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LINEAR ISOMETRIES OF SOME FUNCTION SPACES

N. V. RAO AND A. K. ROY

The purpose of this paper is to describe the linear
isometries of the Banach algebras of continuously differen-
tiable functions, Lipschitz functions and absolutely continuous
functions on the unit interval with the norms described below.
It is also shown how these results continue to hold for more
general norms which come from compact convex bodies in C2

satisfying certain properties.

1* Generalities* Throughout this paper we denote by I the unit
interval [0, 1] and by λ, Lebesgue measure on 7. Following customary
usage, we denote by

( i ) ^ ( 7 ) the space of continuously differentiate functions on
7, with norm ||/[[ = [|/|U + | | / ' |U ( / e ^ ( I ) ) ,

(ii) Jẑ & (7) the space of Lipschitz functions (Lipschitz of order
one with respect to the standard Euclidean metric on 7), with norm
11/11 = 11/11-+ II/ΊI- (fejzμ(l)),
and (iii) S/^{I) the space of absolutely continuous functions, with
norm | |/ | | - | | / | U + | |/ ' | | i (fe J**gf (/)). (U(I) and L~(I) are of course
defined with respect to λ).
These function spaces are, as is well-known, Banach algebras under
the norms just defined and we have the following inclusions amongst
these algebras:

Our objective in this paper is to determine the linear isometries1

of these spaces. More specifically, we will show in §2 that all the
isometries of S^fc(^{I) are induced by monotone absolutely con-
tinuous mappings of the unit interval onto itself whereas the isome-
tries of -S^. (7) and c^ι(I) come only from the functions x and 1 — x
(§3 and §4, respectively). In the last section, we indicate that
precisely the same results continue to hold for isometries under more
general norms. We have preferred to discuss the Banach algebra
norms first because the main ideas of this generalization are already
present there.

The results for the algebra St/rέ?{I) were first proved in Cambern's
paper [1]. We present here a different and perhaps more elementary
proof. Cambern also discusses the isometries of c^ι(I) with a norm
somewhat simpler than the one we use in §4.

1 By a linear isometry (or isometry for short) of a Banach space X, we mean a
linear, norm-preserving transformation of X onto itself.
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We would like to thank Dr. M. H. Vasavada for some interesting
conversations about the problems discussed in this work.

2* The algebra £/<&{!). For this section, the norm of fe
is

11/11- l l / I U + l l / Ί l i .

Following [1], we embed s/^(I) as a subspace of ^(X), X a
compact Hausdorff space, in the following way. If V denotes the
unit ball of LW(I), then V is compact in the weak topology induced
by L^I) and we let X be the space I x V with the product topology.
If fe Jzf^(I) and (x, a) e X, defining

f(x,a)=f(x)-\

it is obvious that /—>/ gives an isometric isomorphism between
J^^(I) and a closed subspace Γ c <^(X). We now describe all the
extreme functionals in the unit ball of Y*. (Only a partial descrip-
tion of these functionals is given in [1]). By [2; page 441], all the
extreme functionals are contained in

{eir>L(x, a): ηe[-π, π ] , (x, a)elx V} .

For the statement of the next lemma, we adopt the following
notation. If ε > 0,

and

C2ε = \zeC: \z\ = 1, |argz | ^ — - εj .

LEMMA 2.1. // (a?0, ao)el x V and 0 < x0 < 1, then the functional
L(x0, a0) 6 j y ^ * ( / ) (Ξ= F*) defined by

is extreme in the unit ball of j&*g?*(I) if and only if
( i ) I α01 = 1 a.e. on I and
( i i ) V'ε > 0, λ [orl (Clβ) Π (a?0 - e, a?0)] > 0 and

λ [crj (C2e) n fa, Xo + ε)] > 0 .

