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APOSYNDETIC PROPERTIES OF
UNICOHERENT CONTINUA

DONALD E. BENNETT

In the first part of this paper the structure of w-aposynde-
tic continua is studied. In particular, those continua which
are w-aposyndetic but fail to be in + l)-aposyndetic are inves-
tigated. Unicoherence is shown to be a sufficient condition
for an %-aposyndetic continuum to be in + l)-aposyndetic. In
the final portion of the paper a stronger form of unicoherence
is defined. As a point-wise property, aposyndesis and con-
nected im kleinen are shown to be equivalent in continua
with this property.

Throughout this paper a continuum is a compact connected metric
space and M will denote a continuum. If N is a subcontinuum of M,
the interior of N in M will be denoted by int N. Suppose pe M and
F is a closed subset of M such that p ί F. M is aposyndetic at p
with respect to F if there is a subcontinuum N of M such that
p e int N c N c M — F. Let n be a positive integer. If M is aposyn-
detic at p with respect to each subset of M consisting of n points,
then M is n-aposyndetic at p. M is n-aposyndetic if it is ^-aposyn-
detic at each point. By convention if M is 1-aposyndetic then M is
said to be aposyndetic.

For other terms not defined herein, see [3], [4] and [6].

LEMMA 1. Suppose M is n-aposyndetic, peM,F is a subset of
M — {p} consisting of n + 1 points, and M is not aposyndetic at p with
respect to F. If F1 and F2 are disjoint nonempty subsets of F such
that F = Fι U F21 there exist subcontinua H and K such that Fιa H — K,
F2 c K- H,pemt(HΓ\K), and M= H\JK.

Proof. Suppose Fί and F2 are disjoint nonempty subsets of F and
F = Fλ{jF2. For each xeF1 there is a subcontinuum Nx in M —
(F - {x}) such that p e int Nx. Clearly xeNx. Let A = U {Nx: x e F,}.
For each x e Fx there is a subcontinuum Lx such that x e int Lx and
Lxf]F2 = 0 . Let A, = i U d J f c a eFJ) . Then A1 is a continuum,
{p} U ^ c int A19 and A, Π F2 = 0 .

Now by interchanging the roles of Fλ and F 2 we obtain a con-
tinuum ,42 such that {p} UF2 a int A2 and 4 0 ^ = 0 .

Let V = (M - Λ) Π int A and [/ = (M - A2) n int Ax. Let fί be
the component of M — V which contains A1 and let K be the com-
ponent of M — U which contains A2. Then Fj.cz H — K, F2a K — H,
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peint(HΓ\K), and M=H\JK.

THEOREM 1. Suppose M is n-aposyndetie but fails to be (n + 1)-
aposyndetic. Then for each pair of positive integers i and j such that
i + j — n + 1, there exist subcontinua H and K such that H is not
i-aposyndetic, K is not j-aposyndetic, and M = H{JK.

Proof. Suppose M is not aposyndetic at p with respect to F =
{xl9 x2, , xn, xn+1}. Let i and j be positive integers such that i + j =
w + 1. Let i^ = {a?!, a2, , a?J and Fά = {a?i+1, αί+2, , αΛ+1}. By
Lemma 1 there are subcontinua H and if such that Ft a H — K,
FόaK- H, pemt(Hf]K), and M= H\JK.

Now if H is i-aposyndetic, there is a subcontinuum AT in H — Fi

and a set V open in if such that p e ^ c iV. Let Z7 = (int (iί Π JK")) Π F.
Then U is open in M and pe Ua Nc M— F. Since this is contrary
to the supposition, H is not i-aposyndetic.

In a similar manner, it follows that K fails to be i-aposyndetic.

THEOREM 2. Let n be a positive integer and suppose M is n-
aposyndetic. If M is unicoherent, then M is (n + 1)-aposyndetic.

Proof. Suppose M fails to be (n + 1)-aposyndetic. There is a
p e M, a set F = {x0? χl9 , xn) consisting of n + 1 points in M — {p},
and M is not aposyndetic at p with respect to F. By Lemma 1,
there are continua H and K such that {x0} c H — K, {xl9 x2, , xn) c
K - H, p e int (HΠiΓ), and M = HuK. Since p e int (jff Π -SΓ) c Jϊ"Γ)
K a M — F, it follows that i ί Π ίΓ is not a continuum. Therefore Λf
fails to be unicoherent.

COROLLARY 1. Suppose M is unicoherent and aposyndetic. Then
for each positive integer n, M is n-aposyndetic.

A continuum M is said to be k-coherent (finitely coherent) pro-
vided that for each pair of proper subcontinua H and K such that
M — HUK, then HΓ\K has at most k components (a finite number
of components). Thus unicoherence is the same as 1-coherence.

