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A FAMILY OF
COUNTABLE HOMOGENEOUS GRAPHS

C. WARD HENSON

Let 3ίΓ be the class of all countable graphs and let
£ be the class of all members of ,9f which have no com-

plete subgraphs of cardinality p. R. Rado has constructed a
graph U which is universal for J2f. In this paper U is
shown to be homogeneous, in the sense of Fraissέ. Also a
simple construction is given of a graph Gp which is homo-
geneous and universal for ^%~v (for each p ^ 3) and the
structure of these graphs is investigated.

It is shown that if H is an infinite member of SίΓp then
H can be embedded in Gp in such a way that every auto-
morphism of H extends uniquely to an automorphism of Gp. A
similar result holds for U. Also, U and G3 have single-orbit
automorphisms, while if p > 3, then Gp has no such auto-
morphism. Finally, a result concerning vertex colorings of
the graphs GP is proved and used to give a new proof of a
Theorem of Folkman on vertex colorings of finite graphs.

1* A graph G is a relational structure which consists of a

nonempty set \G\ of vertices and an irreflexive, symmetric binary

relation R(G) on \G\. If A c | G | is nonempty, let G\A denote the

induced subgraph of G which has vertex set A. Write H c G to

mean t h a t H equals G\ A for some Aa\G\. An embedding of H

into G is an isomorphism of H onto an induced subgraph of G. If

such an embedding exists we say t h a t G admits H. If G and H are

isomorphic we write G ~ H.

The complement graph of G is denoted by G. Kp denotes a com-

plete graph with p vertices (p an integer ^ l ) For each ve\G\, Gυ

denotes the induced subgraph of G which has vertex set

{w\(w,v)eR(G)}.

(The valence subgraph determined by v.) The induced subgraph of G
obtained by removing a vertex v will be designated by G — v. The
cardinality of the vertex set \G\ will be denoted by c(G). Z denotes
the set of all the integers and N the set of nonnegative integers.

The study of homogeneous relational structures was begun by
Fraisse [4] as an attempt to generalize certain familiar properties of
the ordering of the rational numbers. This study was continued in
a very general setting by Jόnsson [6 and 7] and by Morley and
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Vaught [8]. The basic properties of homogeneous graphs needed in
this paper may be summarized as follows.

DEFINITION 1.1. A graph G is homogeneous if whenever H c G
and c{H) < c(G), every embedding of H into G can be extended to
an automorphism of G.

THEOREM 1.2. An infinite graph G is homogeneous < > whenever
HaG, c(H)<c(G) and ve \H\, every embedding of H—v into G can
be extended to an embedding of H into G.

THEOREM 1.3. Let G be an infinite homogeneous graph.
(a) Suppose c(H) = c(G) and G admits every graph K c H for

which c(K) < c(H). Then G admits H.
(b) // H is homogeneous, c(H) •= c(G) and G and H admit exactly

the same graphs of cardinality < c(G), then H = G.

In case G is a countably infinite graph, as will be true in this
paper, Definition 1.1 comes from [4]; in that case, Theorem 1.2 is
[4, Theorem 5.5] and Theorem 1.3 is [4, Theorems V and 5.4]. In
general, G is homogeneous in the sense of Definition 1.1 if and only
if G is J^T-homogeneous in the sense of [7] and [8], where J/Γ is
the class of all graphs; here Theorems 1.2 and 1.3 are included in
[8, Theorems 2.3 and 2.5]. (It should be noted that in [8], and in
model theory generally, " homogeneous " is used in a different, weaker
sense. This should cause no confusion here, since only the meaning
which agrees with [4] will be used.)

Rado's graph [9, 10] is universal among countable graphs by
virtue of satisfying the condition

(A) if Fl9 F2 are disjoint, finite sets of vertices of G, then there
is another vertex which is connected in G to every member of Fλ

and to no member of F2.

THEOREM 1.4. Any graph G (with c(G) = Vίo) which satisfies con-
dition (A) is homogeneous. Moreover, any two such graphs are iso-
morphic.

Proof. Rado [10] showed that any graph which satisfies (A)
must admit every finite graph. Thus the second statement follows
from the first by Theorem 1.3.b.

Let G be a graph which satisfies (A) and c(G) = ^ 0 We prove
that G is homogeneous by showing that it satisfies the condition in
Theorem 1.2. Suppose Ha G and c(H) < c(G), so that H is finite.
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Let ve\H\ and assume / is an embedding of H — v into G. Let
Fx = f(\Hv I) and F2 = Range(/) - F,. There is a vertex w in | G \
which is connected to every member of Fγ and to no member of F2.
It follows that letting f(v) = w extends / to an embedding of H into
G, completing the proof.

We will designate by U a graph (isomorphic to Rado's graph)
which is constructed as follows. Let {Pn\neN} be an enumeration
of the finite subsets of N, each one occurring infinitely often. Choose
a sequence v0 < v, < in N which satisfies vn > max(PJ for all
neN. To define U let | U\ = N and let R{U) consist of all pairs
of vertices of the form (w, vn) or (vn, w) where w e Pn and ne N.
Then U satisfies the following strong form of (A).

(A') if Fa I U\ is finite, then there exist arbitrarily large v in
I U! which satisfy

F = {w I w < v and (w, v) e R(U)} .

In particular, U satisfies (A) and is thus isomorphic to Rado's graph,
by Theorem 1.4. (Note that Rado's graph itself does not satisfy (A').)

