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MULTIPLIERS AND OPERATOR ALGEBRAS
ON BOUNDED ANALYTIC FUNCTIONS

MARTIN BARTELT

Let B denote the vector space of bounded analytic func-
tions on the open unit disc. The first part of this paper
involves the use of three topologies on B which give rise to
various continuity classes of operators from B to B, and the
study of the relationships among these classes. The second
is the examination of a special class of operators called
multipliers. An operator T is a multiplier if for some sequ-
ence cn, we have Γ ( ^ anZn) — Σ anCnz

n for any function ^ anz
n

in B. We characterize all the multipliers from B into B and
study their continuity properties.

2Φ Definitions* Let D = {z: \z| < 1} be the open unit disc in
the complex plane and let Γ = {z: \z\ = 1} be its boundary.

We shall look at the vector space B in each of three different
topologies, using (B, τ) to indicate the space B with topology τ.
The topology tc is the compact-open topology, uniform convergence on
compact subsets of D, and (B, tc) is a metrizable linear topological
space. The topology σ is the usual topology of uniform convergence
on D, and (B, σ) is a normed space with norm | | / | | = sup \f(z) | for
| s | < l .

The strict topology β on the vector space B is the locally convex
topology defined by the collection of seminorms \\f\\φ = \\fφ\\ for ψ a
continuous function on D which vanishes at infinity. The topology
β was introduced in [1] where it was shown that a sequence of
functions is β convergent if and only if it is σ bounded and tc
convergent. The three topologies [4] are related by tc c β c σ. One
advantage of the strict topology is that (B, β), in contrast to (B, σ),
has a nice dual [4], Also [3] the polynomials are strictly dense in
B whereas the uniform closure of the polynomials is just C, those
functions in B which are uniformly continuous on D.

Let both τι and τ2 be one of the three topologies tc, β or σ.
Then [rx: τ2] will denote the class of all continuous linear operators
from (B, τλ) into (B, τ2). Thus [σ: σ] is the algebra of all norm
bounded linear operators from (2?, σ) into (B,σ). The algebra [β: β]
was essentially introduced in [2] where it was shown that [β: β] is
a closed subalgebra of [σ: σ] in the induced norm topology.

3* Operator algebras* We have defined nine continuity classes

I^i " T2]y but it will be seen that only five of them are distinct. We
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determine the inclusion relationships between the distinct classes. In
particular, we show that each continuity class is an algebra and is
contained in [σ: σ].

Since (B, β) is not metrizable [3], it is an important fact that a
subset of (B, β) is closed if and only if it is sequentially closed. A
proof of this result for subsets which are also subspaces appears in
[6]. A private communication (1966) from P. Hessler to R. C. Buck
contained a proof of this result for subspaces which R. C. Buck
observed also holds for arbitrary subsets. We include this unpublished
proof here. Another proof is in [9]. We will use the result to
conclude that a linear operator T is in [β: τ] where τ is fc, β or σ,
if for any sequence {fn} converging strictly to zero, the sequence

J converges τ to zero.

THEOREM 1 (Hessler). A subset of (B, β) is closed if and only if
it is sequentially closed.

Proof. Let V be a sequentially closed subset of (J5, β). Let F
be a function which is not in V. We show that F is not in the
strict closure of V.

Since V is sequentially closed in (B, β) and β c σ, V is uniformly
closed. Hence there exists a δ > 0 such that \\f — F\\ > 2δ for all
/ in V. Let {Kj} be a sequence of expanding compact sets whose
union is all of D. Let Pn be the statement that if / is in V and
11/ — F\\ ^ (n + l)δ, then there exists some integer j tί n such that
for x in K3J the maximum of \f(x) — F(x)\>jδ. We show by
contradiction that we can find a subsequence of {Kj} such that Pn

holds for all n.
Statement Pί holds vacuously for Kx. Assume that we have

chosen sets KL = K(j, 1), K(j, 2), ., K(jf n - 1) and P l f P2, , Pn^
all hold. Suppose that there is no compact set K{j, n) for which Pn

