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LINEAR SEMIPRIME (p q) RADICALS

GARY L. MUSSER

This paper introduces McKnight's (p; gO-regularity and
(p; q) radicals, a collection of radicals which contains the
Jacobson radical and the radicals of regularity and strong
regularity among its members. The linear semiprime (p; q)
radicals are classified canonically and, as a result of this
classification, these radicals can be distinguished by the fields
GF(p) and are shown to form a lattice. The semiprime (p; q)
radicals are found to be hereditary and the linear semiprime
(p; q) radical of a complete matrix ring of a ring R is deter-
mined to be the complete matrix ring over the (p; q) radical
of R. More generally, the (p; q) radical of a complete matrix
ring over R is contained in the matrix ring over the (p; q)
radical of R for all (p; q) radicals.

A function p which assigns to each ring R an ideal pR of the
ring is called a radical function in the sense of Amitsur and Kurosh
[1; 5] if it has the following properties:

Rl: If φ: R —+ S is a ring epimorphism and ρR = R, then pS = S.
R2: ρ(ρR) = pR for all rings R and if pi = I for any ideal / of

jβ, then / s pR.
R3: ρ(R/ρR) = 0 for all rings R.
If p is a radical function, then the ideal pR is called the radical

of R. If pR = R for some ring R, then R is called a p-radical ring
while if pR = 0 we call R a p-semisimple ring. If / is an ideal (right
ideal) of a ring Ry then I is called a p-radical ideal (right ideal) if
/ is a ^-radical ring.

Now let p(x) and q(x) be polynomials with integer coefficients. An
element r of a ring R is called (p; q)-regular if re p(r)Rq(r), that is,
r — p(r)sq(r) for some se R where an integer multiple of a ring ele-
ment has its usual meaning. If every element of an ideal / of R is
(p; g)-regular, that is, if r e p(r)Iq(r) for all re I, then / is said to
be a (p; q)-regular ideal. Examples of (p; #)-regularity are quasi-
regularity, (x + 1; 1) [4], von Neumann regularity, (x; x) [7] and
strong regularity, (x2; 1) [2].

LEMMA 1. If I and R/I are (p; q)-regular, then R is (p; q)-regular.

Proof. Let reR. Then r + IeR/1, which implies

r + / = p(r + I)(s + I)q(r + I) = p(r)sq(r) + /

for some s+IeR/I. Thus r - p(r)sq(r) e I and, since I is (p; q)-
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regular, r — p(r)sq(τ) — p[r — p(r)sq(r)]tq[r — p(r)sq(r)] for some t e I.
Moreover there exist u, ve R such that

r — p(r)sq(r) = p[r — p(r)sq(r)]tq[r — p(τ)sq(r)\

= [P(r) - p(r)u]t[q(r) - vq(r)]

or r = p(r)(s + t — π£ — ίv + utv)q{r). Therefore R is (p; g)-regular.

LEMMA 2, 1/ I and J are (p; q)-regular ideals of R, then I + J
is a (p; q)-regular ideal of R.

Proof. Immediate from Lemma 1, since the homomorphic image
of a (p; g)-regular ring is a (p; ^-regular ring.

COROLLARY 1. The sum of all (p; q)-regular ideals of a ring R
is a (p; q)-regular ideal of R.

Proof. This follows from Lemma 2, since (p; g)-regularity is de-
fined elementwise.

We shall let (p(x)Rq(x)) denote the largest (p; g)-regular ideal of
the ring R. Then we have

THEOREM 1. (J. D. McKnight, Jr.) If a function p is defined
by pR = (p(x)Rq(x)) for all rings R, then p is a radical function.

Proof. We only need to show R3 holds. Let I/pR be a (p; q)-
regular ideal of p(R/pR). Then by Lemma 1, J is a (p; q)-regular
ideal of R and I £ pR.

