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ON CONTRACTIVE SEMIGROUPS OF MAPPINGS

R. D. HOLMES

The definitions of certain contraction conditions used by
a number of authors (D. F. Bailey, V. M. Sehgal, M. Edelstein,
and the author) on single mappings and their iterates are
extended to commutative semigroups of mappings. A number
of results are derived concerning fixed and periodic points
which generalize those of the single mapping case.

Let (X, d) be a metric space and / a continuous mapping of X
into itself. Several authors have considered contractive conditions on
/ in which one or more iterates of / are required to "contract"
certain pairs of points. Such a condition, introduced by D. F. Bailey
[1] and utilized to obtain results on fixed and periodic points when
X is compact, requires that, for each pair of points, there is an
iterate which contracts them. V. M. Sehgal [5] considered a stronger
variation of this in a complete space. A further example is that
introduced by the author in [3], namely that, for each pair of points,
there is a point beyond which all iterates are contractive.

In each of these cases, the condition can be considered as one on
the elements of the semigroup generated by / (conditions on / can
of course be regarded as such). In this paper we extend the defini-
tions to include arbitrary commutative semigroups of mappings and
are able to obtain corresponding results. Thus the results of [1], [3],
and [5] are generalized as well as results of M. Edelstein [2].

2* Definitions & notation* Throughout, G will denote a com-
mutative semigroup (under composition) of continuous self-mappings
of X which contains the identity mapping (the inclusion of the
identity is for convenience only and does not effect the definitions or
results).

G will be said to be proximally contractive (ε-locally proxίmally
contractive) if

V#, ye X, x Φ y (with d(x, y) < ε)3# e G such that

d(g(x), g{y)) < d(x, y) .

G is called asymptotically contractive (ε-locally asymptotically
contractive) if

Vx, y e X, x Φ τ/(with d(x, y) < ε)3# e G such that

V/eG, d(fg(x), fg(y)) < d(x, y) .

If (2.1) respectively (2.2) holds with < d(x, y) replaced by ^ Xd(x, y)
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where 0 < λ < 1, then we say that G is a proximal contraction
(ε-local proximal contraction, etc.).

Gn = {gn I g e G) will denote the sub-semigroup of G consisting of
al l nth. p o w e r s . A p o i n t zeX is ca l led a fixed (periodic) point of G
if, for all g e (?(# e (?*) we have g(z) = 2. In the case of a periodic
point, N is called the period of z. A point z is a quasi-periodic point
of G if, for each g e G, there is a gr* e G with #*#(£) = s.

In the case that G is generated by a single mapping / , (2.1)
reduces to condition (5) (respectively (6)) of [1]. Under these circum-
stances, fixed or periodic points of G are simply fixed or respectively
periodic points of the mapping / . If / is the sole generator of G a
quasi-periodic point of G is just a periodic point of / .

Two points x, y e X are said to be e-proximal (with respect to G)
if, for every μ>0 and feG with d(f(x), f(y))< ε, there is a ge G
for which d(gf(x), gf(y)) < μ. If α? and y are ε-proximal for all ε > 0,
then they are said to be proximal.

Again, this definition coincides with the corresponding one of [2]
when G = {fn\n = 1, 2, 3, •••}.

3* Results* Our first result is a generalization of Theorems 1
and 2 of Bailey [1]. We precede this by a lemma corresponding to
those of [1].

LEMMA 1. If X is compact and, for some xe X, f eG, d(x, f{x)) < ε
and x and f(x) are ε-proximal, then f has a fixed point in X.

Proof. Suppose d(x, f(x)) < ε and that x and f{x) are ε-proximal.
Choose, for each n = 1, 2, 3, , a gn such that d{gn(x), gnf(x)) < 1/n.
By compactness, there is a subsequence {gn{} of {gn} such that {#„.(#)}
converges to a point z, and {gn. f(x)} converges to a point w. Clearly
z — w, and, by continuity and commutativity, f(z) — z as required.

THEOREM 1. If X is compact and G is proximally contractive
(ε-locally proximally contractive) then each pair of points in X is
proximal (ε-proximal).

Proof. Assume, for a contradiction, that there is an ε > 0 such
that x,yeX are not ε-proximal. Then, there is an feG for which

μ = inf {d(gf(x), gf(y)} > 0 and d(f(x), f(y)) < ε .
geG

Note that f(x) and f(y) cannot be ε-proximal. Let μ < r < ε be
fixed and pick gλ so that

μ ^ d(gj(x), gj(y)) < min {(1 + ϊ)μ, r] .
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Then μx = inf,eG {d(ggj(x), ggj{y))} ^ μ and μ, <r, μ1<(l + %)μ. Con-
tinuing inductively, assume that μu μ2, . . , μn and gl9 g2, , gn have
been defined with:

(a) μ, ^ μί+1 < r, i = 1, 2, , w - 1.
(b) μi = inf,e

i = 1, 2,

(c)

We now choose <7W+1 e G such that

/<« ^ d(gn+1gn- -^/(^), flrΛ+1βrw- •#:/(?/)) < min | ( l + - r ^ - W n

and set //Λ+1 = mfgeG{d(ggn+ί ^/(a?), ggn+1 gj(y))}. Clearly, (a), (6),
and (c) are satisfied by gn+1 and μn+1.