1/ a;0 is 1 (resp. 0) then Vε > 0, λ [α-J (Cu) Π (1 - e, 1)] > 0 (resp.
crl [(cy n (o, e)] > o).
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Proof. Clearly, condition (i) is necessary because aQ e V is extreme
if and only if \ao\ — 1 a.e. so assuming |α o | ~ 1 a.e. and 0 < xo< 1, let

where L^i = 1, 2) belongs to the unit ball of j ^ f * ( I ) . Since L(fl.o>αo)(l) = 1,
it follows that 1̂ (1) = L2(l) = 1. By means of the isometric map
f—*(fi /')> w e can regard s^f^il) as a closed subspace of the direct
sum rtf{I) 0 L\I) with the norm

IK/, IIfirIU

Extending Li to the whole of i f (I) φ ^(/) by means of the Hahn-
Banach theorem, we see easily that Li has the following form:

= \jfdμi

where μi is a nonnegative measure on / with total mass 1 and ^ e
Lr{ϊ) with ||g,\U ^ 1 (i = 1, 2). Therefore for all

where μ =
1 and g = J

J (^ + ^2) is a nonnegative measure on / with total mass
+ r̂2) e ^(1) , ||^r|U S 1, and hence

- ( {( f'iv) dX(y))\ dμ(t) + f f'(y) tffi d\{y)

where

C[a.0,ί] = characteristic function of [#0, t] if ί ^ α;0
— — characteristic function of [ί, a?0] if t < ίc0 .

If we define

β(y) =

it immediately follows from the above that

&o(y) = /S(2/) + ff(ί/) a.e.
Since

β(y) - - i"[0, y] if y< xo

= ^ b , 1] if 2/ > a?0 ,
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we see that

g(y) = άo(y) + μ[0, y] a.e. if y < x0

= ao(y) - μ[y, 1] a.e. if y > x0 .

Suppose now that condition (ii) of the lemma holds. Let εn be
any sequence such that 0 < εn < 1 and εΛ —> 0. It is clear that for
each n there must exist yn e (x0 — εΛ, x0) such that μ[0, yn\ ^ en, which
clearly implies that μ[0, xQ) = 0. It follows similarly that μ(xQ, 1] = 0
and we can conclude that μ is the "point mass" at x0, thus proving
that L(XQ.ao) is extreme.

To prove necessity of (ii), assume that one of the conditions, say
the first, is violated. This means that there is an ε > 0 such that

]argα: I ̂  — + ε a.e
Δ

on (x0 — ε, XQ). If we define μ({x0 — ε}) = I, μ({x0}) = 1 — 1 and μ = 0
elsewhere, where 0 < I < ε, we see that \g\ <̂  1 and g =έ a0, which
means that LiXo>a(j) is not extreme. The necessity of the other con-
dition is proved similarly.

Since the above proof works equally well when x0 = 0 or 1, Lemma
2.1 has been completely proved.

We do not really need the following result for later use, but
since it is implicitly assumed in [1], we thought it worthwhile to
include a proof.

LEMMA 2.2. If a, β satisfy the conditions of Lemma 2.1 at the
points x, y respectively, then L[x,a) = L{ιJ}β) if and only ifx — y and
a = β a.e.

Proof. We may assume that x r£ y and that x and y are interior
points of I as the following proof may be easily modified otherwise.
By hypothesis, for all fe

f(x) + ^/'(ί) a(t) dt = f(y) + \f'(t) β(t) dt

or

\f'(t) (a(t) - β(t) - χ[jB>y](ί)) dt - 0,

and hence

ά{t) - β(t) = χίx>y](t) a.e.

(χ[X!y](t) denotes the characteristic function of the interval [x, y]).

This means that

a — β a.e on I — [x, y]
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and

a = 1 + β a.e. on [x, y] .

It is easily seen that the last equation implies

argα| = ?L a .e . on [x, y] ,
o

which is impossible in view of condition (ii) of Lemma 2.1 unless
x = y. This proves the lemma.

We can now turn to the question of the determination of all
isometries of j^^{I). Let T be a (linear) isometry of j y ^ ( I ) .

The following lemma occurs also in [1: page 221].

L E M M A 2 . 3 . T ( l ) i s the c o n s t a n t f u n c t i o n e i θ , θ e [ — π , π ] .