We shall call (p(x)Rq(x)) the (p; q) radical of the ring R. Thus
the Jacobson radical and the radicals of regularity and strong re-
gularity of R are given by ((x + I)i2), (xRx) and (x2R) respectively.

!• A canonical representation for linear semiprime (p; q) ra-
dicals. A radical function p is called semiprime if pR is a semiprime
ideal, equivalently, if pR contains the prime (Baer-lower) radical [6; 3].
Now we shall determine the form of the semiprime (p; q) radicals.

LEMMA 3. p is a semiprime radical function if and only if
pR — R for all zero rings R.

Proof. The necessity is clear. Now if P £ pR for some ideal I
of R, then ρ[(I + ρR)/ρR] = (I + pR)/ρR since (/ + pR)/ρR is isomor-
phic to the zero ring 1/(1 Γ\pR). Also p(R/ρR) = 0 implies
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p[(I+pR)/pR] = 0

and therefore / £ pR.

THEOREM 2. (A. H. Ortiz) (p(x)Rq(x)) is semiprime for all rings
R if and only if the constant terms of p(x) and q(x) are 1 or —1.

Proof. Let p(x) and q(x) have constant terms 1 or — 1 and R be
any zero ring. Then for reR, we have r = p(r)(±r)q(r) and R £
(p(x)Rq(x)). Thus R — (p(x)Rq(x)). Conversely, if aQ and b0 are the
constant terms of p(x) and q(x) respectively, then suppose α0 Φ ± 1
or δ0 Φ ± 1 . Since we are assuming the (p; q) radical is semiprime, it
follows from Lemma 3 that for the zero ring with additive group
Z/(aobo) we have (p(x)[Z/(aobo)]q(x)) = Z/(aQbQ) where Z denotes the
ring of integers and (αΛ) the ideal generated by aobo. However if
re(p(x)[Z/(aobo)]q(x)), then r e p(r)[Z/(aobo)]q(r) and r = 0. Hence
Z/(aobo) = 0, which is a contradiction.

Henceforth we shall be considering semiprime (p; q) radicals and,
since (p(x)R) = (p( — x)R) = ( — p(x)R), we shall assume that the con-
stant term of p(x), similarly the constant term of q{x), is 1.

LEMMA 4. / / the constant term of p(x) is 1, then for all reR

we have r e p(r)R if and only if R — p(r)R.

Proof. The sufficiency is obvious. Now let r e p(r)R. Since

p(r) = rf(r) + 1 for some integral polynomial f(x), for any seR we

have, p(r)s = rf(r)s + s. Since r e p(r)R we have s e p(r)R and R £
p{r)R. Therefore, R = p{r)R.

COROLLARY 2. If the constant terms of p(x) and q(x) are both 1,
then for all reR we have r e p{r)Rq(r) if and only ifR — p(r)Rq(r).

THEOREM 3. If (p(x)Rq(x)) and (pf(x)Rqf{x)) are semiprime for
all rings R, then (p{x)Rq(x)) Π (p'(x)Rq'(x)) = {p{x)p\x)Rqf(x)q{x)).

Proof. Clearly (p{x)pf(x)Rqf{x)q(x)) g (p{x)Rq(x)) Π (pr(x)Rqf(x)).
Now let re{p{x)Rq(x))ΐ\{p'(x)Rq'(x)). Then r e{pr{x)Rq\x)) implies
r ep\r)Rqf{r) and, by Corollary 2, R = p\r)Rq\r). Now r e p(r)Rq(r)
and R = p'(r)Rq'(r) implies r ep{r)pr(r)Rqr{r)q{r). The product poly-
nominals ί>(aj)j)'(α;) and g(α;)g'(x) have constant terms 1, hence r =
p{r)p'(r)sq'{r)q{r) implies that se(p(x)Rq(x)) Γ[{p'{x)Rq'{x)). Therefore
(p{x)Rq{x)) n (p'(x)Rq'(x)) is (pp'; g'g)-regular and

(p(x)Rq(x)) n (^(α JΛg'ίfl?)) S (p{x)pf(x)Rqf{x)q{x)) .
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In what follows we shall determine a canonical representation for
all linear semiprίme (p; q) radicals, that is, (p; q) radicals determined
by integral polynomials p(x) and q(x) which are products of linear
polynomials having constant term 1.

