A REPRESENTATION FOR THE LOGARITHMIC DERIVATIVE OF A MEROMORPHIC FUNCTION

Morris Marden

A new representation is developed for the logarithmic

 derivative of a meromorphic function f in terms of its zeros and poles, using as parameters some of the critical points of f. Applications are made to locating all but a finite number of critical points of f.1. The principal result.

Theorem 1.1. Let f be a meromorphic function of finite order ρ possessing the finite zeros $a_{1}, a_{2}, a_{3}, \cdots$ and poles $b_{1}, b_{2}, b_{3}, \ldots$ Let $\zeta_{1}, \zeta_{2}, \cdots \cdot \zeta_{n}$, be any $n=[\rho]$ distinct zeros of the derivative f^{\prime} of f which are not also zeros of f. Then for $z \neq a_{j}, b_{j}(j=1,2,3, \cdots)$

$$
\begin{equation*}
\frac{f^{\prime}(z)}{f(z)}=\sum_{j=1}^{\infty} \frac{\psi(z)}{\psi\left(a_{j}\right)\left(z-a_{j}\right)}-\sum_{j=1}^{\infty} \frac{\psi(z)}{\psi\left(b_{j}\right)\left(z-b_{j}\right)} \tag{1.1}
\end{equation*}
$$

where $\psi(z)=1$ for $n=0$,

$$
\begin{equation*}
\psi(z)=\left(z-\zeta_{1}\right)\left(z-\zeta_{2}\right) \cdots\left(z-\zeta_{n}\right) \quad \text { for } n>0 \tag{1.2}
\end{equation*}
$$

In (1.1) the convergence is uniform on every compact set excluding all the α_{j} and b_{j}.

In the case that f is a rational function with m zeros and p poles, identity (1.1) reduces to the familiar formula

$$
f^{\prime}(z) / f(z)=\sum_{j=1}^{m}\left(z-a_{j}\right)^{-1}-\sum_{j=1}^{p}\left(z-b_{j}\right)^{-1} .
$$

Furthermore, if the second summation is omitted in (1.1), identity (1.1) reduces to one which we had previously obtained [See 1] for entire functions of finite order.
2. Proof. Being a meromorphic function, f can be written as a ratio of two entire functions, each of which has an Hadamard representation in terms of its zeros. Thus,

$$
\begin{equation*}
f(z)=z^{m} e^{P(z)} \prod_{j=1}^{\infty}\left[E\left(z / a_{j}, p\right) / E\left(z / b_{j}, q\right)\right] \tag{2.1}
\end{equation*}
$$

where m is an integer (positive, negative or zero); $P(z)$ is a polynomial of degree at most $n=[\rho] ; p$ and q are nonnegative integers not exceeding n and

$$
E(u, p)=(1-u) \exp \left[u+(1 / 2) u^{2}+\cdots+(1 / p) u^{p}\right]
$$

if $p>0$ whereas $E(u, 0)=(1-u)$. Taking the logarithmic derivative of (2.1) and simplifying, one finds that

$$
\begin{equation*}
\frac{f^{\prime}(z)}{f(z)}=\frac{m}{z}+P^{\prime}(z)+A(z)-B(z) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
A(z)=\sum_{j=1}^{\infty} \frac{z^{p}}{a_{\jmath}^{p}\left(z-\alpha_{j}\right)}, B(z)=\sum_{j=1}^{\infty} \frac{z^{q}}{b_{j}^{q}\left(z-b_{j}\right)} \tag{2.3}
\end{equation*}
$$

By hypothesis, $f^{\prime}\left(\zeta_{k}\right)=0, k=1,2, \cdots, n$. Hence, from (2.2), follows that for $k=1,2, \cdots, n$

$$
\begin{equation*}
P^{\prime}\left(\zeta_{k}\right)=-\left(m / \zeta_{k}\right)-A\left(\zeta_{k}\right)+B\left(\zeta_{k}\right) . \tag{2.4}
\end{equation*}
$$

Since $P^{\prime}(z)$ is a polynomial of degree at most $n-1$, it can be represented by the Lagrange Interpolation Formula as

$$
\frac{P^{\prime}(z)}{\psi^{\prime}(z)}=\sum_{k=1}^{n} \frac{P^{\prime}\left(\zeta_{k}\right)}{\psi^{\prime}\left(\zeta_{k}\right)\left(z-\zeta_{k}\right)} .
$$

