{1} \times X^{3} \rightarrow Y$ and $h_{3}: K_{4} \times X^{3} \rightarrow Y$ can be thought of as an extension of this map to $I^{2} \times X^{4}$.

Consider the following cross-section of $I^{2} \times X^{4}$ showing a typical I^{2}. Assign to the "faces" of I^{2} the homotopies $h_{2} \circ\left(M_{2} \times 1\right)$, $w \circ\left(h_{2} \times h_{1}\right)$, $w \circ\left(h_{1} \times h_{2}\right), h_{2} \circ\left(1 \times M_{2}\right)$ and $h_{1} \circ M_{3}$ as indicated

The broken line represents a point. The map h_{3} then appropriately fills in the figure.

A map which is an A_{n}-map for all n will be called an A_{∞}-map.
We are now in a position to prove the following generalization of proposition 1.

Theorem 3. (A) Let $\left(F,\left\{M_{i}\right\}\right)$ be an A_{n}-space; then $s: F \rightarrow F^{F}$ is an A_{n-1} map.
(B) s can be shown to be an A_{n}-map if and only if $\left(F,\left\{M_{i}\right\}\right)$ can
be given the structure of an A_{n+1} space.
Proof. (A) Given that $\left(F,\left\{M_{i}\right\}\right)$ is an A_{n}-space, all that is necessary to show that s is an A_{n-1} map is to define $h_{1}=s$ and $h_{i}: K_{i+1} \times F^{i} \rightarrow F^{F} 1 \leqq i \leqq n-1$ by
$h_{i}\left(\partial_{k}(r, t)(\rho, \sigma), x_{1}, \cdots, x_{i}\right)(y)=M_{i+1}\left(\partial_{k}(r, t)(\rho, \sigma), x_{1}, \cdots, x_{i}, y\right)$.
(B) It is clear that $\left(F,\left\{M_{i}\right\}\right)$ can be extended to an A_{n+1}-space (that is there exists a map $M_{n+1}: K_{n+1} \times F^{n+1} \rightarrow F$) if and only if there exists a map $h_{n}: K_{n+1} \times F^{n} \rightarrow F^{F}$ given by

$$
h_{n}\left(\partial_{k}(r, t)(\rho, \sigma), x_{1}, \cdots, x_{n}\right)(y)=M_{n+1}\left(\partial_{k}(r, t)(\rho, \sigma), x_{1}, \cdots, x_{n}, y\right)
$$

Corollary 4. An A_{∞}-form on F is equivalent to the existence of sputnik homotopies $h_{i}: K_{i+1} \times F^{i} \rightarrow F^{F}$ for all i making s an A_{∞}-map.
III. T_{n}-maps and Homolations. We assume throughout this section that (F, m) is an associative H-space with a strict unit. In that case, the map

$$
s: F \longrightarrow F^{F}
$$

given by

$$
s(f)(y)=m(f, y)
$$

is a homomorphism.
We now study left translations via actions. The space F^{F} acts on F by

$$
\begin{gathered}
r: F^{F} \times F \longrightarrow F \\
r(\varphi, f)=\varphi(f)
\end{gathered}
$$

The cross-section s respects the action only of left translations, for consider the diagram:

Suppose

$$
s(\varphi(f))=\varphi \circ s(f)
$$

Since s is left translation, we have $\varphi(f y)=\varphi(f) y$, that is the following diagram is commutative.

In particular,

$$
\varphi(y)=\varphi(e y)=\varphi(e) y
$$

and φ is left translation by $\varphi(e)$. So diagram (1) commutes only on $s(F) \times F \subset F^{F} \times F$ where $s(F)$ is the set of left translations. Thus s is a map of spaces on which $s(F)$ acts.

The result tells us something about the action

$$
r: s(F) \times F \longrightarrow F
$$

namely, it is transitive.
Note that the following diagram is commutative

Let us consider the following question: what is the nature of the action r when diagram (1) is only required to be homotopy commutative. Denote by $T_{2}(F)$ the maximal subset of maps P in F^{F} such that

$$
s[\varphi(f)] \cong \varphi_{0} s(f)
$$

in the sense that there exists a homotopy

$$
\theta_{2}: I \times T_{2}(F) \times F \longrightarrow F^{F}
$$

such that

$$
\theta_{2}(0, \varphi, f)=\varphi \circ s(f)
$$

and

$$
\theta_{2}(1, \rho, f)=s[\varphi(f)]
$$

In this case, it follows that for each φ in $T_{2}(F)$ there exists a homotopy

$$
\varphi_{2}: I \times F^{2} \longrightarrow F
$$

depending continuously on φ such that

$$
\varphi_{2}(0, f, y)=\varphi(f y)
$$

and

$$
\varphi_{2}(1, f, y)=\varphi(f y) y .
$$

Definition 6. Let (F, m) be an associative H-space. A map $f: F \rightarrow F$ is a T-map if there exists a homotopy $I \times F^{2} \rightarrow F$ such that $f \circ m \cong m \circ(f \times 1)$.

