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VARIETIES OF IMPLICATIVE SEMILATTICES

W. NEMITZ AND T. WHALEY

The main purpose of this paper is to investigate pro-
perties of the lattice of subvarieties of the variety of im-
plicative semilattices. Also the distinct compositions of the
operators of taking homomorphic images, subalgebras, and
products of classes of implicative semilattices are determined.

A class K of similar universal algebras [2, pp. 33-34] is called a
variety provided K consists of all the algebras which satisfy some
set of identities. If K is a variety and Kr ϋ K, then K' is called a
sub variety of K provided Kr is itself a variety. The subvarieties of
a given variety form a lattice when ordered by inclusion. A basic
theorem of Birkhoff [1] states that a class of algebras if is a variety
if and only if K is closed under the taking of homomorphic images,
subalgebras, and direct products.

An implicative semilattice is an algebra <X; Λ, *> where ζL; Λ>
is a semilattice, and * is a binary operation such that x A y ^ z if
and only if x rg y * z (here w ^ u means w A u = w). Every impli-
cative semilattice has a largest element which we denote by 1.
Monteiro [4] has given a set of equational axioms for implicative
semilattices thus showing that the class of implicative semilattices is
a variety. In this paper we consider the lattice of subvarieties of
this variety. We shall denote the variety of all implicative semi-
lattices by /.

An ideal K of an implicative semilattice L is a subset of L such
that xe K whenever x <̂  y e K. A filter J of L is a subset of L such
that x A y, z e J whenever x,yeJ,zeL and x rg z. It is shown in
[5] that filters are related to homomorphisms for implicative semi-
lattices in the same way they are for boolean algebras. In particular,
if by the kernel of a homomorphism we mean the pre-image of the
greatest element of the range, then the kernel of any homomorphism
is a filter, every filter is the kernel of a homomorphism, and the con-
gruence relation and quotient algebra determined by the homomorphism
are also determined by the kernel of the homomorphism. Also, in
[6] it is shown that the lattice of filters and therefore the lattice of
congruence relations of an implicative semi-lattice is distributive.
Thus we are able to make use of the results and techniques of
Jόnsson [3].

In § 2 we determine several elementary properties of subdirectly
irreducible implicative semilattices. Here it is also shown that the
variety of implicative semilattices is generated by its finite members,
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covers no sub variety, and is not the lattice join of any two proper
sub varieties. In § 3 we determine the varieties generated by chains
and give identities for these. In § 4 we introduce the notion of sub-
length for implicative semilattices and show that this is a variety
property. The varieties of sublength three are determined by their
generators.

For a class K of algebras H(K), S(K), P{K) denote respectively
the class of all homomorphic images of elements of K> the class of
all subalgebras of elements of K, and the class of all direct products
of elements of K. Pigozzi [8] has determined all direct compositions
of the operations H, S, and P for arbitrary algebras. In the final
section we consider this problem when restricted to classes of impli-
cative semilattices.

For the basic arithmetic of implicative semilattices, the reader is
referred to [5].

2* Subdirectly irreducible implicative semilattices* Since a
subdirectly irreducible algebra is one with a smallest proper congruence
relation, we see that a subdirectly irreducible implicative semilattice
is one with a smallest proper filter, thus one with a unique dual atom
which dominates all elements other than 1. If we let Ke denote the
smallest variety containing the class of algebras K, then Ke = HSP(K).
Since a variety is determined by its subdirectly irreducible members,
for a given class K of algebras, it is helpful to know the subdirectly
irreducible members of K\ It follows from [3, Cor. 3.4] that if K
is a finite set of finite implicative semilattices, then every subdirectly
irreducible member L of Ke is in HS(K). The following lemma shows
that L is actually in S(K).

LEMMA 2.1. If L is an implicative semilattice every filter of
which is principal, then any homomorphic image of L is isomorphic
to a suhalgebra of L.

Proof. Suppose φ: L—> If is a homomorphism. The kernel of φ
is principal, say generated by α. It is easy to check that the mapping
ψ: L —> L which takes x to a * x is a homomorphism with the same
kernel as φ. Thus ψ{L) = φ(L).

If L is any implicative semilattice, we let L be the result of
adjoining an element u to L in such a way that x < u < 1 for each
xeL ~ {1}. The operations of L extend those of L and satisfy the
formulas

and
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x*u = l, u*x = x for all xe L ~ {1} .