holds. Then for any compact set K after K(j, n — 1) in the sequence
{Kd}, there exists a function fκ in V such that \\fκ — F\\ ^ (n + l)δ
and for x in Kά the maximum of \fκ(x) — F{x) \ rg jδ for all j ^ n — 1
and \\fκ — F\\κ ^ nδ. Doing this for each such compact set K, we
obtain a sequence of functions {fκ} which are uniformly bounded,
since for any K, \\fκ — F\\ ^ (n + T)δ. Then this sequence has a
subsequence which converges fc to some function g. Since the subse-
quence is uniformly bounded it also converges strictly to g. Since V
is sequentially closed, g is in V. Denote this subsequence by {fk}
and denote the corresponding compact sets by {Kk}. Since {fk}
converges tc to g we have \\g — F\\ ^ (n + 1) δ. Since for each x in
Kk we have | fk(x) — F(x) \ ̂  k δ for each k ^ n — 1 it follows that
for each x in Kk, \g(x) — F(x) \ <; kδ for each k ^ n — 1.
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Now fix a compact set K occurring after K(j, n — 1). For any
compact set S containing K with S in {Kk} we have \\fs — F\\κ ^
\\fs — F\\s fg nδ. Then as k increases, the sets Kk expand to D and
the functions {fk} converge to g. Therefore we obtain \\g — F\\κ <g nδ.
We also know that for each x in Kk, \ g(x) — F(x) | ^ kδ for each
k ^ n - 1 and that | |# - F\\ ̂  O + l)δ. This contradicts Pn_ l β

To complete the proof let φ be a continuous function on D which
vanishes at infinity such that φ = 1/k on dKk1 the boundary of Kk.
Then the maximum of \f(x) — F(x) | for x in SiΓfc is equal to the
maximum of | f(x) — F(x) \ for x in Kk which is larger than kδ. Hence
the maximum of | [f(x) — F(x)] φ (x) \ for x in dKk is larger than δ.
Hence | \{f - F) φ \\ = \\f - F\\φ > δ and F is not in the strict closure
of V.

THEOREM 2. The continuity classes [τ,: τ2], for τi=. K, β or σ,
are subsets of [σ: σ].

Proof. Let T be in [r :: r2] and let the sequence {fn} converge
uniformly to / . We apply the closed graph theorem in (B, σ) and
assume that lim^oo Tfn = g, i.e. the sequence {Tfn} converges uniformly
to the function g in B. Then since τλ g σ, {fn} converges τ1 to / .
Therefore {Tfn} converges r2 to Tf and hence point wise to Tf. It
follows that Tf — g and hence that T is in [σ: σ].

From tc a β (Z σ follow some obvious inclusions among the
continuity classes. We indicate which of these inclusions are proper
and which continuity classes are identical.

THEOREM 3. The following identities hold for the continuity
classes.

( i ) [σ: ft] - [σ: β] = [σ: σ]
(ii) [β:ιc] = [β:β]
(iii) [ic: σ] = [ic: β].

Proof. For the first equality we know from the last theorem
that [σ: tc] s [σ: σ]. Since tc a σ we have [σ: σ] £ [σ: fc]. Therefore
[σ: /c] = [σ: σ]. Also, since tt c β we have [σ: tc] £ [σ: /3] £ [σ: σ].
Since [σ: tc] = [σ: σ] we are done.

For the second part let T be in [β: tc] and let {fn} converge
strictly to zero. Then {fn} is tc convergent and uniformly bounded.
Since T is in [β: tc], {Tfn} is tc convergent. Also, since [β: tc] £ [σ: σ],
{Tfn} is uniformly bounded. Therefore {Tfn} converges strictly to
zero.

Now let T be in [tc: β] and let {fn} be a sequence converging tc
to zero. Then it is known [6, pp 383] that there exists a sequence
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{cn} converging monotonically to infinity such that the sequence {cnfn}
converges tc to zero. Thus {T(cnfn)} converges strictly to zero. Since
strictly convergent sequences are uniformly bounded, there exists a
constant M such that || T(cnfn) || = cn\\ T(fn) \\^M. Hence {Tfn} con-
verges uniformly to zero and T is in [/c: σ]. Since β c σ, we have
[fc: σ] c [tc; β] and the result follows.

COROLLARY. The continuity classes [z\: τ2] are algebras.

Proof. The last theorem shows that the only possible distinct
continuity classes [τ,: τ2] satisfy τx Ξ2 τ2. The corollary follows
immediately.

THEOREM 4. Among the operator algebras [rx: τ2], the only distinct
ones are [fc: σ], [fc: fc], [β: σ\, [β: β] and [σ: σ], and all the proper
inclusions between them are given by [/c: σ] c [β: σ] c [β: β] c [σ: σ]
and [fc: σ] c [tc: fc] c [β: β].