Proof. The adjoint map T* carries the extreme functional of
the unit ball of j ^ ^ * ( / ) onto themselves and therefore T*L[xa) is
of the form eίη L{ytβ)f ηe[ — π, π]. Therefore,

(Tl) (x) + ί (TiyάdX i

If we fix x and vary a over all functions satisfying the conditions of
Lemma 2.1, then the points

(21) (x) + \ (Tl)'adX

obviously describe the disc in the complex plane with centre (Tl) (x)

and radius I |(T1)'| dX, and this is obviously impossible unless (Tl)' =

0 a.e., which implies that (Tl) (x) = eiθ for all xel, (θe [ — π, π)].
We may therefore assume without loss of generality that T(l) =

1. For the statement and proof of Lemma 2.4 below, we fix a point
xel and a function ax e L°°(I) defined by ax(y) — 1 for x — ε < y < x
(if x Φ 0), ax{y) = — 1 for x < y < # + ε (if a? ̂  1) and ax{y) arbitrary
at other points y with the only restriction that \ax(y)\ = 1. By
Lemma 2.1, the functional L{x,ZCCχ) are extreme for all zeC0 ,

o 0 — s * 1 1 ^ . I»i — l , i a r g ^ ; j ^ -—

T being an isometry, the adjoint map T* carries the extreme
functionals L{X)ZCXχ) into extreme functional L{Vgtββ) where the βz satisfy
the conditions of Lemma 2.1 at the points yz. We now prove the
crucial
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LEMMA 2.4. For a certain fixed zι e CQ,

= yZl and βz = — βH

Zγ

for all z e Co.

Proof. Assume that the set {yz: z e Co} has a point of condensa-
tion yZl1 say. (If this set has no points of condensation, then clearly
it is countable, hence some yZl is assumed infinitely often and as will
be evident, the following proof is rendered easier.)

Since T* L[x,gaχ) = Liyz,βz), we have

(*) (Tf) (x) + z\(Tf)' (t) ax(t) dt = f(y.) + \f'(t) β.(t) dt

for all / 6 J / ^ ( / ) , χz denoting the characteristic function of the
interval [0, yt].

We fix, for the moment, a point z2 e Co. For any z e CQ, we can
find aly α2 G C such that

aL + a2 = 1

and

^1^1 "τ~ a2z2 — Z

Hence (*) can be written as

αY(T/)(αO + z\ {Tf)'axdt\ + a2((Tf)(x) + z\ {Tf)'axdt

= /(0) + j/χ. + A)/'dί

or,

hα2f/(0)H

We can therefore assert that

or,
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Since (if z Φ zt and Φ z2) | λ | = 1 and | at + α2λ | = 1 imply that λ = 1
or z2/zί, we immediately see that

χH + A, - χZl = ± o r 3 _ a # Θ β o n { s : χ^s) = I z ^ = χ ^ ( s ) } β

Choosing z such that ?/z is arbitrarily close to yZl, we deduce that

In X*ι + &2 = i or
βZl

Therefore,

X, - χ 2 l + ^ = l or i - on {s: χZl(s) = χZ2(s)} .

βZι

 zι

The left-hand side being independent of z2, we can now vary z2 such
that yH is arbitrarily close to yZι to conclude that

a.e. on

Let £/ be the set where

X* - XH +

Then it is easy to see that the (measurable) set E is independent of
z. Reverting to the the original equation (*), we can write

(27) (x) + z\(Tf)' axdt =

Ί7 ^

for all / e j / ^ ( / ) and for all zeC0. This being an identity in z,

\ (Tf)'axdt = JL \ fβzι dt

which immediately implies

\ \{Tf)'\dt^\ \f'\db<±\ \f'\dt,
J/ JI-E JI

(since ax is virtually at our choice, the only restrictions on it being
in a neighbourhood of x). On applying this result to the isometry
T~\ we have \\f\\, ^ | | (T/) ' | | i and hence

I/
I~E
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This says that m{E) — 0, which means that

Ύ Ύ _ ι /O ~ϊγ

M 4!1 z = -Z— a.e.

Therefore,

— Έ —
γ 4. β — γ _I_ * /Q o p

and we can conclude (see proof of Lemma 2.2) that

yz = yZι and βz = — βZι a.e.