LEMMA 5. ((ax + l)(bx + 1)22) £ ([(α + b)x + 1]22) for all integers
a, b.

Proof. Let r e ((ax + ΐ)(bx + 1)R). Then r = (ar + l)s for

s e ((ax + l)(bx + ΐ)R) .

Thus r = (αr + l)(δs + l)ί = (δr + ar + l)ί = ((α + b)r + l)ί, where
ί e ((CMC + l)(δa? + 1)22), implies that

((ax + l)(bx + 1)12) S ([(a + δ)a? + 1]JB .

COROLLARY 3. ((ax + ΐ)R) C ((max + 1)JK) /or αW integers m.

Proof. By Theorem 3 we have ((ax + l)wi2) = ((αa? + 1)R).

COROLLARY 4. ((αa; + ΐ)R) S ((akx + 1)22) /or fc = 1, 2, 3, .

LEMMA 6. ((ax + l)(δa; + 1)22) £ ([(mα + ^δ)^ + 1]22) /or αZZ mίβ-
^ers m, ̂ .

Proof. This is immediate from Corollary 3, Lemma 5 and Theo-
rem 3.

Now Corollary 3, Lemma 6 and Theorem 3 yield

THEOREM 4. ((ax + l)(bx + 1)22) = ([(α, δ)cc + 1]22) f̂eβ?Λβ (α, 6) is
the greatest common divisor of a and b.

We shall now show that the converse of Corollary 4 is true.

LEMMA 7. ((akx + 1)22) £ ((αx + 1)22) /or k = 1, 2, 3, .

Proo/. We first show that ((α2x + 1)22) £ ((ax + 1)22. For this
inclusion it is sufficient to show that ((a2x + 1)R) = 0 whenever
((αx + l)i?) = 0 so suppose ((ax + ΐ)S) = 0 for some ring S. Then if
r G ((<z2# + Ϊ)S) we have r = (α2r + l)s or ar — (a(ar) + l)αs. Thus
a((a2x + l)S) £ ((αx + 1)S) and αr = 0 for all r 6 ((a2x + 1)S). There-
fore r = (α2r + l)s = (ar + l)s implies that ((a2x + 1)S) £ ((ax +
0. The result now follows by induction.
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Combining Corollary 4 and Lemma 7 we have

THEOREM 5. ({ax + 1)12) = ((akx + 1)12) for jfc = 1, 2, 3, .

Our next lemma and Theorem 3 permit us to represent each linear
semiprime (p; q) radical as a (pq; 1) radical.

LEMMA 8. ((ax + 1)12) = (R(ax + 1)).

Proof. First, for r, se R define a circle product by r o s = r -\-
s + αrs. Then (r ° s) o ί = r ° (s o t). Now if r e ((αx + 1)12), then
r o s = 0 for some s e ((ax + 1)12). Since s o £ = 0 for some t e ((ax +
1)12), we have that r — t and s o r = 0. Therefore, ((α# + 1)12) S
(R(ax + 1)). A similar argument yields the opposite inclusion, hence
equality.

We can now give a canonical representation for all linear semi-
prime (p; q) radicals.

THEOREM 6. Every linear semiprime (p; q) radical can he uni-
quely represented by a radical of the form ((ax + 1)12) where the
nonnegative integer a is a finite product of distinct prime factors.

Proof. Theorem 3 and Lemma 8 show that

(p(x)Rq(x)) = (p{x)q\x)R)

for the linear semiprime radical (p(x)Rq{x)). Then Theorems 3, 4 and
5 show that (p(x)q(x)R) = ((ax + 1)12) for some nonnegative integer a
where a is a finite product of distinct prime factors.