Thus we see that the maps in $T_{2}(F)$ are T-maps. The homotopy is given by

$$
\varphi_{2}(t, f, y)=\theta_{2}(t, \varphi, f)(y)
$$

In particular, we note that for each φ in $T_{2}(F)$

$$
\varphi(y)=\varphi(e y) \cong \varphi(e) y
$$

indicating that up to homotopy φ acts like left translation by $\varphi(e)$. Thus the maps in $T_{2}(F)$ in this sense resemble left translations. We will investigate this resemblance further.

Our results show that the action

$$
r: T_{2}(F) \times F \longrightarrow F^{F}
$$

is a T-action in the sense that there exists a homotopy

$$
\lambda_{2}: I \times T_{2}(F) \times F^{2} \longrightarrow F
$$

such that

$$
\lambda_{2}: r \circ(1 \times m) \cong m \circ(r \times 1)
$$

In fact, we can take λ_{2} to be adjoint to θ_{2} :

$$
\lambda_{2}(t, \varphi, f, y)=\theta_{2}(t, \varphi, f)(y)
$$

If φ is a true left translation, it follows that

$$
\varphi(x y z)=\varphi(x y) z=\varphi(x) y z \quad \text { for } x, y, z \text { in } F
$$

however for a map φ in $T_{2}(F)$, the most we can claim using a rather loose notation is that:

$$
\varphi(x y z) \cong \varphi(x y) z \cong \varphi(x) y z \cong \varphi(x y z)
$$

This string of homotopies defines a map

$$
\dot{I}^{2} \times F \longrightarrow F
$$

where \dot{I}^{2} is the boundary of I^{2}.

This can be illustrated in the following diagram, representing $\dot{I}^{2} \times F^{3}$ showing only \dot{I}^{2} with "faces" labeled by the homotopies connecting the maps given above. Note that the edge of \dot{I}^{2} represented by the broken line is just a point. (This is because F is an associative H-space. If F were only homotopy associative, this face would be labeled by the associating homotopy applied to $\varphi(x), y, z$. The following discussion could be carried out for A_{n}-spaces but the details are bad enough in the associative case, which is the case of interest for applications [1].)

The problem of making a map φ in $T_{2}(F)$ more closely "resemble" a left translation, requires that we be able to extend the map

$$
\dot{I}^{2} \times F^{3} \longrightarrow F
$$

to a map

$$
I^{2} \times F^{3} \longrightarrow F
$$

Thus we will need higher homotopy conditions on the maps φ in $T_{2}(F)$. Suppose for the moment that there exists a map

$$
\varphi_{3}: I^{2} \times F^{3} \longrightarrow F
$$

such that
and

$$
\begin{aligned}
& \varphi_{3}\left(0, t_{2}, x, y, z\right)=\varphi_{2}\left(t_{2}, x y, z\right) \\
& \varphi_{3}\left(t_{1}, x, x, y, z\right)=\varphi_{2}\left(t_{1}, x, y z\right) \\
& \varphi_{3}\left(1, t_{2}, x, y, z\right)=\varphi(x) y z \\
& \varphi_{3}\left(t_{1}, 1, x, y, z\right)=\varphi_{2}\left(t_{1}, x, y\right) \cdot z
\end{aligned}
$$