Hence, using (2.3) and (2.4), one finds that

$$
\begin{align*}
\frac{P^{\prime}(z)}{\psi(z)}= & -\sum_{k=1}^{n} \frac{m}{\zeta_{k} \psi^{\prime}\left(\zeta_{k}\right)\left(z-\zeta_{k}\right)}-\sum_{k=1}^{n} \sum_{j=1}^{\infty} \frac{\zeta_{k}^{p}}{a_{j}^{p} \psi^{\prime}\left(\zeta_{k}\right)\left(z-\zeta_{k}\right)\left(\zeta_{k}-a_{j}\right)} \tag{2.5}\\
& +\sum_{k=1}^{n} \sum_{j=1}^{\infty} \frac{\zeta_{k}^{q}}{b_{j}^{q} \psi^{\prime}\left(\zeta_{k}\right)\left(z-\zeta_{k}\right)\left(\zeta_{k}-b_{j}\right)}
\end{align*}
$$

In view of the fact that sums $A(z)$ and $B(z)$ are uniformly and absolutely convergent on every compact set that omits all the α_{j} and b_{j}, the order of summation of the double sums in (2.5) can be reversed. Thus the first double sum in (2.5) becomes
(2.6) $\sum_{j=1}^{\infty} \frac{1}{a_{j}^{p}} \sum_{k=1}^{n} \frac{\zeta_{k}^{p}}{\psi^{\prime}\left(\zeta_{k}\right)\left(\zeta_{k}-a_{j}\right)\left(z-\zeta_{k}\right)}=\sum_{j=1}^{\infty} \frac{1}{a_{j}^{p}\left(z-a_{j}\right)}\left[\frac{S(z)}{\psi(z)}-\frac{S\left(a_{j}\right)}{\psi\left(a_{j}\right)}\right]$
where

$$
\begin{equation*}
S(z)=\psi(z) \sum_{k=1}^{n} \frac{\zeta_{k}^{p}}{\left(z-\zeta_{k}\right) \psi^{\prime}\left(\zeta_{k}\right)} . \tag{2.7}
\end{equation*}
$$

Since the polynomial $S(z)$ is of degree at most $n-1$ with $S\left(\zeta_{k}\right)=\zeta_{k}^{p}$, the polynomial

$$
\begin{equation*}
T(z)=S(z)-z^{p} \tag{2.8}
\end{equation*}
$$

is of degree at most n such that

$$
T\left(\zeta_{k}\right)=0, \quad \text { for } \quad k=1,2, \cdots, n
$$

Therefore $T(z)=c \psi(z)$, where c is a constant that may be zero. Accordingly,

$$
S(z)=z^{p}+c \psi(z)
$$

and the sum (2.6) becomes

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{z^{p}}{\psi(z) a_{j}^{p}\left(z-a_{j}\right)}-\sum_{j=1}^{\infty} \frac{1}{\psi\left(a_{j}\right)\left(z-a_{j}\right)} . \tag{2.9}
\end{equation*}
$$

Similarly the second double sum in (2.5) reduces to

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{z^{q}}{\psi(z) b_{j}^{p}\left(z-b_{j}\right)}-\sum_{j=1}^{\infty} \frac{1}{\psi\left(b_{j}\right)\left(z-b_{j}\right)} . \tag{2.10}
\end{equation*}
$$

Finally, on use of the Lagrange Interpolation Formula for $1 / \psi(z)$, the single sum in (2.5) becomes

$$
\begin{equation*}
\frac{m}{z} \sum_{k=1}^{n}\left[\frac{1}{\zeta_{k}}+\frac{1}{z-\zeta_{k}}\right] \frac{1}{\psi^{\prime}\left(\zeta_{k}\right)}=\frac{m}{z}\left[-\frac{1}{\psi(0)}+\frac{1}{\psi(z)}\right] \tag{2.11}
\end{equation*}
$$

Substituting from (2.9), (2.10) and (2.11) into (2.5), one reduces (2.2) to

$$
\begin{equation*}
\frac{f^{\prime}(z)}{f(z)}=\frac{m \psi(z)}{z \psi(0)}+\sum_{j=1}^{\infty} \frac{\psi(z)}{\psi\left(a_{j}\right)\left(z-a_{j}\right)}-\sum_{j=1}^{\infty} \frac{\psi(z)}{\psi\left(b_{j}\right)\left(z-b_{j}\right)} . \tag{2.12}
\end{equation*}
$$

However, the first term here may be dropped since it is obtainable from the first or second sum in (2.12) by allowing either $m a_{j}$ (if $m>0$) or $-m b_{j}$ (if $m<0$) to coalesce at 0 . Thus identity (1.1) has been established.
3. Location of critical points. An immediate consequence of Theorem 1.1 is the following:

Theorem 3.1. Let f be a meromorphic function of finite order ρ possessing the finite zeros $a_{1}, a_{2}, a_{3}, \cdots$ and poles $b_{1}, b_{2}, b_{3}, \cdots$ and let $\zeta_{0}, \zeta_{1}, \cdots, \zeta_{n}$, be any $n+1=[\rho]+1$ distinct critical points of f which are not also zeros of f. Then
(3.1) $\sum_{j=1}^{\infty} \frac{1}{\left(\zeta_{0}-a_{j}\right)\left(\zeta_{1}-a_{j}\right) \cdots\left(\zeta_{n}-a_{j}\right)}=\sum_{j=1}^{\infty} \frac{1}{\left(\zeta_{0}-b_{j}\right)\left(\zeta_{1}-b_{j}\right) \cdots\left(\zeta_{n}-b_{j}\right)}$.