This proves the lemma.
We continue with the notations introduced just prior to the

statement of Lemma 2.4. Let τ be the image under T of the identity
map of I onto itself. Then

T* L{x>zaχ) = L{Vz ,_£_ βz} (Lemma 2.4)
zl

implies that

τ(x) + z\ T1'axdt — yZl + -=—\ βZldt

and

(Tf) (x) + z[ (Tf)'ax dt = f(ye ) + -£-( f'βz dt
Ji Zγ Ji

for all z e Co and all fej^^(I). Since these are identities in z, we
deduce that

Φ) = yZl

and (Tf) (x) = /(τ(α ))

for all / e j / ^ ( ί ) . These imply that τ is a continuous one-one map

of I into I, which means that τ is monotone and because \ | τ'\ dt = 1

(since Γ preserves 1/ norms), we see easily that it is an onto map.
We have therefore proved

THEOREM 2.5. Any linear isometry T of AC(I) is of the form

(Tf) M — pi0 f(τ(r\\

where τ is a monotone absolutely continuous mapping of I onto itself
and θ is a constant in [ — π, π]. Conversely, any transformation T
of the above form is a linear isometry of



LINEAR ISOMETRIES OF SOME FUNCTION SPACES 185

3. The algebra £f?> (I). For fe £ffr(I), \\ f || - || / |U + II / Ί U
Throughout this section we let ^f denote the maximal ideal space
of L^il) with the w* topology. Let X be the space I x ^f x T with
the product topology, where T denotes the unit circle {zed \z\ = 1}
in the complex plane. Under the isometric map /—>/,

f(x,m,z) = f(x) + z f'(m),

£g*f* (I) is realised as a closed subspace of ^(X).1 Clearly, therefore,
all the extreme functionals in the unit ball of =Sf^*(/) are contained
in

{eiϊ]L{x,m,z): (x, m, z) e X}.

where Lx>m,z (/) - f(x) + zf(m) for all fe &>^ (I).

LEMMA 3.1. Every L{XQ}7nQfZQ) ( ( x 0 ) f f l J e i X y / x i ) is extreme in
the unit ball of J S ^ * ( I ) .

Proof. LXQ>mo>zO being a linear functional defined on a subspace of
C(X) can be extended with preservation of norm to the whole of
C(X) by the Hahn-Banach theorem. Since \\L{Xύ>mo,Zo) \\ - L{Xo>7fίQ,ZQ)

(1) = 1, we see t h a t L{XQ>mQ>ZQ) is represented by a nonnegative measure
μ on X and hence

f(Xo) + zof'(mo) = \ fdμ (1)

for all feStyil).
We recall that π: ^€—> I is the continuous projection defined by

π(m) = m(ί), where m is a multiplicative linear functional on L°°(I)
and £ is the identity mapping of / onto /. (See [3; page 171].) It
is easy to see that given any neighbourhood Nof π(m0) and any ε>0,
we can find a (^?1 function f such that

= 1, //(7r(m0)) -

and /i vanishes outside N.
It follows from (1) that

1 - ε ^ S (1 + ε) μ {{Nx ^//xT) (j (Ix π~L(N) x T))

As N tends to π(m0) and ε —> 0, we get

μ((π(mo)x^ex T) U (Ixτr-1(7r(m0)) x T)) = 1 ,

which means that the support of μ is concentrated on the set

ff denotes the Gelfand transform of //.
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(τr(m0) x ^ x J ) U (Ix π~ι(π(m,) x T).

Since we can choose the function ft defined above so that /i(π(m0)) = 0,
it follows by repeating the argument just given that

μ(Iχ π~ι{π{m,)) X T) = 1 (2) .

We now claim now that a ^ function /2 can be found such that

f2(x0) = 1, | | / 2 | U - l , //( ίτW) = 0 and

IΛO )̂ I < /2(#o) = 1 f° r all a; ̂  x0. This is seen as follows.
( i ) If π(mQ) = &of we simply let /2 be a < ^ 1 function which

peaks exactly at xQ; consequently; f2'(x0) = 0.
(ii) If π(m0) Φ xQ, we let /2 be a peaking ^ 1 function at xQ which

vanishes in a small neighbourhood of y0 that does not contain π(m0).
Hence, on using (2), we deduce that μ must be concentrated on

the "peak set" of f2, viz. x0 x π-ι{π{m0)) x T. Therefore, for all / ' e L°°(I).