To distinguish between the linear semiprime radicals observe that
if a = πUiVi for primes pit then ((ax + 1)12) = 12 for 12 = GF(pi)1

i = 1, 2, , n and ((ax + 1)12) = 0 for 12 = GF(p) for all primes
P Φ P^ i = 1, 2, •••,%.

2. The lattice of linear semiprime (p; q) radicals* Let (p; q)
denote the radical function defined by (p; q)(R) = (p(x)Rq(x)) for all
rings 12. We partially order the linear semiprime (p; q) radical func-
tions by defining (ax + 1; 1) ^ (bx + 1; 1) if ((ax + 1)12) C ((bx + 1)12)
for all rings 12. Then we have

THEOREM 7. The collection of all linear semiprime (p; q) radicals
form a lattice with respect to the partial order ^ where the infimum
and supremum are given by the canonical representatives:
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( i ) (ax+l l) A (bx + 1; 1) = ((α, b)x + 1; 1)
(ii) (ax + 1; 1) V (bx + 1; 1) = ([a, b]x + 1; 1)

where [a, b] denotes the least common multiple of a and b.

Proof. ( i ) By Corollary 3 we have ((a, b)x + 1; 1) ̂  (ax + 1; 1),
(bx + 1; 1). Now if (ex + 1; 1) ̂  (ax + 1; 1), (bx + 1; 1), then ((ex +
ΐ)R) £ ((ax + ΐ)R) Π ((bx + ΐ)R) = ((αa? + l)(δa? + 1)Λ) = ([(α, δ)α + 1]Λ).

(ii) First let α and b be relatively prime. Since (abx + 1; 1) is
clearly an upper bound of (ax + 1; 1) and (bx + 1; 1), we show that
for all rings R, ((abx + 1)J?) £ ((ex + l)ϋί) for any other upper bound
(ex + 1; 1). Again it is enough to show that this inclusion holds for
any ring S for which ((ex + 1)S) — 0. As in the proof of Lemma 7,
a((abx + 1)S) £ ((δα + 1)S) £ ((cα + 1)S) - 0 and similarly b((abx +
1)S) = 0, Therefore, since (α, 6) = 1, for all re ((abx + 1)S) we have
integers m, n such that r = m(αr) + π(δr) = 0. Therefore ((abx +
1)S) = 0 and ((abx + ΐ)R) £ ((c» + I)i2) Thus when (α, 6) = 1, we
have (ax + 1; 1) V (bx + 1; 1) = ([α, 6]a? + 1; 1). Using this result it
is easy to see that the statement is true for arbitrary integers a
and 6.

It is interesting to observe that ((x + 1); 1), the Jacobson radical,
is the least element in this lattice.

3* Hereditary (p; q) radicals. A radical function p is called
hereditary if every ideal of a ^-radical ring is ^-radical. Equivalently,
if for any (associative) ring R and any ideal I of R we have the
equation pi = I Π pR, then p is hereditary [3, p. 125]. The linear
semiprime (p; q) radical functions are hereditary. Moreover we have

THEOREM 8. If (p; q) is semiprime, then it is hereditary.

Proof. Let I be an ideal of R. For any radical function p we
have ρI^If]pR [3, p. 125]. Now r e I Π (p(x)Rq(x)) implies rel
and r = p(r)sq(r) for some se (p(x)Rq(x)). Since the constant terms
of p(x) and q(x) are 1 we have s e l and I n (p(x)Rq(x)) £ (p(x)Iq(x)).

It is easy to see that if the polynomial p(x)q(x) has x2 as a factor,
then (p; q) is also hereditary. Thus the radicals of von Neumann
regularity and strong regularity are hereditary. The radical given
by (xR) is not hereditary for if R is the ring of integers modulo 4
and I is the ideal {0, 2}, then (xl) = 0 while I n (xR) = I Γi R = I.