Clearly L is subdirectly irreducible and L ^ s L (L is a subalgebra of
L). Also note that every subdirectly irreducible implicative semilattice
can be so obtained. It is easy to check that the mapping φ defined
by ψix) = u * x is a homomorphism of L onto L. Thus we get the
following lemma.

LEMMA 2.2. Every implicative semilattice is both a subalgebra and
a homomorphic image of the same subdirectly irreducible implicative
semilattice.

By [3, Lemma 4.1] we see that if Vι and V2 are varieties of
implicative semilattices and if L is a subdirectly irreducible member
of (Vι U V2)

e, then Le Vι or Le V2. Using Lemma 2.2 and a proof
as in [3, Thm. 5.4] we get the following corollary.

COROLLARY 2.3. // V1 and V2 are proper subvarieties of I, then
so is the lattice join of V1 and F2.

The following lemma shows that / is generated by its finite members.

LEMMA 2.4. Let L be an implicative semilattice, and let S be a
finite, nonempty subset of L which is closed under A. Then there is
a finite implicative semilattice U and a one-to-one, order preserving
mapping ψ of S into L' such that

( i ) <p(x A y) = φ{x) A φ{y) if x,ye S,
(ii) φ(x * y) = φ(x) * φ(y). If x,y, x* ye S.

Proof. Let U be the set of all ideals of S ordered by inclusion.
Clearly U is closed under intersection. For xe S, let (x) = {y e S: y ^ x)
so (x) e U. For Al9 A2 e U, let

A, o A2 = {x e S: (x) ί l 4 S A2) .

Obviously Axo A2eU. If xeA,n (A, ° A2), then (x) = (x) n A, £ A2

so x e A2. Thus A, Π {Aι ° A2) s A2. If AeU, A,n AQ A2, and x e A,
then (x) ί l 4 i i 4 2 so xe A,o A2. Hence A s A, o A2. Therefore,
<(!/; Π, °> is an implicative semilattice.

Now let φ:S—+L' by φ(x) = (x). This mapping is clearly one-to-
one and order preserving. Also it is clear that φ(x A y) = φ{x) Π φ(y)
if x,ye S. Hence <p(x) n φ(x * y) C <P(y), so φ(x * y) s <̂ (x) o <p(τ/). If
w G <p(x) o 9?(2/), then (w) Γ) (a?) S (2/) so w Ax^y. Thus w <^x*y and
w e (a? * 2/) = <p(x * I/). Hence 93(a? * y) = <£>(x) o <̂ (?/) and the proof is
complete.
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THEOREM 2.5. I is the smallest variety of implicative semilattices
which contains all of the finite implicative semilattices.

Proof. From Lemma 2.4 it follows that any identity which does
not hold in every implicative semilattice fails in some finite implicative
semilattice.

COROLLARY 2.6. There is no variety V which I covers in the
lattice of subvarietίes of I.

Proof. Same as [3, Cor. 5.5].

LEMMA 2.6. If K is a class of similar algebras and if A is a
subdirectly irreducible member of SP(K), then AeS(K).

Proof. Suppose A <^s]JieI A{ where each A{eK. Let φi be the
projection of A into Ai9 Then A is a subdirect product of {<Pi(A): ίe I}.
Thus one of the projections must be a monomorphism.

3* Varieties generated by chains/ From the remarks of the
preceeding section it is clear that any chain with a largest element
and a dual atom is a subdirectly irreducible implicative semilattice.
For neω ~ {0}, let ^n denote the variety generated by an ̂ -element
chain. Let ^ denote the variety generated by all finite chains;
<%> = Y <^Λ. From Lemma 2.1 of the preceeding section it is clear
that for m < n we have c^m e ^n. In fact <g^+1 covers ^ in the
lattice of sub varieties.

THEOREM 3.1. If C is any infinite chain with 1, then ^ is the
variety generated by C. Hence c^ is the variety generated by the class
of all chains.

Proof. Since C contains each finite chain as a subalgebra we
clearly have & £ {C}e. The reverse inclusion is obtained by a standard
argument. If an identity fails in C it fails in a finite subchain of
C. This subchain together with 1 is a subalgebra of C in which the
identity fails. Thus C satisfies every identity which holds in each
finite chain, so Ce^.