2o/'(mo) = \ zf dμ
JP

where P denotes the set (x0 x π~ι(π(m^i) x T). Setting / ' = 1, we see
that support of μ is contained in xQ x π~1(π(m0)) x zQ whence it follows
that

/' W = ( f dμ.
Jp

This being true for all f'eLrQ) ( ^ ^ f O T ) ) , we finally conclude that
μ is the "point mass" at (xomozo). This completes the proof that
L(#o,mo,so) is extreme.

Following the pattern of argument of §2, we now prove

LEMMA 3.2. Γ(l) is the constant function eίθ, βe [ — π, π].

Proof. Since T* is also an isometry,

Γ* T — piv T
•LΊxymyz) — β •Ld(xι,mι,z1)

where 7] e [ — π, π]. We therefore have

for all (x, m, z) e X. This is clearly impossible unless (2Ί)' = 0 a.e.
which implies that Γl is a constant function of modulus one.

We may thus assume without loss of generality that Tl = 1.
Then, since T* L(βfWfβ) = L[XvmvZ]) ,

(a, m, «) -> fe, ml9 zt)
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is a homeomorphism of X onto itself. If τ denotes the image under
T of the identity map t of I onto itself then,

(*) τ(x) + z τ'(m) = xι + zx .

Now the points xλ + z1 as fe, ^) vary over all of IxT, describe the
region in the complex plane bounded by circles at centres 0 and 1,
each of unit radius, and their common tangents. It is clear that
τ(x) + zτ\m) can belong to this region only if

(We recall that | | r ' |U = | | τ ' | | c •)
Also, there must exist points (x'9 m\ zr), (x", m", z") in X such that

τ{x') + z'τ'(m') = - 1 , τ(x") + s"r '(m") = 2 .

Therefore,

\τ{x") - T{x')\ ^ 3 - |τ'(m") - r'(m')| ^ |

and this is possible only when x\ x" are end points of I and therefore
| τ ' | = 1 a.e. A moment's reflection will show that r (and hence τ')
τ Ξ ί or 1 - ί. Hence (*) says that either,
is real and hence we must have either τ ' = 1 or — 1 . Consequently,

xι-\- zγ = x + z

or,

$! + Si Ξ 1 — £ — Z .

We now claim that these relations imply x1 = x, z1 = z and xL =
1 — x, z1 = — z respectively. For, let x1 + zγ = a? + 2. Then Im ^ =
Im « and therefore, Re zι = Re 2 or-Re 2. But when Im 2 = 0, i.e.
when Re z — ± 1 we have Re ^ = Re z. Hence on the set Re z^O,
we have z1 = z and xί = x and therefore x1 = x, zγ = z everywhere.
The second case is treated similarly and this proves our claim.

Now we shall prove that for all fe ^ (/), Tf{x) = f(x) or
/ ( I — x) according as xx = x or x1 = 1 — x. Let us, for instance,
take the second case when xx = 1 — x and zL = z, the first case being
treated similarly. We have

(Tf) (x) + z(TfY(m) = /(I - ») ~ zf'(md

for all fe^φ^ (I). Since ^ ^ is totally disconnected, (see [3 ; page
170]) we see easily that if we fix m in the above equation, then mL

is also fixed in the sense that mx is independent of x and z. Hence
fixing x and m and varying z on T, we see that the right hand side
of the above equation represents a circle with centre at / ( I — x) and
the the left hand side a circle with centre at {Tf) (x), and since
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these circles are identical as sets, we can conclude that

(Tf) (x) = /(I - x) .

On summarising the above discussion, we get the following

THEOREM 3.3. All isometries T of -2^(7) are of the form

(Tf) (x) = eiθf(x)

or

(Tf) (x) = eiθf(l - x)

and conversely, θ e [—π, π].