This defines a sequence {gj{x), g$J(ύ), g&2gj{x), β" •} and, by
compactness, there is a subsequence of the positive integers {wj for
which

lim srΛiβrWr_L gj(x) = z e X, lim flrw.flrw._L gj(y)
i-*co i—too

= w e X, and lim μn. = μ0 ^> μ .
i—¥CO

By the above,

1 + —
2ni

^ d(gnigni-i gj(χ), Qn^-i gj{y))

+

and, taking the limits as i—>c>o, d(z, w) = μQ < ε. Consider d(g(z),
g(w)) for a fixed geG. Then

d(z, w) = μ0 = lim //Λί

^ lim d(ggn%gnt^ gL/(x), flrflfw. 0i/(2/)) by (6)

= d(g(z), g(w)) .

This contradicts the fact that G is proximally contractive (ε-locally
proximally contractive) at z and w, and the theorem is established.

COROLLARY 1. If X is compact and G is proximally contractive,
then G has a unique fixed point in X.

Proof. Let / be an arbitrary element of G. Then, by Theorem
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1, x and f(x) are proximal and, by Lemma 1, / has a fixed point in
X. We now show, by induction, that any finite subset of G has a
common fixed point. Suppose ft(z) = f2(z) = = fn(z) = 2 and let
/ be an arbitrary element of G. Then, as z and f(z) are proximal,
Lemma 1 gives us a sequence [g^ § G such that w = lim^^ ^(2) is a
fixed point of / . But then, for k — 1, 2, , n, fk{w) — lim^co fkΰi{%) —
lim^o, gifk(z) = lim^^ g^z) = w and w is a common fixed point of
fifufϊ, •••,/«• Thus, as the set of fixed points of an element of
G is closed, compactness insures at least one fixed point of G. Clearly
such a point is unique.

COROLLARY 2. If X is compact and G is ε-locally proximally
contractive then G has periodic points all with common period N.

Proof. As X is compact, it has a finite cover by sets of diameter
less that ε containing, say, k members. Let N be any common
multiple of 1, 2, , k, and let f eG and consider x, f(x), /2(x), , fk(x).
At least two of these must lie in one member of the cover, giving
us a point y such that d(y, fp(y)) < e where 1 <: p <̂  k. By Theorem
1, y and fp(y) are ε-proximal and Lemma 1 implies that there is a
point zeX with fp(z) = z. Thus, as p\N, fN(z) = z. The same
argument as in the proof of Corollary 1 will show that, for any finite
subset {/f, fξ, , fΐ) of GN, there is a w with ff{w) = w, i = 1, , n.
Hence, compactness again gives us a point of period N under G.

Theorem 1 and its corollaries generalize Theorems 1 and 2 of [1]
and their corollaries, while Corollary 2 is a generalization of Theorem
2 of [3].

We next consider asymptotically contractive semigroups on not
necessarily compact spaces. An additional hypothesis, (3.1), is used
which reduces to condition 1.2 of [2] whenever G is generated by a
single element.

THEOREM 2. If G is asymptotically contractive on (X, d) and, in
addition

3χ, ze X such that Vε > 0, / e G, 3# e g for which
(SΛ) d(gf(x), z)<ε,

then z is the unique fixed point of G.

Proof. Let x, z be as in (3.1) and consider, for a fixed element
leG,

σι = inf {d(g(x), gl{x))} ^ 0 .
geG
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We distinguish two cases:

Case 1. σx = 0.

For each n = 1, 2, 3, let gn e G be such that

d(gn(x), Qnl(x)) < l/2% .

As G is asymptotically contractive, there is, for each n, an fneG
such that d(gfngn(x), gfngnl{x)) < d{gn{x), QJ(x)) for all ge G. By (3.1),
there is an hneG for which

(3.2) d(hnfngn(x), z) < 1/2- .

Thus

d(hnfngnl(x), z) ^ d(hnfngnl(x), hnfngn(x)) + d{hnfngn{x), z)
( # <1/2W+ l/2% = 1/2-1 .

From (3.2) and (3.3) we have

z = lim hnfngnl(x) = lim lhnfngn(x) = l(z) ,
%—>co %-voo

and z is a fixed point of I.