FIGURE 1

NOTATION. Let Dr denote the implicative semilattice of Figure 1.
1 T. Katrinak has obtained results similar to some of those in this and the next

sections.
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LEMMA 3.2. If L is a subdirectly irreducible implicative semi-
lattice and L is not a chain, then D1 ^SL.

Proof. Let u be the dual atom of L and let a, b be elements of
L which are not related. It is straightforward to check that

{1, u, a * δ, b * a, (α * b) Λ (δ * a)}

is a subalgebra of L. To see that these elements are distinct it is
enough to show that a * b and b * a are not related. But if a * 6 <£
δ * α, then

a contradiction.
In [7] the operation of pseudo-join for implicative semilattices was

introduced. This operation is given by

a + b = ((α * δ) * δ) Λ ((δ * a) * a) .

It was shown that this operation is a lattice join precisely when the
operation is associative. Semi-Boolean lattices are those implicative
semilattices in which the pseudo-join is associative.

THEOREM 3.3. ^ is the class of semi-Boolean lattices.

Proof. It is clear that in any chain a + δ is the larger of a and
δ. Thus any chain is a semi-Boolean lattice. It then suffices to show
that any subdirectly irreducible implicative semilattice which is not
a chain is not semi-Boolean. For this it is enough to show that D1

is not semi-Boolean. If a and δ are the two unrelated elements of
Dι then a + δ = 1 which is not the least upper bound of a and δ.

T H E O R E M 3.4. For n = 1,2, •••, the identity

In- Ol * B2) + (®2 * ff3) + + (Xn * β»+l) = 1

holds in Cn but fails in Cn+1.

Proof. In the ^-element chain, for any elements au α2, •••, an+ί,

we must have c^ ̂  α ί + 1 for some i so α* * α i + 1 = 1.

In the n + 1 element chain, we have αx > α2 > > an+1 so

(a, * α2) + (α2 * α3) + + (αn * αn + 1) = α2 + a3 + + an+ί

— α2 .

COROLLARY 3.5. ^ is characterized by In together with the as-
sociative law for + .
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Proof. Let V be the variety defined by In and the associative
law for + . By Theorems 3.3 and 3.5 we see that V is a proper
sub variety of cέ? which contains ^ . Since D1 is not semi-Boolean,
we see by Lemma 3.2 that the only subdirectly irreducible members
of r# are chains. Thus any sub variety of cέ? which properly contains
c(^n must contain Cn+1. Since V does not contain Cn+1 we have V — cέ?n.

4* Semilattices o£ finite sublength*

DEFINITION 4.1. For n = 1, 2, an implicative semilattice L is
said to have sublength n provided Cn is a subalgebra of L but Cn+1

is not. We let c^n denote the class of implicative semilattice having
sublength less than or equal to n.

LEMMA 4.2. If f:L—>Cn is an epίmorphism, then L has a sub-
algebra isomorphic to Cn which is mapped onto Cn by f.

Proof. The proof is by induction on n. The case n = 1 is clear.
Suppose the result is true for n = k and that f: L—>Ck+1. Let Ck+ι =
{1 = au α2, , αΛ, αfc+1} where at> α2 > > ak > ak+1. Let

{1 = xly x2, , xk9 xk+ι} S L

s u c h t h a t f(x{) = a{ fo r i = 1, • • • , & + 1. W e m a y a s s u m e t h a t ^x >

^ 2 > > xk > xk+ι s i n c e x,> xt A x2> > a?i Λ Λ xk+1 a n d

f(Xί Λ Λ Xj) = α5- .

If we restrict / to the principal filter generated by xk and apply the
induction hypothesis, we may assume that Xi * x3- = x3- if i < j < k.
We focus our attention on the subalgebra of L generated by

\Xl9 * , Xjc+iϊ

Clearly xk+1 is the least element of this subalgebra so we denote it
by 0. Also we denote ak+1 by 0. For 2 ^ j ^ k let ^ = xk* * %
where x* = α; * 0. We now claim that {1, y2, , yk, 0} is the sub-
algebra of L which we desire.