Equation (3.1) follows from (1.1) on setting $z=\zeta_{0}$, writing out $\psi\left(a_{j}\right)$ according to (1.2) and cancelling the factor $\psi\left(\zeta_{0}\right) \neq 0$.

As an application of (3.1), the following will now be proved.

Theorem 3.2. Let D_{a} and D_{b} be two regions with which can be associated a set R of points ζ such that a ray from ζ to some point γ separates \bar{D}_{a} from \bar{D}_{b} and such that inequality

$$
0<\arg [(\gamma-\zeta) /(z-\zeta)]<\pi /(n+1)
$$

holds for all z in one of the regions D_{a}, D_{b} and inequality

$$
-\pi /(n+1)<\arg [\gamma-\zeta) /(z-\zeta)]<0
$$

holds for all z in the other region. Let f, a meromorphic function of finite order ρ, have all its zeros in D_{a} and all its poles in D_{b}. Then at most $n=[\rho]$ critical points of f lie in R.

Proof. If on the contrary $n+1$ distinct critical points $\zeta_{0}, \zeta_{1}, \cdots, \zeta_{n}$ were in R, identity (3.1) holds for them in relation to the zeros and poles of f. By hypothesis, one can associate with each ζ_{k}, a point γ_{k} such that for $j=1,2,3, \cdots$ the inequalities

$$
\begin{array}{ll}
0<\arg \frac{\gamma_{k}-\zeta_{k}}{a_{j}-\zeta_{k}}<\frac{\pi}{n+1} & (\bmod 2 \pi) \\
-\frac{\pi}{n+1}<\arg \frac{\gamma_{k}-\zeta_{k}}{b_{j}-\zeta_{k}}<0 & (\bmod 2 \pi) \tag{3.3}
\end{array}
$$

hold (or those with a_{j} and b_{j} interchanged).
Setting

$$
T(z)=\prod_{k=0}^{n}\left[\left(\gamma_{k}-\zeta_{k}\right) /\left(z-\zeta_{k}\right)\right]
$$

one infers that

$$
0<\arg T\left(a_{j}\right)<\pi, \quad-\pi<\arg T\left(b_{j}\right)<0
$$

for all j. This means that

$$
\begin{gathered}
0<\arg \sum_{j=1}^{\infty} T\left(a_{j}\right)<\pi, \\
-\pi<\arg \sum_{j=1}^{\infty} T\left(b_{j}\right)<0 .
\end{gathered}
$$

Consequently,

$$
\sum_{j=1}^{\infty} T\left(a_{j}\right) \neq \sum_{j=1}^{\infty} T\left(b_{j}\right)
$$

in contradiction to (3.1). Consequently, at most n distinct critical points ζ_{k} can lie on R, as was to be proved.

As an illustration, let f be a meromorphic function of order ρ,
$1 \leqq \rho<\infty$, and let

Figure 1

$$
\left.\left.\begin{array}{rl}
D_{a} & =\{z=x+i y: x>0,
\end{array} \quad 0 \leqq h<y<x \tan [\pi /(n+1)]\right\}, ~ \begin{array}{ll}
D_{b} & =\{z=x+i y: x>0,
\end{array} \quad-h>y>-x \tan [\pi /(n+1)]\right\} .
$$

Then, according to Theorem 3.2, at most n critical points of f lie in the region

$$
R=\{z=x+i y: x<0, \quad|y|<\min [h,|x| \tan [\pi /(n+1)]\}
$$

Remark. In identity (1.1) and the subsequent theorems, $f^{\prime}(z)$ may be replaced by the linear combination $f^{\prime}(z)+\lambda f(z)$ or more generally by

$$
F_{1}(z)=f^{\prime}(z)+f(z) g^{\prime}(z)
$$

where $g(z)$ is an arbitrary polynomial of degree at most n, provided $\zeta_{0}, \zeta_{1}, \zeta_{2}, \cdots \zeta_{n}$ are taken as the zeros of $F_{1}(z)$. This follows from the fact that the meromorphic function $F(z)=e^{g(z)} f(z)$ is also of order ρ, has the same zeros and poles as f and $F^{\prime}(z)=e^{g(z)} F_{1}(z)$.

Reference

1. M. Marden, Logarithmic derivative of entire function, Proc. Amer. Math. Soc., 27 (1971), 513-518.

Received October 23, 1970. Partially supported by NSF Grant No. GP-19615. Presented by title to American Mathematical Society, abstract.

University of Wisconsin-Milwaukee