Here is a simple diagram of the situation:

FIGURE 1

Proof. It has been shown that these are the only possible distinct
classes. We also know that [β: σ] s [β: β] and [Λ:: σ] S [/c: /c]. Con-
sideration of the identity operator shows that these inclusions are
proper.

To show that [/c:/c] is a subset of [β: β], let T be a linear
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operator in [tc: tc] and let {fn} be a sequence converging strictly to
zero. Then {fn} converges tc to zero and {Tfn} converges tc to zero.
Also {/„} is uniformly bounded and since [tc: tc] ϋ [σ: σ], {Tfn} is
uniformly bounded. Hence {Tfn} converges strictly to zero.

We show that [Λ:: tc] is a proper subalgebra of [β: β] by giving
an example of an operator which is in [β: σ] £ [β: β] but not in [tc: tc].
This also shows that [β: σ] is not contained in [tc: tc]. Let T be the
linear operator from B to the constant functions defined by Tf(z) =

f(x)dx. Then the sequence {/w}, where fjz) = nzn, converges tc to
Jo

zero but {Tfn} converges to 1. Hence T is not in [tc: tc]. Now
assume that {/„} converges strictly to zero. Then {fn} converges tc
to zero and \\fn\\ ^ M for some constant M. Let r be a real number
satisfying 0 < r < 1. Let | | / | | r = sup {|/(z)|: \z\ ^ r}. Then

I Tf (Ά I < \ f ^r7^y
I JL J n\6) I ^ 1 J n\d/)ilJb

Hence | Tfn(z) | ^ r | | / n | | r + Λf(l - r) . Therefore || Γ/ n | | can be made
arbitrarily small by choosing r near 1 and n large.

The bounded linear operator T defined on (C, σ) by Tf(z) = /(I)
maps C into the constant functions. By using the Hahn Banach
theorem on the associated linear functional given by Lf — / (I) , we
can extend T to a bounded linear operator on (B, σ). But this operator
T is not in [β: β]. Although the sequence {zn} converges strictly to
zero, T(zn) = 1 for all n.

Finally we show that [/c: σ] c [β: σ]. Since /c-aβ, we have
[fc: σ] £ [β: σ]. Let T be the operator defined on B, by Γ ( Σ a>X) =
Σ (an/n)zn for any function Σ αΛ2n in S. It follows immediately from
Theorem 8 that T is not in [fc: σ]. The corollary to Theorem 7
implies that if T maps β into C, then T will be in [β: σ\. Since
(Σ lα IM)2 ̂  Σ lα Γ Σ (1M)S it follows that Σ « . ( Φ ) is in C.

4* Multipliers and diagonal operators* Assume that T is a
linear operator defined on B for which there exists a sequence {cn}
such that T(sn) = cnz

n, for w = 0, l . If T is also in [Λ ΓΛ;], then
for any function f(z) = Σ α*«n in B, we have Γ ( Σ α*zΛ) = Σ α*cn2

Λ.
This holds because the partial sums of Σ anZn converge tc to / .
Operators satisfying Γ ( Σ αΛs*) = Σ αΛcΛ2;w for some sequence {c%} are
called multipliers. The multipliers from Hp to Hq were first studied
by Hardy and Littlewood, (for references and some recent results see
[5]). Further results on multipliers can be found in [3] and [7].
Explicitly we have:

DEFINITION. A multiplier on B is a linear operator T such that
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there exists a sequence {cn} with the property that Γ(Σ &%%*) — Σ #Λ2Λ

for any function Σ an%n in -B-
We distinguish another class of closely related operators which

leave invariant the one dimensional subspaces generated by zk. These
operators shed light on the relationship between topology and the
multipliers.

DEFINITION. A linear operator T defined on B is called diagonal
if there exists a sequence {en} such that T(zn) = cnz

n, for n = 0, 1,
Clearly any multiplier is a diagonal operator. At the beginning

of this section we showed that any diagonal operator which is also
in [Λ:: Λ:] is a multiplier. It is not known whether there exists a
diagonal operator mapping B into B which is not a multiplier. The
action of any diagonal operator is determined by its action on the
polynomials, which are tc dense in £>, strictly dense in B, but not
uniformly dense in B. Hence it is reasonable to conjecture, although
we can not prove it, that the diagonal operators lie in [β: β]. We
can show that any diagonal operator in [β: β] is a multiplier.

THEOREM 5. Let T be a diagonal operator mapping B into B
and assume also that T is in [β: β]. Then T is a multiplier from
B into B.