Let $T_{3}(F)$ denote the maximal subset of $T_{2}(F)$ such that for each φ in $T_{2}(F)$, there exists φ_{2} and φ_{3} depending continuously on φ and φ_{2} subject to the conditions already mentioned. In this case, the action $r: T_{3}(F) \times F \rightarrow F$ is such that there exist maps

$$
\lambda_{2}: I \times T_{3}(F) \times F^{2} \longrightarrow F
$$

such that

$$
\lambda_{2}: r(1 \times m) \cong m(r \times 1)
$$

and

$$
\lambda_{3}: I^{2} \times T_{3}(F) \times F^{3} \longrightarrow F
$$

such that

$$
\begin{aligned}
& \lambda_{3}\left(0, t_{2}, \varphi, x, y, z\right)=\lambda_{2}\left(t_{2}, \varphi, x y, z\right) \\
& \lambda_{3}\left(t_{1}, 0, \varphi, x, y, z\right)=\lambda_{2}\left(t_{1}, \varphi, x, y z\right) \\
& \lambda_{3}\left(1, t_{2}, \varphi, x, y, z\right)=r(\varphi, x) \cdot y z
\end{aligned}
$$

and

$$
\lambda_{3}\left(t_{1}, 1, \varphi, x, y, z\right)=\lambda_{2}\left(t_{1}, \varphi, x, y\right) \cdot z
$$

This latter map is given by

$$
\lambda_{3}\left(t_{1}, t_{2}, \varphi, x, y, z\right)=\varphi_{3}\left(t_{1}, t_{2}, x, y, z\right)
$$

On the other hand, there exist maps

$$
\theta_{2}: I \times T_{3}(F) \times F \longrightarrow F^{F}
$$

such that

$$
\theta_{2}: \varphi \circ s(f) \cong s[\varphi(f)]
$$

and

$$
\theta_{3}: I^{2} \times T_{3}(F) \times F^{2} \longrightarrow F^{F}
$$

such that

$$
\theta_{3}:\left(t_{1}, t_{2}, \varphi, x, y\right)(z)=\lambda_{3}\left(t_{1}, t_{2}, \varphi, x, y, z\right)
$$

Parallel to every demand that a map $\varphi: F \rightarrow F$ more closely resemble a left translation by satisfying higher homotopy conditions will be the requirement of higher homotopy conditions on the action r and similar higher homotopy conditions on the map s.

Definition 7. Let (X, m) be an associative H-space. A map $\varphi: X \rightarrow X$ is a T_{n}-map of X into itself if there exists a family of maps

$$
\varphi_{i}: I^{i-1} \times X^{i} \longrightarrow X \quad 1 \leqq i \leqq n
$$

such that $\varphi_{1}=\varphi$ and

$$
\begin{aligned}
& \varphi_{i}\left(t_{1}, \cdots, t_{i-1}, x_{1}, \cdots, x_{i}\right) \\
= & \varphi_{i-1}\left(t_{1}, \cdots, \hat{t}_{k}, \cdots, t_{i-1}, x_{1}, \cdots, x_{k} x_{k+1}, \cdots, x_{i}\right) \\
= & \text { if } t_{k}=0 \\
\varphi_{k}\left(t_{1}, \cdots, t_{k-1}, x_{1}, \cdots, x_{k}\right) \cdot\left(x_{k+1}, x_{k+2} \cdots x_{i}\right) & \text { if } t_{k}=1 .
\end{aligned}
$$

In case φ_{i} exists for all i, we call φ a homolation, that is, a homotopy translation. Denote the set of all homolations by $T_{\infty}(F)$.

Definition 8. Let (F, m) be an associative H-space. A homolation family on F is a collection of maps $\left\{\varphi_{i}: I^{i-1} \times F^{i} \rightarrow F, \forall_{i} \geqq 1\right\}$ where φ_{1} is a homolation and $\varphi_{1}: F \rightarrow F$ is a homotopy equivalence. We will denote by $H^{\infty}(F)$, the set of all homolation families. $H^{\infty}(F)$ is a subspace of $C(F ; F) \times C\left(I \times F^{2} ; F\right) \times \cdots$ where $C\left(I^{3} \times F^{i+1} ; F\right)$ is the set of all continuous maps $f: I^{j} \times F^{j+1} \rightarrow F$ (with the k-topology derived from the compact-open topology).