It is clear that 1 ^ y2 ^ ^ yk^ 0. However,

f(Vi) = f(xϊ* * xd

= [{ak * 0) * 0]

= (0 * 0) * α<
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Thus we have 1 > y2 > > yk > 0 and f{y%) = a{.
To check that {1, y?, , yk, 0} is a subalgebra of L, we only need

to show that y5 * 0 = 0 and that y{ * %• = yά if 1 < i < j ^ k. Since
2/j = #** * Xj ^ α̂  ̂  %, we have ^ * 0 ^ % * 0 = xk. Also,

2/i — %k* * #» ̂  2Ϊ* * 0 = $ί** = #? .

Thus 2/i * 0 ^ #* * 0 = ίcf *• Hence ί / ^ 0 ^ % * Λ ^ Γ = 0 so ^ * 0 = 0.
Furthermore,

2/i * Vi = (»** * ». ) * (»** * %)

and the proof is complete.

THEOREM 4.3. For n = 1,2, , 9fn is a variety.

Proof. Clearly ct^n is closed under the taking of subalgebras, by
Lemma 2.6 it is closed under products, and by Lemma 4.2 it is closed
under homomorphisms.

COROLLARY 4.4. Let I he the variety of all implicative semi-

lattices. Then V neoj &'n = I-

Proof. This is clear since V*e ω ^« contains all of the finite im-
plicative semilattices.

THEOREM 4.5. For n = 1, 2, ^ n is characterized by In (with
all association in In being to the right).

Proof. Let Vn be the variety determined by In. We show by

induction on n that Vn —
 cέ?n. If L £ ̂ , then L contains Cn+ι as a

subalgebra; so by Theorem 3.4 In fails in L. Thus we see that

Vn gΞ cέ?n. Hence we only need to show that the subdirectly irreducible

members of rέ?n are in Vn. The case n = 1 is clear since ^ consists

only of one element algebras.

Now assume that Ik characterizes 9ί\ and that L is a subdirectly
irreducible member of ^ + 1 . Suppose α1? α2, •••, ak+2eL and that

(a, * α2) + ((α2 * α3) + + ((ak * αΛ+1) + (ak+1 * αΛ+2)) •) < 1 .

Then we must have aγ * α2, a2* a3i , ak * αfc+2 < 1. From this we get
α2, α3, , αfc+2 < 1. Also we have
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(α2 * α3) + ((α3 * α4) + + ((ak * α fc+1) + (ak+1 * α*+2)) < 1 .

By the induction hypothesis we have Ik holding in L since L e c^k.
Thus one of a2, α3, •• ,α i fc+2 must be the dual atom of L, call it u.
Now since a2 S u, a2 * as ^ u we must have α3 < u. Similarly a^<u
for i = 3, 4, , k + 2. Hence a2 = it. Then we get

1 > (α2 * α3) + + ((αfc * αΛ+1) + (αΛ.hl * ak+2)) •) .

= (% * α3) -f + ((αfc * α*+1) + (ak+1 * ak+2)) •) .

= (1 * α3) + + ((αΛ * ak+1) + (αΛ+1 * αΛ+2)) •) •

But this contradicts the assumption that Ik holds in L, and the proof
is complete.

LEMMA 4.6. Let L be any subdirectly irreducible member of ^ 3

which has a least element 0. Then L is a Boolean algebra.

Proof. If x e L — {1} we can not have x * 0 = 0 or else {1, u, x, 0}

is a four element subchain of L. Using Theorems 4.3 and 4.4 of [5]

we see that L is a Boolean algebra. (Note that L e ^n+1 implies that

COROLLARY 4.7. c^z is generated by its finite members.

Proof. Suppose not. Let V be the variety generated by the

finite members of cέ?z. Then there is a subdirectly irreducible member

of ^ 3 — V, say L. Thus there is some identity which holds in V but

fails in L. The failure of L to satisfy this identity depends only on

a finite number of elements of L. Thus we may assume L is finitely

generated. However, this would imply that L has a least member

giving us L a finite Boolean algebra.

COROLLARY 4.8. Let &m denote the variety generated by Bm where

Bm is the 2m-element Boolean algebra. If m < n, then &n c &n. Also

we have \/neω &n = 9f3.

COROLLARY 4.9 If B is any infinite Boolean algebra, then B

generates ^

5> H , S, P for implicative semilattices*

DEFINITION 5.1. If Q and Q' are two compositions of the operators
H, S, P, we let Q ̂  Q' mean that Q(K) S Q'{K) for every class K of
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implicative semilattices. Also Q < Q' mean Q <£ Q\ but Q(K) c Q'{K)
for some class K.