Proof. Since T is diagonal there is a sequence {cn} such that
T(zn) = cnz

n. We have to show that Γ(Σ anz
n) = Σ αΛcΛsn for any

function f(z) — Σ an%n in B. For any real number r with 0 < r < 1,
let fr(z) = f(rz). We first prove the theorem for the function fr.
Since T is in [σ: σ] and the partial sums of the power series for fr

converge uniformly to fr, it follows that as N approaches infinity,
Ei=oV*r(2*) converges uniformly to Tfr. Fix x in D and put
T(zn) = un(z). Then

Σ anr
nun{x)

since \an\ £ \\f\\. Hence as N approaches infinity, Σ»=o <M n Γ(sn)
converges pointwise to Σ»=o V * W Thus Tfr(z) = Σanr

n T(zn).
Now if f(z) = Σ anZn is in B, the Cauchy integral formula shows

that fr converges tc to / as r approaches 1 through a sequence of
values. Hence for any x in D, we have

-1- J V^/ — 11111 JL J r\d/) — 11111 s i l"nI OnJU — y j U/nOnJU
rU rίl

s i n c e t h e f u n c t i o n Σancnx
nwn i s a n a l y t i c i n \w\ < l/\x\.
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5* Multipliers and continuity. In this section we first charac-
terize the multipliers from B into B and then determine those
multipliers which lie in the various continuity classes.

The following characterization of the multipliers from B into C,
which occurs in [7], suggests how to characterize the multipliers
from B into B.

THEOREM PSW [7]. Let T be a multiplier from B into C, where
2\Σ anz

n) = Σ UnCnZ71 for anV function Σ anz
n in B. Then the sequence

{cn} is one side of the sequence of Fourier coefficients of a function
in Lι(Γ). Conversely, given any such sequence {cn}, the operator T
defined on B by T(Σ anZn) ~ Σ anCn%n is a multiplier from B into C.

Both Theorem PSW and the next theorem on the multipliers
from B into B can be considered as converse forms of Hadamard
multiplication theorems. Let {cn} be the sequence associated with a
multiplier T. Let h(z) = Σ cnz*. Then for any function f(z) = Σ an%n

in By we have Tf(z) = ^ancnz
n — (h*f)(z), the Hadamard product of

h and / . We thus solve the problem of determining those functions
h such that h*f is in B for every / in B.

A first step in the direction of characterizing the multipliers in
various continuity algebras was taken in [3]. Let (C, σ) be C in the
topology σ. Given a strictly continuous linear functional L on B,
define a linear operator T on B by Γ(Σ anz

n) = Σ,an L{zn)zn. Then
it was shown that T is a continuous linear operator from (B, β) into
(C, σ). Letting h(z) = ^L{zn)zn, the result states that (h*f)(z) is in
C for any function / in B. Theorem PSW provides a converse.

COROLLARY. Let h{z)—YAcnz
n. Assume that (h*f)(z) is in C

for every function f in B. Then cn = L(zn) for some strictly
continuous linear functional L.

Proof. Since fo*/ is in C for any function / in B, it follows
that [7] the sequence {cn} is one side of the sequence of Fourier
coefficients of a function in Lι(Γ) and thus that the linear functional
L defined on zn by L(zn) = cn can be extended to a strictly continuous
functional on all of B.

We know that any diagonal operator in [fc: ic] is a multiplier
from B into B. In fact these are all such multipliers.

THEOREM 6. Let T be a multiplier from B into B given by
T(Σ a>nz

n) — Σ αncΛ2w. Then there exists an L in the dual of (C, σ)
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such that cn = L(zn), for n = 0, 1, •••. Conversely, given any such
L, let T be defined by T(Σanz

n) = ΣanL{zn)zn. Then T is in [K: tc].
Furthermore \\L\\ = \\T\\.

Proof. Let L be in the dual of (C, σ) with L(zn) = cn and define
T as above. Then for fixed x in D, Tf(x) = Σ anL{zn)xn = L ( Σ anx

nzn)
because the partial sums of ^anx

nzn converge uniformly for \z\ < 1.
Let Ux be the operator given by Uxf(z) = /(α?2). Then given any r
with 0 < r < 1 and an a in 2) with \x\ <; r, we have | T / O ) | ^ | | L | |
| ( ^ / ( ^ ) | | ^ | | L ( | | | / | | r . Hence || Tf\\r ^ \\L\\ \\f\\r and | | Γ [ | ^ | ( L | |
and T is in [tc: fc].

