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A CONGRUENCE THEOREM FOR ASYMMETRIC TREES

JAROSLAV NESETRIL

The question is studied how a given tree is determined
by the collection of its asymmetric subtrees. The results are
analogous other partial answers to the Ulam-Kelly conjecture.

In [1], [2], [4], [5] several theorems are proved concerning the

following conjecture posed by P. J. Kelly [4]: If G and H are two

graphs with p vertices vt and Ui respectively (p ^ 3) such that for

all ί: G — v{ = H — u{ then G and H are themselves isomorphic. In

[4] it is shown that this conjecture is true when G, H are trees. In

[1]> [2], [5] improvements of this result are obtained, namely, know-

ledge any of the following collections is sufficient to conclude G = H

providing G, H are trees:

(1) all maximal proper subtrees [2]

(2) subtrees T — v{ where Vι is a peripheral vertex [1]

(3) non-isomorphic maximal subtrees [5].

Let G{T) denote the automorphism group of a tree T. If G(T) =

{identity} then T is called an asymmetric tree. Let 2t denote the

class of all asymmetric trees.

For a tree T consider the set of all asymmetric proper subtrees

of T. This set is naturally partially ordered by inclusion, denote by

A(T) the set of all maximal elements of this set, i.e. the set of all

maximal asymmetric subtrees. (By subtree is meant proper subtree

from now on.) Further denote by 3I(T) the set of all isomorphism

types of A{T). (We denote by [G] the isomorphism type of the graph

•G, hence 2I(Γ) = {[T']ι T e A(T)}.) We write A(T) ~ A(S) for trees

T and S, if there is a one-to-one mapping φ: A(T) —• A(S) such that

><p(Ti) = Ti for every T.eAiT).

We write 2I(T) = 5t(S) if the sets 2t(T) and 9I(S) are equal. We

write Titjtk for the tree consisting of three edge disjoint paths that

start from a common point and have lengths i, j, k.

We will investigate the dependence of [T] on A(T) and SX(T).

It is obvious that not every tree T will be determined by A(T),

since there are nonisomorhic trees with A(T) = 0 (we do not include

the trivial tree in the collections A(T) and 3X(Γ)). But such trees

are characterized by the following known result:

PROPOSITION 0.1. We have A{T) Φ 0 iff T7 < T, where T7 - TιM

with 7 vertices is the minimal asymmetric tree and G < H means that

& is a proper full subgraph of H.

in
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Moreover, assuming A(T) Φ 0 , the minimal asymmetric subtrees
cover T, i.e., every edge of T belong to some T'eA(T), with the
exception of the trees of one type. In view of this statement it
would seem reasonable to conjecture that 2KT) and T are in one-to-
one correspondence (up to isomorphism) providing SI(JΓ) Φ 0 . But
this is not true, as is shown by the following class of examples:

Let ΐ(l), •• ,i(n) be n natural numbers. We denote by Ti{1)t...,i{n)

the subdivision of the w-star (i.e., Kx + Kn, see [3]) obtained by
inserting i(k) — 1 points in the kth edge. Obviously 2l(Γi(1)...fi(Λ)) =
{[̂ 1,2,3]} for every n if i{k) ^ 3 for k — 1, , n. The situation cannot
be saved by considering A(T) rather that 2I(Γ) since A(T3t2t2) =
A(TZ 2,1,1) The examples given here are not unique. We prove:

Main Theorem weaker form.
Then A(T) ~ A{S) <=> S = T

Let T, S be asymmetric trees.

Main Theorem stronger form. Let S, T be asymmetric trees.
Then §l(T) = 2i(S) <=> T ̂  S, with the exception of the following two-
trees:

. 3 , 4

Since obviously A(TU3i) 0 A{TX) it is enough to prove the stronger
form of the main theorem. In fact we prove this theorem in refor-
mulation of the problem as a reconstruction of a tree (see Theorem
2.1).

The paper has two parts. In first of them we investigate the
group of automorphisms of a tree in general and its connection to
asymmetry (Corollary 1.2), in the second part we prove the main
theorem (Theorem 2.1). The notions of the graph theory not defined
here may be found in [3].