REMARKS 1. If we let

) = {fe<Zf(I): Γ exists a.e., f'eLp(I)} ,

then p = 1 (resp. oo) gives the space S^^(I) (resp. ^ (I)). So
far as we know, the isometries of S^^v(l), 1 < p < oo, have never
been determined. One of the main difficulties seems to be in finding
a characterization, analogous to Lemma 2.1, of the extreme functionals
in the unit ball of the dual of

2. If X is any compact metric space with metric d, let

<χ*y> da(x, y)

and 4* (X, d«) = {/ e -S& (X, da): lim l/(^) ~ f(v) I = ol
' I x d(χ,i/)->o dα(α;, y) J

both provided with the norm

These spaces are Banach algebras under the norms just defined. (See
[6]). It would be interesting to know whether the results of §3 are
valid for these algebras, viz. whether all their isometries are induced
by the isometries of the metric space X. An affirmative answer
would not be surprising because this indeed is the case for the norm

(See [4] and [5]).

4 The algebra ^ ι (I). The norm is the same as that for
(I),
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Following what is by now a standard argument, we embed ^\I) as
a subspace of ^(IxIxT) in the obvious way and we can prove by
the methods of the last section that all the "point evaluations",

are extreme in the unit ball of (^(I))*, that for an isometry T of
^ ( I ) , T(ΐ) is a constant function of modulus one and futher that if

T* Lix>y,z) = L{Xι,yvZι) (assuming Γ(l) - 1) ,

then, either

xι ΞΞ x and zι == z

or

x1 Ξ 1 — x and z1 = — 2.

Assuming the second possibility, we therefore have

(Tf) (x) + z(TfY(y) = /fe) - s/'(y i), V/6 9f'(I) .

At this point, we have to proceed in a manner different from that
of §3 since the disconnectedness of ^f is not available for us to
conclude that as a function, yι is independent of x and z. But in fact
we can prove that in this instance, yx — 1 — y. Considering the
function f(χ) ~ x2, (x e I) and its image g under Γ, we have from the
above equation,

9(x) + ztfiy) = (1 - x)2 - 2zyt

and therefore

^ = α - *γ -

2/i being real-valued, this says that for fixed (x, y), y1 is a meromor-
phic function with real boundary values!

Hence g(x) = (1 — x)2 and we see that

y1 = 1 - y .

We can prove similarly t h a t yγ^ y when xx = a? and ^ Ξ 2.

Now we can proceed exactly as we did in the last section to

derive the following

THEOREM 4.1. Every isometry T of W\I) is of the form

(Tf) (x) = eiθf(x)
or

(Tf) (x) = e'o/il - x)

and conversely, θ e[ — π, π].
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5* Isometries under more general norms* We propose to show
now that the results of the preceding sections are valid for more
general norms on the spaces concerned. Our discussion will be brief
and we shall omit proofs since they are the same as before with
minor modifications. We restrict attention to -S^(/), the treatment
of the other spaces being similar.

It is well-known that in a topological vector space, there is a
one-one correspondence between semi-norms and convex, symmetric
neighbourhoods of the origin. Consequently, if K is a given convex,
symmetric neighbourhood of 0 in C2, there is a unique norm N
associated with it such that

K = {(zί9 z2) e C 2: N(z19 z2) ̂  1} .

We assume that K has the following additional properties:
( i ) if (a19 a2) e K then (eiθa19 eiφa2) e K for all θ, φ e [ — π, π] and

(ii) the intersection of K with the first quadrant of R2 is a
convex polytope, i.e. this intersection is a convex body with a finite
number of extreme points.

It is an easy exercise to prove that if K has the above properties
then the compact set K* associated with the conjugate norm N* on
C2,

K* = {(z19 z2): N*(z19 z2) £ 1}

inherits the same properties. We recall that

N*(z19 z2) — max {wfo + w2z2\ .
N[wvw2) SI

We will show that -S^(/) equipped with the norm

| | / | U = max N(f(x)J'(m))
(x,m) e Ix^/f

has only the isometries coming from the functions x and 1 — x on I.
We note that the norm

ll/ll = 11/11-+ II/ΊU
of §3 is a particular case of the above, the sets K and K* being

{(z19 z2) eC2: IsjJ + \z2\ ^ 1} and {(z19 z2): m a x d ^ l , \z2\) ^ 1} respectively,

and both these sets have the properties (i) and (ii) listed above.