Case 2. o\ > 0.
We show that this case cannot arize by reaching a contradiction.

Let b > σ1 and g^G be such that dig^x), gj,(x)) < min {&, (1 + J)σJ.
Now, there is an f1 e G such that digf&^x), gfβiix)) < dig^x), gj,{x))
for all geG. By (3.1) there is an hv e G with dQiJ^^x), z) < J. Set
^ = hifigάx) and σ2 = inf^α ^(^ i ) , ^(^i)) Note that 0 < σ1 ^ σ2 < min
{6, (1 + i)σj.

To continue by induction, suppose that xn_λ and

σn = inf

have been defined. Then there is a gneG with

d(#JX-i), ^J(^-i)) < min|&, ^1 + — JσΛ .

Similarly, there is an fneG and hneG such that

for all geG and d{hnfngn{xn__x), z) < l /2\ We can set a;n - Kfngn{xn^)

and σΛ + 1 = inf^eG d(flr(a?n), firϊ(a;n)) and we have

min {&, ( l + ̂ -)σΛ
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Now, as {σn} is a bounded monotone sequence of real numbers,
there is a σQ > 0 with l im^^ σn = σQ. Clearly, l i m , ^ xn = z and

,-oo l(%n) = ϊ(^) and thus σ0 = d(z, l(z)). But then

= lim lim = σ0 = d(z,

contradicting the fact that G is asymptotically contractive at z and

Thus, Case 1 must always hold and z is a fixed point for each
element of G. Clearly, it is the only point with this property.

If G consists of the identity together with the iterates of a
single contractive mapping, then G is asymptotically contractive. A
less trivial example is given below in which neither of the two
generators of G is locally contractive.

EXAMPLE 1. Let X be the interval [0, 18] (in the usual metric)
and define / and g as follows:

f(x) = •

x/2,

3,

3x
2

lχ,

g(χ) = •

2x -

12,

X,

2x-

,18,

- 1 5 ,

- 6 ,

-14,

x e [0, 6]
x e [6,12]

x e [12,18]

xe

xe

xe
xe
xe

xe

Straίghtforwardjcalculation shows that

f9(x) = 9 fix) = •<

(x/2,

3,

3a;
2

3x -

12,

- 1 5 ,

36,

[0,6]

[6,9]

[9, 12]

[12, 14]

[14, 16]

[16, 18] .

xe[0,
xe[Q,

«e[12

xe[U

a?e[16

6]

12]

,14]

,16]

, 1 8 ] .

Thus we can let G be the semigroup generated by / and g. That
G is asymptotically contractive can be seen by noting that p is a
f-contraction and that g is the identity on the range of f2. This
same remark implies that (3.1) is satisfied for any xeX and for

2 = 0.
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Theorem 2 generalizes both Theorem 1 of [2] and Theorem 3 of
[3]. For a local version of Theorem 2 we have:

THEOREM 3. If G is e-locally asymptotically contractive on (X, d)
and (3.1) is satisfied, then z is a quasi-periodic point of G.

Proof. We can apply (3.1) to get a geG with d(g(x), z) < ε/2.
Applying (3.1) again to lg(x), we get an Z* e G such that d(l*lg(x),
z) < ε/2. If we set y = g(x), then it is clear that y and z also satisfy
(3.1) and d(y, I * l{y)) ^ d(y, z) + d(l * l(y), z) < ε/2 + ε/2 = ε. If we now
apply the proof of Theorem 2 (setting b = ε) we get l*l(z) = z. As
I e G is arbitrary, it follows that z is an almost periodic point as
required.

Theorems 2 of [2] and 4 of [3] are generalized by Theorem 3.
In order to guarantee a fixed point in the local case one must add
more conditions. That ε-chainability alone is insufficient is shown by
Example 2 of [2]. It is sufficient, however, to assume, together with
ε-chainability, that z has a compact spherical neighborhood of radius
ε (see [2] for the motivation for this condition).

THEOREM 4. If, in addition to the conditions of Theorem 3, X
is ε-chainable and z has a compact spherical neighborhood of radius
ε, then z is the unique fixed point of G.

Proof. We suppose, for a contradiction, that there is an I e G
for which l(z) Φ z. Let k be the smallest integer for which there is
an ε-chain σ = {z — x0, xu , xk = l{z)} from z to l(z) and suppose σ
is a chain with k links.

We construct a subset T of G as follows:

T = {g e GI g(z) = z,

< d(xi9 x^j), i = 1, 2, . , k, f e G) .