Definition 9. Let (X, m) be an associative H-space. A map

$$
w: M \times X \longrightarrow X
$$

of M on X is said to be a T_{n}-action if there exist maps

$$
w_{i}: I^{i-1} \times M \times X^{i} \longrightarrow X \quad 1 \leqq i \leqq n
$$

such that $w_{1}=w$ and

$$
\begin{aligned}
& w_{i}\left(t_{1}, \cdots, t_{i-1}, g, x_{1}, \cdots, x_{i}\right) \\
= & w_{i-1}\left(t_{1}, \cdots, \hat{t}_{k}, \cdots, t_{i-1}, g, \cdots x_{k} x_{k+1}, \cdots, x_{i}\right) \quad \text { if } t_{k}=0 \\
= & w_{k}\left(t_{1}, \cdots, t_{k-1}, g, x_{1}, \cdots, x_{k}\right) \cdot\left(x_{k+1} x_{k+2} \cdots x_{i}\right) \quad \text { if } t_{k}=1 .
\end{aligned}
$$

If a map $w: M \times X \rightarrow X$ is a T_{n}-action for all n, then w is said to be a T_{∞}-action.

Theorem 5. Let $T_{n}(F)$ denote the maximal subset of F^{F} such that there exist maps $\lambda_{i}: I^{i-1} \times T_{n}(F) \times F^{i} \rightarrow F$ for $1 \leqq i \leqq n$ making $r: T_{n}(F) \times F \rightarrow F a T_{n}$-action; then $T_{n}(F)$ consists of T_{n}-maps.

Proof. We may define the maps

$$
\varphi_{i}: I^{i-1} \times F^{i} \longrightarrow F \quad 1 \leqq i \leqq n
$$

by

$$
\varphi_{i}\left(t_{1}, \cdots, t_{i-1}, f_{1}, \cdots, f_{i}\right)=\lambda_{i}\left(t_{1}, \cdots, t_{i-1}, \varphi, f_{1}, \cdots, f_{i}\right) .
$$

Definition 10. Let (X, m) and (M, v) be associative H-spaces and $w: M \times X \rightarrow X$ be a T_{n}-action. A homomorphism $f: X \rightarrow M$ is said to be a T_{n}-map of actions if there exist maps

$$
\theta_{i}: I^{i-1} \times M \times X^{i-1} \longrightarrow M
$$

such that $\theta_{1}=1_{M}$ and

$$
\begin{aligned}
& \theta_{i}\left(t_{1}, \cdots, t_{i-1}, g, x_{1}, \cdots, x_{i-1}\right) \\
= & \theta_{i-1}\left(t_{1}, \cdots, \hat{t}_{k}, \cdots, t_{i-1}, g, \cdots, x_{k} x_{k+1}, \cdots, x_{i-1}\right) \\
= & v\left[\theta_{i-1}\left(t_{1}, \cdots, t_{i-2}, g, x_{1}, \cdots, x_{i-2}\right), f\left(x_{i-1}\right)\right] \quad \text { if } t_{k}=0, k \neq i-1 \\
= & f\left[m\left(w_{k}\left(t_{1}, \cdots, t_{k-1}, g, x_{1}, \cdots, x_{k}\right), x_{k+1} x_{k+2} \cdots x_{i}\right)\right] \quad \text { if } t_{i-1}=0
\end{aligned}
$$

If θ_{i} exists for all i, then f is said to be a T_{∞}-map of actions.
Corollary 6. The map $r: T_{\infty}(F) \times F$ is a T_{∞}-action and s is then a T_{∞}-map of actions.

Proof. Define $\lambda_{i}: I^{i-1} \times T_{\infty}(F) \times F^{i} \rightarrow F$ by

$$
\lambda_{i}\left(t_{1}, \cdots, t_{i-1}, \varphi, f_{1}, \cdots, f_{i}\right)=\varphi_{i}\left(t_{1}, \cdots, t_{i-1}, f_{1}, \cdots, f_{i}\right)
$$

and

$$
\theta_{i}: I^{i-1} \times T^{\infty}(F) \times F^{i-1} \longrightarrow F^{F}
$$

by

$$
\theta_{i}\left(t_{1}, \cdots, t_{i-1}, \varphi, f_{1}, \cdots f_{i-1}\right)\left(f_{i}\right)=\lambda_{i}\left(t_{1}, \cdots, t_{i-1}, \varphi, f_{1}, \cdots, f_{i}\right)
$$

IV. The homotopy equivalence of F and $H^{\infty}(F)$. As we have seen, we can identify an associative H-space with the set of left translations of that space. We note that this identification of F in F^{F} as left translation is not homotopy invariant: $\varphi(f x)=\varphi(f) x$ is not a homotopy statement. Our definition of homolation is homotopy invariant and it characterizes $F \rightarrow F^{F}$ from a homotopy point of view.