4. (p; q) radicals of matrix rings* Let Rn denote the ring of
all n x n matrices whose elements are taken from the ring R. We
shall show that for all (p; q) radicals and all rings R the inclusion
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(p(x)Rnq(x)) £ (p(x)Rq(x))n holds while for linear semiprime (p; q) radi-
cals we have equality. D. M. Morris has shown

LEMMA 9. // p(x) = ± 1 or p(x) = ±x, then (p(x)Z) = Z; other-
wise (p(x)Z) = 0

Proof. Clearly (p(x)Z) — Z when p(x) = ± 1 or p(x) = ±x. Sup-
pose that (p(x)Z) Φ 0 and that p(x) Φ ± 1 . Then (p(x)Z) = (r) where
(r) is the ideal generated by some positive integer r. Let m be any
prime not dividing r. Since mr e (p(x)Z) we have mr = p{mr)m'r for
some m' e Z. Since p(x) Φ ± 1 we must have p(mr) = ± m for infinitely
many primes m. It follows that p($) = ±x.

COROLLARY 5. (1Z1) = (xZ) = (Zx) = Z and (p(x)Zq(x)) = 0 for
all other choices of p(x) and q(x).

Proof. Clearly (xZx) = 0 and since (p(x)Zq(x)) £ (p(x)Z)9 the co-
rollary is established.

LEMMA 10. Let p be any radical function such that pZ — 0. Then
any ring R can be embedded in a ring S with unity such that pR = pS.

Proof. Let φ be the usual embedding of a ring R into the ring
S with unity and identify R with φR, [6, p. 8]. Then S/R ~ Z,
which implies that ρ(S/R) = 0. Therefore pS £ R and pS g pR. But
since R is an ideal of S we always have pR £ pS, [3, p. 124]. There-
fore pR = pS.

LEMMA 11. Lβέ /? 6e α τ̂/ radical function satisfying (i) ôZ = 0
and (ii) if S is a ring with unity, then p(Sn) £ (pS)n. Then p{Rn) £
( i ί ) /or αM rm#s i2

Proof. By Lemma 10 we can embed R as an ideal in a ring S with
unity such that pR = pS. Therefore we have ^(JBJ £ p(SΛ) £ (/θS)w =

THEOREM 9. (p(x)Rnq(x)) £ (p(x)(Rq(x))n for all (p; q) radicals.

Proof. For the (1; 1) radical equality is obvious. Now consider
all other (p; q) radicals except for the (x; 1) and (1; x) radicals. By
Corollary 5, (p(x)Zq(x)) = 0. If S has unity, then (p(x)Snq(x)) = In

for some ideal I of S [6]. If re I, then rEneIn and

rEn - p(rEn)Mq(rEn) = p(r)mnq(r)En



756 GARY L. MUSSER

where Meln, mneM and En is the nx n matrix \ei3 \ where en — 1,
ei3 — 0 otherwise. Therefore r = p(r)mq(r)y for me I, which implies
that IS (p(x)Sq(x)) and In = (p(a?)SΛg(a;)) £ (p(&)Sg(ίc))Λ. Now Lemma
11 yields (p(x)Rnq(x)) £ (p(x)i?g(^))% for all (p; q) radicals except the
(x l) and (1; x) radicals. To show (xRn) S (a?JB)Λ, let A G ( B 1 2 Λ ) . Then
there exists a ΰ e (xRn) such that A = AB, where A = [α<y| and I? =
\bi3 \. Let Ai denote the product matrix AC of (α?jβw) where C= \ci3 \,
en = biu ci3 = 0 for j > 1, that is, A1 = |α^ | where α x = au and α^ = 0
for j > 1. Ai G (α?JBw) implies that Ax = AYΏ or α x = af

iλdιγ where dne D,
Z) e (a jBn) Again, there is a matrix A G (α;-Bn), D1 = | c? j |, where eZJj. = dί]L

and d'u = 0 for i > 1. Therefore Di - D,F for î 7 G (a?22w) and dn = dnfn

where fn is an element of F. Now for G = | g^ | where # u = dn and
gri5. — 0 otherwise, we have G e (xRn) because G = GF. If we let / =
{reR\\rij\e (xRn), τn = r, ri3 = 0 otherwise}, then / is an ideal of R.
It follows that for all reJ there exists an s e J such that r = rs.
Therefore J C (xR) and dn e (xR). But du e (xR) implies that a{1 e (xR)
for i — 1, 2, , n. Similarly, ai3- e (xR) for

i = 1,2, . . . , ^ , i = 2,3, . . . ,w .