!• The automorphism group of a tree*

1 I thank B. Manvel, who found independently the examples of exceptional trees-
Ti,3,4 and Ti and called my attention to them.
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THEOREM 1.1. Let T be a tree. Let C2(T) = {feG(T): / ° / = id.}.
Then C2(T) generates G(T).

Proof. Since every symmetric group is generated by transpositions
and direct products and compositions see [3] preserve generators, the
theorem follows.

THEOREM 1.1 has some interesting consequences:

COROLLARY 1.1. Let T be a symmetric tree (i.e., G(T) Φ id.).
Then there is feG(T),fΦ id. and fof = id.

This is clear by the above theorem. We remark that this is
already false for unicyclic graphs, since there is a graph X with
G(X) = C3 (the cyclic group of order 3), see [3] p. 169.

COROLLARY 1.2. Let T be an asymmetric tree, d(x, T) = 1. (By
•d(x, T) we denote the degree of the point x in the tree T.) Then

G(T — x)\<>2 (i.e. the removing of an endpoint of an asymmetric
tree gives rise to at most one symmetry).

Proof. S u p p o s e f o r t h e c o n t r a r y \G(T — x)\>2 f o r s o m e
d(x, T) = 1. By Theorem 1.1 there are flf f2eG(T - x) and f1of1 =
/ 2°/ 2 = id., /i Φ /2. Let [x, y] e E(T), then necessarily y Φ f,(y) Φ
fz{y) Φ y- Let us distinguish two cases: (i) T — x is a central tree
(see [1]), c is the only center of T — x. Let W(c, y) be the path
joining y and c. Put n{ = min{p(c, z); ze W(c, y), fi(z) Φ z}, i = 1, 2.
(pic, z) is the distance between c and z.) It can be proved easily that
nγ = n2 and that fx(z) = f2(z) where ze W(c, y), ρ(z, c) = nλ. But then
/i = fzi ^OY otherwise the number n, defined for fτι°f2 as nλ was
defined for flf would be greater than nλ. But f1 Φ f2 by hypothesis,
(ii) Let T — x be bicentral. We can use the same argument as in
(i) for the tree (T — #)", where for every T-bicentral tree the central
tree T^ is defined by: V{T) = V(T) U {c}, c £ V(T) and E(T) =
(E(T) — [Cj, Co]) U [c, c}] U [c, c2], where cu c2 are two centers of T.

REMARK. Corollary 1.2 gives a necessary condition for a tree T
to have an asymmetric extension to \T\ + 1 vertices, which is itself
a tree. This condition is not sufficient.

2* Asymmetric congruence of trees* We are going to prove
the main theorem. This will be done in Propositions 2.1 — 2.8. A
difference between the proof presented here and the proofs used in
|1], [2], [4] is that we know less about the structure of 2ΐ(Γ). Thus
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to prove that some basic parameters of T are determined by 3I(T>
we need existence theorems.

Let ΓeSX be fixed from now on.

PROPOSITION 2.1. 3l(Γ) = 0 iff T = T7.

This follows from Proposition 0.1. Thus let 3I(Γ) Φ 0 from now
on.

Let (T, x) be a rooted tree, by G(T,x) we denote the group of
all root-automorphisms, i.e., all automorphisms of T which leave x
fixed. In an obvious sense we will speak about root-asymmetric tree,
root-isomorphic trees (T,x) = (S, y) and so on.

Let T be a tree, the branch S of T at a point x is every maximal
subtree of T which contains x as an endpoint. Every branch at a
center of T is called limb.

To determine | Γ | we prove the existence of [Γo] e 3I(T), | To =
I T| — 1. We prove first:

LEMMA 2.1. Let (Γ, x0) be a root-asymmetric tree. Then there
is a vertex x, x Φ x0, d(x, T) = 1, such that (T — x, x0) is root-asym-
metric.

Proof. For | Γ | = 2 the statement obviously holds. Let the
lemma hold for every (S, y), \S\ < n. Let (T, x0) be a root-asymmetric
tree, \T\ = n. Define the relation -< on V(x0, T) - {x; [x, xQ] e E(T)}
by: x <y <=> there is an endpoint of T^ and (Ty — z, x0) = (ΪU αo)
(Equivalently by Corollary 1.2: there is an endpoint ze V(Ty) and
/ G G(T - z) such that f(y) = x, /(α;) = 1/.) Here ϊ7^ denotes the
branch of T at x0 containing y.