We are now in a position to prove the following theorem. Recall that $H^{\circ}(F)$ is the set of all homolation families.

Theorem 7. If (F, m) is a connected associative H-space, the map $s: F \rightarrow F^{F}$ factors through $H^{\circ}(F)$, and the factor $F \rightarrow H^{\circ}(F)$ is a homotopy equivalence.

Proof. Define a map

$$
\tau: F \longrightarrow H^{\infty}(F)
$$

as follows:

$$
\tau(f)=\Phi_{f}=\left\{\varphi_{1}^{f}, \varphi_{2}^{f}, \cdots\right\}
$$

where

$$
\varphi_{1}^{f}: F \longrightarrow F
$$

is given by

$$
\varphi_{1}^{f}(g)=f g
$$

that is left translation of F. φ_{1}^{f} is a homotopy equivalence since F is connected (see [4]).

The remaining maps are given by

$$
\varphi_{k}^{f}\left(t_{1}, \cdots, t_{k-1}, f_{1}, \cdots, f_{k}\right)=f f_{1} \cdots f_{k} \quad \text { for all } k .
$$

The map τ is continuous, since the composition of maps

$$
F \xrightarrow{\tau} C(F ; F) \times C\left(I \times F^{2} ; F\right) \cdots \xrightarrow{p^{(k)}} C\left(I^{k-1} \times F^{k} ; F\right)
$$

is continuous for each k and $p^{(k)}$ is projection onto the corresponding factor.

On the other hand, define the map

$$
\mu: H^{\infty}(F) \longrightarrow F
$$

by

$$
\mu(\Gamma)=\gamma_{1}(e)
$$

where $\Gamma=\left\{\gamma_{1}, \gamma_{2}, \cdots\right\}$ is in $H^{\infty}(F)$ and e is the unit of F.
The map μ is continuous, since it is the composition of maps

$$
H^{\infty}(F) \xrightarrow{p_{1}} H^{\infty}(F)_{1}=T_{\infty}(F) \xrightarrow{w_{e}} F
$$

where p_{1} is projection of $H^{\infty}(F)$ on that part of $H^{\infty}(F)$ contained in F^{F}, namely the set of homolations, here denoted by $H^{\infty}(F)_{1}$, and the map w_{e} is the evaluation map at e (continuous in the k-topology).

Note that $\mu(\tau(f))=\mu\left(\Phi_{f}\right)=\varphi_{1}^{f}(e)=f e=f$ so that $\mu \circ \tau=1_{F}$.
On the other hand

$$
\tau \circ \mu(\Gamma)=\tau\left(\gamma_{1}(e)\right)=\Phi_{\gamma_{1}(e)}=\left\{\varphi_{1}^{r_{1}(e)}, \varphi_{2}^{\gamma_{1}^{(e)}} \cdots\right\}
$$

We claim that $\tau \circ \mu \cong 1_{H{ }^{\infty}(F)}$, that is there exists a map

$$
H_{t}: H^{\infty}(F) \longrightarrow H^{\infty}(F)
$$

such that $H_{0}=1_{H^{\infty}(F)}$ and $H_{1}=\tau \circ \mu$.
To see this, let $H^{\infty}(F)_{k}$ be the subspace of $H^{\infty}(F)$ which is contained in $C\left(I^{k-1} \times F^{k} ; F\right)$. The map $H_{t}=\left\{H_{t}^{1}, H_{t}^{2}, \cdots\right\}$ will consist of homotopies

$$
\left\{H_{t}^{k}\right\}: H^{\infty}(F) \longrightarrow H^{\infty}(F)_{k} \quad \text { for each } k
$$

such that $H_{0}^{k}=1_{H^{\infty}{ }_{(F)}}$ and $H_{1}^{k}=\tau \circ \mu \mid H^{\infty}(F)_{k}$ and the H_{t}^{k} are compatible.

Define $H_{t}^{k}: H^{\infty}(F) \rightarrow H^{\infty}(F)_{k}$ as follows:

$$
H_{t}^{k}(\Gamma)\left(t_{1}, \cdots t_{k-1}, f_{1}, \cdots, f_{k}\right)=\gamma_{k+1}\left(t, t_{1}, \cdots, t_{k-1}, e, f_{1}, \cdots, f_{k}\right)
$$

The map is continuous as each γ_{k+1} in Γ is continuous and $\Gamma \rightarrow \gamma_{k+1}$ is continuous being projection.