Now let T satisfy the conditions of the theorem and define
h(z) = Σ cnZn- We show that h(z) is analytic in D. Since the function
f(z) = Σ ^~ 2 ^ is in B, it follows that the function Tf(z) = Σ cnn~2zn

is in 5 . Hence lim sup \cn\
1/n = lim sup \n~2cn\

lln ^ 1.

For any r with 0 < r < 1, define the linear functional Lr on C
by LJ = Tf(r). Then for f(z) - Σ α,*" in B, we have

because ^cnz
n is analytic in .D. Hence Lr is in the dual of (C, σ).

Now for fixed / in C, Lrf is bounded in norm for all 0 < r < 1
because Tf is in B. By the uniform boundedness principle, there is
an M such that | | L r [ | < ^ l f for all 0 < r < 1. By the weak star
compactness of the unit ball of the dual of (C, σ) there exists an L
in the dual of (C, σ) such that L r / converges to Lf for every / in
C. Letting /(z) = zn we obtain Lr(zw) = rncn converging to L(zn) and
to cn. Hence cn = L(zn).

Following the procedure used in the first part of the proof this
L now yields an operator T in [/c: /c]. In fact this is equal to the
operator which gave L because it agrees with the original operator
on the polynomials. From Lr(f) = Tf(r) it follows that | | L r | | ^ | | Γ | |
and hence | |L(| ^ | | Γ | | .

COROLLARY. All the diagonal operators in [β: β] are in [/c:/c].

Any uniformly continuous linear functional on C can be extended
by the Hahn Banach theorem to a continuous linear functional on the
space of all continuous functions on Γ. Corresponding to this functional
there is a Radon measure on Γ. Hence the sequences associated with
the multipliers from B into B correspond to the Radon measures on
Γ. Since [β: σ] is a subalgebra of [fc: /c], the multipliers in [β: σ] will
correspond to some subset of the Radon measures.
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THEOREM 7. Let The a multiplier in [β: σ] given by T(Σ a^n) =
Σ ancnz

n. Then {cn} is one side of the sequence of Fourier coefficients
of a function in L^Γ). Conversely given any such sequence {cn}, the
operator T defined by T(^anz

n) = ^ancnz
n is a multiplier in [β: σ].

Proof. Let T be a multiplier in [β: σ]. For any function / in
B,{fr} converges it to / and | | / r | | ^ | | / | | . Hence {fr} converges
strictly to / . Therefore if f(z) = Σ α^*, TfΨ(z) = Γ(Σ anr

nzn) =
^ancnr

nzn is in C because ^ancnz
n is analytic in D. Then {Tfr}

converges uniformly to Tf which implies that Tf is in C. The
result follows from Theorem PSW.

Now let {cn} be one side of the sequence of Fourier coefficients
of an L1 function. Letting L(zn) = cn, we can ([7] and [10]) extend
this to a strictly continuous linear functional on B. As mentioned
in the second paragraph after Theorem PSW, the operator T defined
by Tf(z) = Σ αw L(zn)zn is a continuous linear operator from (B, β)
into (C, <τ).

COROLLARY. The operator T is a multiplier from B into C if
and only if T is a multiplier in [β: σ].

The last class to consider is [/c: σ].

THEOREM 8. Let T be a multiplier in [K: σ] given by Γ ( Σ «Λ«
W) =

^ancnz
n. Then Urn sup |cJ 1 / % < 1. Conversely any such sequence

{cn} defines a multiplier T in [tc: σ] given by 2 \ Σ an%n) = Σ ancnz
n.

Proof. If T is in [fc: σ], then there exists an r with 0 < r < 1
and a constant M such that || Tf\\ ^ Λf | | / | | r for all / in β. Letting
f(z) = zn, we obtain lim sup \cn\

ιln ^ r.
Assume now that lim sup \cn\

lln = c < 1. Choose an r such that
c < r < 1. Then for /(s) = Σ α»sΛ in 5, Γ/(2;) = Σ α»cw«

w which is
in C. Then | T/(s) | ^ | | / | | r Σ \cn\r~* ^ M | | / | | for some constant M
and Γ is in [fc: σ].

We have shown that the multipliers in [it: fc] are the multipliers
from B into B and that the multipliers in [β: σ] are the multipliers
from B into C. Let H(D) be the functions analytic in D and let
i ϊ φ ) be those which are analytic in some open disc containing D.

COROLLARY. The operator T is a multiplier in [/c: σ] if and
only if it is a multiplier from H(D) into H(D).
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