Thus A G (xR)n and (a i e j S ( ^ ) . Similarly (Rnx) Q (Rx)n.

R. L. Snider gave the following example to show that the inclu-
sion ρ(Rn) £ p{R)n is not true for all radicals. Let σR be the upper
radical determined by declaring GF(2) to be semisimple (In [3, p. 6]
let M= {GF(2)}). Then since the ring of 2 x 2 matrices over GF(2)
cannot be mapped homomorphically onto GF(2), (GF(2))2 is not semi-
simple.

Finally we show that for all linear semiprime (p; q) radicals the
opposite inclusion holds; hence we have equality.

LEMMA 12. The sum of two (ax + 1; l)-regular right ideals of
the ring R is an (ax + 1; 1)-regular right ideal of R.

Proof. Let I and J be (ax + 1; 1)-regular right ideals of R and
r e I, s e J. Then there exists an rf G I such that r — (ar + l)r\ Now
s — asrr e J, which implies that there exists an s ' e J such that s —
asrf = (a(s — asr') + l)s'. It is easy to see that r + s = (a(r + s) +
l)(r' — ar'sf + s'), hence I + J is an (α# + 1; 1)-regular right ideal.

COROLLARY 7. Tfce sum of all (ax + 1; l)-regular right ideals of
a ring R is an (ax + 1; l)-regular right ideal of R.

LEMMA 13. The sum K of all (ax + 1; 1)-regular right ideals of
a ring R is a two-sided ideal of R. Therefore K £ ((ax
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Proof, [cf. 3, p. 93] Let s e K and reR. Then sreK implies
that sr = (asr + l)s' for some sf e K. It is easy to see that rs =
(ars + 1)( — αrs's + rs), hence rs is (αx + 1; l)-regular. For meZ,
t e R we have sm + si e iΓ. Since from above r(sm + si) must be
(ax + 1; l)-regular, rsZ + rsϋ?, the right ideal generated by rs, is an
(ax + 1; l)-regular right ideal and we have rsZ + rsR £ if, therefore
rs G if. Since K is now an (ax + 1; l)-regular ideal, K £ ((α&

THEOREM 10. //* (p; #) is a linear semiprime radical, then for
all rings R, (p(x)Rnq(x)) = (p(x)Rq(x))n.

Proof, [cf. 4, p. 11] We only need to show that ((ax + l)R)n £
((αa; + l)u?J for all positive integers α. Let & be a fixed positive
integer, k ^n, and \ri5\ e ((ax + l)Rn) where r{j = 0 for i Φ k. Then
by Lemma 4, r^ G (arkk + 1)JB implies that R = (arkk + I)i2. Therefore
for each rkj there exists an skj such that rkj = (αr̂ ^ + l)s^ for j =
1, 2, , n. Thus |r^ | = (α|r^ | + l)|s^| where s^ = 0 for i Φ k. Hence
the right ideal Pk of n x n matrices having elements of ((ax + 1)R)
in the kth row and zeros elsewhere is an (ax + 1; 1)-regular right
ideal, thus Pk £ ((ax + l)Rn). Since ((α.τ + l)R)n is the sum of the
Pfc, ft = 1, 2, , n, we have ((αx + l)Rn)-

If i? is a field we have 0 = (x2Rn) g (x2i2)% = i4, therefore the
radical of strong regularity shows that we cannot have the matrix
equality for all (p; q) radicals.
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