Note that T is nonempty, for, as G is ε-locally asymptotically
contractive, there is, for each i, i = 1, 2, , k, an fiSG with
d(gfi(Xi), gfi(Xi-i)) < d{x{, x^), geG. Set / 0 = fj2 •••/*. Then, by

Theorem 3, there is an /0* such that f*fo(z) = z. Also

= d(/θ*/l/2 / ί - l / m * ΛΛ(α*), /θ*/l /*-l/ ί+l ΛΛfe-l))

< d(xif αv-i) < e and /o*/o e Γ .

Set r(x) = inf {d(«, /(α?))|/e Γ}. Then r(a ) is continuous on X
and, if d(z, x) < ε, 0 ^ r(a?) < (Z(z, a;). Set δ = J(e — ώfe, a?2)) and



708 R. D. HOLMES

C = {x e XI δ <. d(z, x) :g d(z, x^}. Then C is compact and xL e C, for,
if d(z, x±) < δ then

ft \ *y Ύ* ^ •<!" rl (*y Ύ \ I fj ί sy Λ \

= J ε + ί d(xl9 x2) < ε

and {z9 x29 x3, , x̂ } is an ε-chain from z to l(z) with fewer than k
links. The function r(x)/d(z9 x) is continuous on C and hence assumes
a maximum T < 1 on C. If 7 < α < 1, then, by the definition of r,
for each x e C , there is a n / , e l Γ such that d(z9 fx{x)) < ocd{z, x).

Consider the chain σλ = {z = fXl(x0)9 fXl(Xi), , fXί(Xk) — l(z)} As
fXie Γ, (fXl(Xi)9 fXl(Xi-i)) < d(xi9 a ^ ) and, if we had d(z, fXχ{Xι)) < δ9

we would have, as above,

d(z, fXl(x2)) ^ d(z, fXl(xd) + d(/ei(3i), /ei(»2)) < δ + d(xu x2) < ε

contrary to the minimality of k. Thus fXl(x1) e C.
We can now apply the above reasoning to x[ = fXί{Xι) and σλ. As

fx>LfxL e T, we thus generate a new chain σ2 with x\eC and d(z, xl) <
ad(z, x[) < a2d(z, x^} < a2ε.

We can clearly continue this process, constructing σn and xl with
d(2;, suΓ) < and(z, xλ) and a Γ G C. But this is a contradiction, for x? e C
implies d(z, x?) ^ δ > 0 or 0 < δ < αwε for each n. The desired
conclusion now follows.

Theorem 4, while it does generalize Theorem 3 of [2], fails to
do so for the corresponding Theorem 5 of [3] due to the extra
condition requiring a compact neighborhood of z. For the somewhat
stronger ε-local asymptotic contraction this defect is no longer present
as shown by the corollary to our next theorem.

THEOREM 5. If G is an ε-local asymptotic contraction on (X, d)
and X is ε-chainable, then there is a metric D on X, topologically
equivalent to d, such that G is an asymptotic contraction on (X, D).

Proof. We define D on X by setting

D(x, y) = inf {Σi-i Ufa, xi-ι)\xίe X, xQ = x, xk

= y, d(Xi, a?i_0 < ε, i = 1, 2, -, k} .

Thus D(x, y) is the infimum of the lengths of all ε-chains from x to
y. This is easily shown to be a metric equivalent to ώ(cf. e.g. [4]).

Let x, y G X be fixed and let 0 < p ^ (1 - λ)/2 D(x, y). Now, by
the definition of D(x,y), there is an ε-chain {x = x0, xu , xk = y)
from x to 7/ such that XD{x, y) + p ^ Σ t i λ φ i , flJi_i). For each
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i = 1, 2, , k we have d(xiy x^) < ε and thus there is an /< e G for
which d(gfi(Xi), gfi(Xi-i)) ̂  λdfo, x^) < ε for all ge G.

If we now set / = Λ/2 •• /fce6r we have
Xd(xi9 Xi-,) <ε,ί= 1 , 2 , * ,k,geG. H e n c e
is an ε-chain from #/(#) to #/(:?/) and

2:

Thus, if we set λ = (1 + λ)/2 < 1, we have

λZ?(α;, i/) = XD(x, y) + l ^ A i)(χ,i/) ^ λD(x,y) + ,o ̂  D(gf(x),gf(y))

for all 0 e G.
Thus G is an asymptotic contraction on (X, D) as required.

COROLLARY. // G ̂ s αw e-local asymptotic contraction on (X, d), X
is s-chainable, and condition (3.1) is satisfied, then G has a unique
fixed point in X.

Proof. Applying Theorem 5 we get the metric D with respect
to which G is an asymptotic contraction. From the construction
of D, we can see that D(x, y) < ε implies d(x, y) = D(x, y) and so (3.1)
is satisfied for (X, D) by the same pair of points x and z. As an
asymptotic contraction is, afortiori, asymptotically contractive, we
can now apply Theorem 2 to obtain the desired conclusion.
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