Let x : be a minimal vertex for the relation < . Then by the
induction hypothesis there is ,τG Tr

ari such that (TXl — x, x0) is root-
asymmetric and by the definition of -< (T — x, x0) is a root-asymmetric
tree.

According to [1], a vertex x of a tree T is called peripheral if
there is ye V(T) and ρ{x,y) — diam T. The couple x,y we call a
peripheral couple.

PROPOSITION 2.2. ( I ) Lei T be a central tree, then either ( i )
T ~ Tltkm,k+ m odd or (ii) ίfcere is [TY| e2l(T), T, central, \T{\ =

(II) Lei T δe bicentral, then either ( i ) T = Tuk,m, k + m
or (ii) ίAere ώ [ΓJeSί(Γ), Γ, bicentral, (ΓJ = | Γ | - 1.

(III) .For eΐ er?/ Γ ίfoere is ^ 6 1(7), Γ̂  is α maximal subtree.

Proof I. Let Γ be a central asymmetric tree with the center
The following cases are possible:
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(a) for every peripheral vertex of T, there is a peripheral
couple disjoint with it

(b) T contains more than one peripheral couple and (a) does
not hold

(c) T contains exactly two peripheral vertices.
In the case (a) we can use Lemma 2.1 since each T — x is a central
tree and hence (T — x, c) is a root-asymmetric tree if T — x is an
asymmetric tree. Suppose that (c) holds: Let α, b be the only
peripheral vertices of Γ, aeRl9 beR2 the only radial limbs of T(i.e.,
branches at the center with a peripheral point). Let |JBX| ^ \R2\. If
there are other limbs of T, then we can apply Lemma 2.1 to their
union and find x such that [T - x]eWi(T). Thus let Ru R2 be the
only branches of T at c. The proof can be finished by choosing a
convenient point zeW(a, b) (the unique path connecting a and 6),
d(z, T) ̂  3 and considering the union of all branches of T at z which
contain neither a nor 6. Using Lemma 2.1 we get an asymmetric
tree with the only exception T = Tltk,m, k + m odd.

The case (b) can be handled similarly.

(II) can be proved by use of the graph T^(see the proof of the
Corollary 1.2).

(III) is obvious by (I) and (II), since TU2ΛΦ Tltktm implies that
Tίfkm contains a maximal subtree which is asymmetric.

REMARK. The Proposition 2.1. (Ill) was recently proved in a
different context by J. Sheehan and J. A. Zimmer Jr. from the
University of Waterloo.

PROPOSITION 2.3. Let [k, m} Φ {3, 4}. Then Tltk,m is reconstructible
from SI(Γ1>fc>w). There is WL(T1}3J = ^(T,) (see the Introduction) and

there are no other such graphs.

Outline of proof. Obviously [T] e lϊ(Tuktm) implies T2M ^ Γ, T
has only one vertex of degree ^ 3, and further \$l(Tuk>m) | <£ 2. From
these facts one can verify the statement by exhaustion of cases.

PROPOSITION 2.4. ( i ) T is central if diam T < diam T for
every bicentral subtree T of T (diam T is the diameter of the tree T)
(ii) T is bicentral if diam T < diam T for every central subtree Tr

of T.

The proof is clear and is omitted.

By Propositions 2.2, 2.3, 2.4 we can determine from 21 (Γ) whether
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T is central or bicentral. Thus from now on let T be central, T ^
Tltkιm, T £ 2\. Let c be the center of T, r the radius of T7, (see [3]).
The case T bicentral will be investigated later. The following lemma
deals with a special kind of trees, one that has a radial limb which
is a path (called a radial path).