Now,

N= max N{f{x)J'{m))
(x,m) e Ix^'

= max \aj{x) + α2/'(m)|
{x,m,aι,a2) e Ix^/fxK*

— max I sj(x) + tt zf'{m) \ (by properties (i) and
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where gi ^ 0, ̂  ^ 0 (i = 1, •%). Hence if we take w copies of
Ix^fxT, the i** copy being denoted by ( Z x ^ x Γ J i , and define /
on (Ix^fxT), by

f(x, m, z) = Si/ίa?) + tiZf'{m) ,

then the mapping / —> / clearly establishes an isometric isomorphism
between S^(I) with norm || |U a n d a subspace of

JSΓ= u

As before, we can prove,

LEMMA 5.1. T&e functional {eiη Lk

{x>m>z): ηe[—π,π],(x, m, z) e X}
aM extreme in the unit ball of Sέy*(I) and conversely, where for

fe J^(I),

L\w){f) = skf(x) + tkf'(m), (k = 1, , n) .

Because of property (ii) of K*, it cannot happen that the extreme
points of K * Π R2 all lie on the α -axis or that they all lie on the
y-Sixis. However, it may happen that some of them lie on the a -axis
while the remaining ones are on the y-axis. It will be seen that in
this case there are precisely four extreme points, symmetrically
situated with respect to the origin, and that the norm || ••• ||^ comes
from the set

K - {(zly z2) 6 C2: max ( |zj, \z2\) ̂  1}.

We already know (from [4] and [5]) that the isometries of -S^(I)
with this norm are induced by the functions x and 1 — x. We may
therefore assume that there is at least one pair (si9 U) with ^ > 0,
ti > 0. With this observation, one proves as before that Γ(l) is a
constant function, that T(t) is t or 1 — t and finally one derives the
following.

THEOREM 5.2. All the isometries of ^k(I) with the norm || | |^
are of the form

(Tf) (x) = eiOf{x)

or

(Tf) (x) = eiθf(l - x)

and conversely, θe[ — π, π].

REMARKS. 1. Although norms of the type described above form
a fairly large class, there are many others of an essentially different
nature for which Theorem 5.1 may or may not be true. For example,
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we may ask whether Theorem 5.1 is valid for the norm

ll/il = v Ί | / | | L + | | / Ί l ϊ . , (/

which comes from the set

K = { ( z 1 , z 2 ) e C > : \ z λ \ 2 + \ z 2 \ 2 ^ l } .

(Note that K does not have property (ii)).

2. It is not true, however, that Theorem 5.1 is true for all
norms equivalent to the norm used in §3. If we define, for xQ e J,

11/11, - max (\f(xo)\, | |/'|U), (f e Jφ(I)) ,

then || . \\ί is such a norm and it is easy to see that if x0 Φ 1/2 then
the transformation T defined on J£^(Γ) by (Tf)(x) = /(I - x) is not
an isometry. It is not hard to prove that for || ||i, all the isome-
tries of -S^(I) are induced by homeomorphisms of the maximal ideal
space ^£ of L~(/)

REFERENCES

1. M. Cambern, Isometries of certain Banach algebras, Studia Mathematica, 25 (1965),
217-225.
2. N. Dunford and J. Schwartz, Linear Operators (Part I), Inter since, New York,
1958.
3. K. Hoffman, Banach spaces of analytic Functions, Prentice-Hall, Inc. N.J., 1962.
4. T. M. Jenkins, Banach spaces of Lipschitz functions on an abstract metric space,
Ph.D. Thesis, Yale University, 1967.
5. A. K. Roy, Extreme points and Linear isometries of the Banach space of Lipschitz
functions, Canadian J. Math. 20 (1968). 1150-1164.
6. D. R. Sherbert, Banach algebras of Lipschitz functions, Pacific J. Math., 13 (1963)
1387-1399.

Received January 7, 1971.

TATA INSTITUTE OF FUNDAMENTAL RESEARCH

BOMBAY 5