With obvious modifications, Theorem 2 and Corollary 1 also hold
for continua which are finitely coherent.

In [5] Vought proves that a planar continuum is locally connected
if and only if it is 2-aposyndetic. By combining this result with
Corollary 1 we have the following theorem.

THEOREM 3. Let Mbe unicoherent planar continuum. Then M is
locally connected if and only if M is aposyndetic.
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The following example shows that the theorem does not hold if
M fails to be planar.

EXAMPLE 1. Let M be the product of the cone over the Cantor
set with the unit interval. Then M is unicoherent and aposyndetic
but is not locally connected.

According to [1, Th. 13, p. 100] and [3, Th. 2, p. 437], each
planar continuum which fails to separate the plane is unicoherent.
Thus the following theorem is an immediate consequence of Theorem 3.

THEOREM 4. (Jones [2]) Suppose M is a planar continuum which
does not separate the plane. Then M is locally connected if and only
if M is aposyndetic.

A dendrite is a locally connected continuum which does not contain
a simple closed curve. One of many characterizations of a dendrite
is that a continuum is a dendrite if and only if it is one-dimensional,
unicoherent, and locally connected [3, Gor. 8, p. 442].

Question. If M is a one-dimensional, unicoherent, aposyndetic
continuum, does it follow that M is a dendrite?

It is easily seen that if M is hereditarily unicoherent and aposyn-
detic, then M is locally connected and hence a dendrite. The following
results establish a weaker condition under which aposyndesis and
locally connectedness are equivalent.

DEFINITION. A decomposable unicoherent continuum M is strongly
unicoherent provided that for each pair of proper subcontinua H and
K such that M = H\JK, both H and K are unicoherent.

EXAMPLE 2. Let M consist of a ray R and a simple closed curve
C such that R limits on C. Clearly M is strongly unicoherent, but
not hereditarily unicoherent since it contains the non-unicoherent
continuum C.

THEOREM 5. Suppose M is strongly unicoherent and aposyndetic.
Then M is hereditarily decomposable.

Proof. Let N be a proper subcontinuum of M and let x and y
be distinct points of N. Since M is aposyndetic, there exist subcon-
tinua H and K such that xeH-K,yeK-H, and M = H[jK [2].
Now H U N and K U N are subcontinua of M and (H U N) U K = M =
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H\J(K\JN). It follows that H f]N and K Π N are nonempty continua
and N = (H Pi N) U (K Π N). Thus JV is decomposable.

COROLLARY 2. A strongly unieoherent aposyndetic continuum is
one-dimensional.

THEOREM 6. Suppose M is strongly unieoherent. Then M is
aposyndetic at a point p if and only if M is connected im kleinen at p.

Proof. If M is connected im kleinen at p, it is immediate that
M is aposyndetic at p.

Suppose M is aposyndetic at p and is not connected im kleinen
at p. There is an open set U containing p such that M is not
aposyndetic at p with respect to M— U. This property on "p" is
inducible. Thus by the Brower Reduction Theorem [6, Th. 11, p. 17],
there is an open set V such that U c V, M is not aposyndetic at p
with respect to M — V, but for any open set W properly containing
V, M is aposyndetic at p with respect to M — W.

Let x G M — V. There is a subcontinuum N in M — {x} such that
p e int iV.

Assertion. There are proper subcontinua H and K such that
M = HljKy peint Hy and α e K — H. For if N does not separate If,
let H = JV and if = Cl (ikf — N). If N separates M into disjoint open
sets S and T, assume x e Γ ; let H = NOS, and let K = NUT.

Let A - ( M - F)Πiϊ. If A = 0 , then Jlf - 7 c ί - f f which
implies that ikf is aposyndetic at p with respect to M — V. So assume
A Φ 0 . Since M — A properly contains V, there is a subcontinuum
Lin M— A such that p e int L. Now p e [(int H) n (int L)] c L n i ϊ c F
which implies that L n H is not a continuum. Since M = {L\jH)[jK,
this contradicts the strong unicoherence of M.

Therefore M is connected im kleinen at p.

COROLLARY 3. Suppose M is strongly unieoherent. Then M is
aposyndetic if and only if M is locally connected.

Since a strongly unieoherent aposyndetic continuum is one-dimen-
sional (Corollary 2), we have the following characterization of a
dendrite.

THEOREM 7. A continuum M is a dendrite if and only if M is
strongly unieoherent and aposyndetic.
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If the answer to the question proposed above is negative, then
the following corollary provides some information concerning the
structure of such continua.

COROLLARY 4. Let M be a unicoherent, aposyndetic, one-dimen-
sional continuum. If M is not a dendrite, there exist proper subcon-
tίnua H and K such that M = H{jK and either H or K fails to be
unicoherent.
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