Note if $t_{j}=0$

$$
\begin{aligned}
& H_{t}^{k}(\Gamma)\left(t_{1}, \cdots, t_{k-1}, f_{1}, \cdots, f_{k}\right) \\
= & \gamma_{k}\left(t, t_{1}, \cdots \hat{t}_{j}, \cdots t_{k-1}, e, f_{1}, \cdots f_{j} f_{j+1}, \cdots, f_{k}\right) \\
= & H_{t}^{k-1}(\Gamma)\left(t_{1}, \cdots, \hat{t}_{j}, \cdots, t_{k-1}, f_{1}, \cdots, f_{j} f_{j+1}, \cdots f_{k}\right)
\end{aligned}
$$

while if $t_{j}=1$

$$
\begin{aligned}
& H_{t}^{k}(\Gamma)\left(t_{1}, \cdots, t_{k-1}, f_{1}, \cdots, f_{k}\right) \\
= & \gamma_{j+1}\left(t, t_{1}, \cdots, t_{j-1}, e, f_{1}, \cdots f_{j}\right)\left(f_{j+1}, \cdots, f_{k}\right) \\
= & H_{t}^{j}(\Gamma)\left(t_{1}, \cdots t_{j-1}, f_{1}, \cdots, f_{j}\right)\left(f_{j+1}, \cdots, f_{k}\right) .
\end{aligned}
$$

Thus $\left\{H_{t}^{k}\right\}$ is in $H^{\infty}(F)$. Further

$$
\begin{aligned}
H_{0}^{k}(\Gamma)\left(t_{1}, \cdots, t_{k-1}, f_{1}, \cdots, f_{k}\right) & =\gamma_{k}\left(t_{1}, \cdots, t_{k-1}, e f_{1}, \cdots f_{k}\right) \\
& =\gamma_{k}\left(t_{1}, \cdots, t_{k-1}, f_{1}, \cdots, f_{k}\right)
\end{aligned}
$$

Thus $H_{0}^{k}=1_{\left.H^{\infty}(F)\right)_{k}}\left\{H_{0}^{k}(\Gamma)\right\}=\Gamma$ and

$$
\begin{aligned}
& H_{1}^{k}(\Gamma)\left(t_{1}, \cdots, t_{k-1}, f_{1}, \cdots, f_{k}\right) \\
= & \gamma_{1}(e) f_{1} \cdots f_{k} \\
= & \varphi_{1}^{r_{1}(e)}\left(t_{1}, \cdots, t_{k-1}, f_{1}, \cdots, f_{k}\right) \\
= & \tau \circ \mu(\Gamma)\left(t_{1}, \cdots, t_{k-1}, f_{1}, \cdots, f_{k}\right) .
\end{aligned}
$$

Thus $H_{1}^{k}=\tau \circ \mu \mid H^{\infty}(F)_{k},\left\{H_{1}^{k}(\Gamma)\right\}=\tau \circ \mu(\Gamma)$. This completes the proof that F and $H^{\infty}(F)$ are homotopy equivalent.

Now $H^{\infty}(F)$ is itself an H-space; we can define composition of families as well as just maps $F \rightarrow F$ (see [1]). The map $F \rightarrow H^{\infty}(F)$ is an A_{∞}-map and hence induces $B_{F} \rightarrow B_{H^{\infty}(F)}$ which is again a homotopy equivalence if F is a $C W$-complex.

In my thesis [1], I show that $B_{H^{\infty}(F)}$ is a classifying space for fibrations with A_{∞}-actions of F on the total space. The above homotopy equivalence then shows a fibre space admits such an A_{∞}-action if and only if it admits an associative action.

References

1. R. A. Nowlan, A_{n}-actions on Fibre Spaces, Thesis, University of Notre Dame, 1969. 2. J. D. Stasheff, Homotopy Associativity of H-spaces (I), Trans. Amer. Math. Soc., 108 (1963), 275-292.
2. -, Homotopy Associativity of H-spaces (II), Trans. Amer. Math. Soc., 108 (1963), 293-312.
3. On Homotopy Abelian H-spaces, Proc. Cambridge Phil. Soc., 57 (1961), 734-745.
4. N. E. Steenrod, A convenient category of topological spaces, Michigan Math. J,. (1967), 133-152.

Received April 6, 1970 and in revised form July 9, 1970.
Southern Connecticut State College