It is well known that for any class K of algebras we have SH{K) Q
HS(K), PH(K) S HP(K), and PS(ίΓ) S SP(iQ. Pigozzi [8] has shown
using these inequalities that any composition of H, S, P is equal to
one of the compositions without a repeated term or to either SHPS
or SPHS. He has also shown that no further reductions are possible.
For implicative semilattices, we shall show that HS — SH and that
the reductions which follow from this equality are the only one possible
for implicative semilattices.

LEMMA 5.1. If L and II are implicative semilattices and if II
is a homomorphic image of a subalgebra of L, then U is a subalgebra of
a homomorphic image of L.

Proof. Suppose IIf ^SL and /: II1 —> 1/ is an epimorphism. Let
J - ker (/). Then II = Z/'/J. Let K be the filter of L generated by J.
It is clear that K restricted to L" is JsoU~ LnjJ= Lftj{K[\ L") ^SL/K.

THEOREM 5.2. For implicative semilattices,

HS = SH, HSP = SHP, PHS = PSH, SHPS = HSP

and SPHS — SPH. No further reduction is possible.

Proof. All of the equalities follow easily from the first which is
immediate from Lemma 5.1.

To establish that no further reduction is possible we show that

HSP

SPH HPS

FIGURE 2
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(i) S^HS, (ii) HSSP, (iii) P^HS, (iv) HP S SPH, and (v) SP £
HPS. To see that this will suffice we note that the ordering indicated
by the diagram in Figure 2 is consistent with ^ and that any further
collapse in the diagram would contradict one of (i)-(v).

( i) SSHP: Let K = {C} where C = {1} U R : n = 1, 2, . .} and
1 > xx > x2 . Clearly the two-element chain is a subalgebra of C
so it is in S(K). Suppose C2eHP(K). Let / :ILe/C—C 2 be an
epimorphism. Suppose f(x) = 0. Since C has no smallest element,
we take yeY[ie[C such that y{ < xt for each iel. We must have
f(y) = 0. Then (x * y)i = α̂  * ^ = yi so a; * y = 7/. But this gives 0 =
f(y) = /(# * 2/) = /(#) */(l/) = 0 * 0 = 1 a contradiction.

(ii) i ϊ ^ SP: Let iΓ = {L} where L = U(Cn; n = 1, 2, - -}. Let
Cn = {1, y\ , r } with 7/1 > ]/2 > > y\ Let

J — {x e L: xi = 1 for all but a finite number of i's} .

Clearly J is a filter. For x e L we let [x] denote the equivalence class
in L/J which contains x. For each n we let n be the element of L
defined by

(yn if i ^ n
Ui = \

[1 if i < n .

Now if n > m, then for any ΐ >̂ w we have n{ = yn < ym = m^ Thus
ήi < m̂  for all but a finite number of i's. Thus [̂ ] < [m]. Also for
all but a finite number of i's we have m{ * ?̂  = ^̂  so [m] * [?i] = [n].

Thus we have an infinite chain C = {[ϊ], [2], •••} ^SL/J. Thus CG
&ff(ίΓ). Nov/ if ίί(iί) s SP(K) we get CG Sii(i:) g SSP(ίΓ) - SP(ίΓ).
Since C is subdirectly irreducible, Lemma 2.6 gives CeS(K). But if
C^SΠCW, we apply Lemma 2.6 again to get C^sCn for some n, a
contradiction.

(iii) P S HS: Let if = {Q. Then C2 x C2 e P(ίΓ), but C2 x C2 €
HS(K).

(iv) HP ^ SPiί: If HP ^ SPjff, then SHP ^ SPiί. We show
that this is not the case. Let K = {Cn: w = 1, 2, •}. Clearly H{K) = iΓ
so SPH(K) = SP(K). Now in (ii) we saw that SH(UCn) has an infinite
subdirectly irreducible member C. Thus Ce SHP(K). Now if Ce
SPH(K) we have by Lemma 2.6 that CeS(K) = K, but this is not
the case. Hence CeSHP(K), but CέSPH(K).

(v) SPSHPS: Let ίΓ = {C2}. Let L consist of all cofinite
subsets of an infinite set. Then Le SP(K). We note that L has no
least element. It is clear that any member of HPS(K) has a least
element.
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