LEMMA 2.2. The following two statements are equivalent:
( i ) T satisfies one of the following properties: (a) T contains

a radial path (which is necessarily unique), (b) T = Tn for some
n > 1, where Tn (n natural number) is the tree defined by V(Tn) =
{1, . . . , rc + 8},E(Tn) = {[i,i + l];i = l, -*-,n+ 5} \J [4,11 + 7] \J[n +
4, n + 8], (the tree T1 is defined in the Introduction)

(ii) Sl(T) satisfies one of the following properties: (a) For every
[TJeSiίT), Ti contains a branch which is the path of length r. (b)
There is [T0]e5i(T) such that every tree Tif [To] Φ [ T , ]G21(JΓ) contains
a branch which is the path of length r, the tree To itself contains a
branch at one of its centers which is the path of length r — 1.

Outline of proof. Let T contain a radial path. Since T is central,
we can assume that W(c, y) is a radial path (d(y, T) — 1). By
asymmetry this is the only radial path in T. Furthermore: If
xe V(Ί) - W(c, y), x£ T'e A(T) then T has a radial path. From
this it follows, by the maximality of the elements of A(T), that there
is at most one [TO] e 2t(T), such that To has no branch which is the
path of length r. It is now easy to conclude that either (iia) or (iib)
holds. Conversely let T have no radial path and suppose that 2I(T)
satisfies (iia) or (iib). We can conclude that T = Tn for some n> 1.
We can prove first that every limb of T is a radial limb and by a
similar method to that in the proof of Proposition 2.2 we can prove
T = Tn. The details are omitted.

PROPOSITION 2.5. Let n > 1. The tree Tn see Lemma 2.2 is
reconstructive from %(Tn).

The proof is simple (using Proposition 2.3).

PROPOSITION 2.6. If T contains a radial path, then T is recon-
Vstructϊble from

Proof. Let T contain the radial path (which is unique), and let
%(T) = 2t(T). Then by Lemma 2.2 and Proposition 2.5 we know that
T has the radial path. Assume that (iib) of the Lemma 2.2 holds;
let I To ] = I T\ - Jc, then either diam To = diam T and T ^ T follows
easily, or diam To < diam T. This case can occur if T has only two
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radial branches at c. Since (iib) holds, we know that R Φ 0 , where
R is the union of all non-radial limbs at c. Applying Lemma 2.2 to
(R, c) we can determine both radial branches of T. It is easy to see
also that R is determined uniquely.

Case Lemma 2.2 (iia) can be handled similarly.

Now we can prove the main theorem for central trees:

PROPOSITION 2.7. Let T be central, then T is reconstructive
from

Proof. By Propositions 2.1, 2.2, 2.5, 2.6 we can assume T ̂  Tltk,m,
T £ TnyT does not contain a radial path. Consider % = {[T{] e 2l(T);
|T. | + 1 = \T\, Ti is central}.

We know (by the assumptions on T), that there is xeR, where
R is a limb of the minimal cardinality, such that T — x e %. In this
tree T — x we know all limbs except R. Let Rι be a limb of the
minimal cardinality among all limbs different from R. Let (R[, c) be
a maximal root-asymmetric subtree of the limb (RL, c), which contains
a peripheral point. If there is T e %, such that T does not contain
the limb (Ru c) and Tf contains the limb (R[, c), then the branch
(R, c) is the only branch in T which was still unknown. If there is
no such tree T then (iϋ, c) ~ (R[, c).

To prove the main theorem for bicentral trees we could modify
the proofs of the previous propositions. We use a different proof.

PROPOSITION 2.8. Let T be a bicentral tree. Then T is recon-
strnctible from 21(T).

Proof. Let T be a bicentral tree of the diameter 2r + 1; by the
Proposition 2.2 we can assume T & Tltk,m. If T contains a branch
which is a path of length r + 1, then for such a tree a statement
similar to Lemma 2.2 holds and T can be reconstructed from 2l(T)
in a similar manner to that used in Proposition 2.6. Assume that T
does not contain a branch of length r + 1. Let us form the tree ΊΓ
by the definition given in the proof of Corollary 1.2. As seen from
the proof of the Proposition 2.7, ΊΓ is determined by all the trees
in 31(2 )̂ which have the same diameter as T^. Since for such trees
the operation " v " preserves isomorphism the proposition follows.

Thus we finally have:
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THEOREM 2.1. Every asymmetric tree is reconstructive from
A(T). Every asymmetric tree is reconstructible from 2t(T), with the
exception of Tx and TUZΛ.
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