REMARK. In [2] Erdδs and Renyi put a natural probability
measure on the set of all graphs with vertex set N, and show that
the measure of the set of such graphs which satisfy condition (A) is
1. They conclude from this that almost all graphs with vertex set
N have a nontrivial automorphism. In fact the stronger result, that
almost all such graphs are isomorphic to U, follows from Theorem
1.4.

COROLLARY 1.5. (a) U= U

( b ) if I U I = Ax U U An and A19 , An are pairwise dis-

joint, then U\A~U for some j = 1, , n.

Proof, (a) U obviously satisfies condition (A).
(b) It suffices to consider the case n = 2.

Suppose \U\ = A\J A' and Af} A' = 0 , and assume that neither
UIA nor U \Af is isomorphic to U. Then there exist disjoint,
finite subsets F19 F2 of A and i*V, F2' of A! which satisfy: ( i ) if v
is connected in U to every member of F1 and to no member of F2,
then veA, and (ii) if v is connected in U to every member of Fl
and to no member of F2', then v$A'. But F, (J Fl and F2 \J F2 are
disjoint, so there is a vertex v which is connected in U to every
member of Fλ (J Fl and to no member of F2 (J F2. This implies that
vgA\JA\ which is a contradiction.

It follows immediately from Theorem 1.5 that if ^4c |Z7 | and



72 C. WARD HENSON

I UI — A is finite, then U\A= U. Also, using l.δ.a and the vertex
symmetry of U we note that Uv ~ (U)v, for any ve\U\. Then since
I Uv I and | (U)υ | form a partition of \U - v\ it follows that Uv = U
for every ve\U\.

Recall that two graphs H19 H2 with the same vertex set are cal-
led edge disjoint if R{H^ Π R(H2) = 0 If ^~ is a family of graphs
with a common vertex set A, then the union of ^ is the graph
whose vertex set is A and whose edge relation is \J {R(H)\He%βr}.
A spanning subgraph of G is a graph i ί which satisfies | H \ = \ G
and R(H)aR(G).

THEOREM 1.6. There is a family {H{ \ i e N} of pairwise edge dis-
joint graphs (all with vertex set N) such that if \G\ = N, R(Hi)aR(G)
and R(Hj) f) R(G) = 0 (for some i, j e N) then G ~ U.

Proof. Let {(Pn, Qn, fin), g{n)) \ ne N} be an enumeration of all
quadruples (A> B> i, j) in which A, B are disjoint, finite subsets of
N and i, j e N. Let v0 < v1 < be a sequence in N such that
vn > max (Pn U Qn) for all n e N. Define ί/ί, for each i e N, by letting
I Hi I = N and letting i2(i?i) consist of all pairs of vertices (w, vn) and
(vnf w) such that f{n) = i and wePn or #(w) = i and ^ e Q%.

Suppose I G \ = N and, for some ί, j e N, G satisfies R{H%) c R{G)
and jRίiί,) f| Λ(G) = 0 . Let F x , F2 be disjoint, finite subsets of \G\.
Choose n so that Pn = ί\, QΛ = F 2, /(n) = i and g(n) = j . Then vn is
connected in ^ (and thus in G) to every member of ί^. Also vn is
connected in H3 (and thus not in G) to every member of F2. This
shows that G satisfies condition (A) and therefore G is isomorphic to U.

In particular, Theorem 1.6 asserts that the union of the family
{Hi I i > 0} is isomorphic to U. Thus there exists a family {G{ \ i e N}
of pairwise edge disjoint spanning subgraphs of U which satisfies ( i)
the union of the family is U, and (ii) if G is any spanning subgraph
of U such that R(Gi)czR(G), for some ieiSΓ, then G = U.

Recall that a (one-way) Hamiltonian path for a graph G (with
c(G) = V̂ o) is a bijection τ from N onto | G | such that for each n,
τ(n) and τ(n + 1) are connected in G. The path τ will be called
totally symmetric if the function sending τ(n) to r(w + 1) (each ne N)
is an embedding of G into itself.

THEOREM 1.7. Tλere ea?iste a totally symmetric, one-way Hamil-
tonian path for U.

Proof. Let {Pn \ne N} be an enumeration of all finite subsets of
N, with the properties:
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( i ) Pn a {0, •••,%} for each ne N, and (ii) each finite subset of N
occurs in the list {Pn \ne N} infinitely often. For ne N define

2

so that α0 = 2 and αΛ+1 = αΛ + n + 1. Construct a chain
of finite subsets of JV - {0} by letting Qo = {1} and (for n ^ 0)

If ί e P , then 0 g & g w so that

an + 1 = απ + 1 - w ^ αn + 1 - k ^ αn + 1 .

It follows, by induction on n, that Qft c {0, •••, α j and

Q«+i - QΛ c {αn + 1, , an+1} .

Now let A = U {Q% | n e N} and construct a graph G with | G | =
N and J?(G) = {(m, n)\ \m — n\e A}. Since 1 e A, it is obvious that G
has a totally symmetric (one-way) Hamiltonian path. Thus it sufficies
to prove that G satisfies condition (A), so that U ~ G.

If Flt F2 are disjoint, finite subsets of N, we may choose n large
enough so that Pn = Fλ and Fx \J F2 a {0, , n}. For each 0 ^ A; ̂  ^
the construction of Qn+1 insures that

an+1 - keQn+1< >keF1 .

But since AC\{0, , αn+1} = QΛ+1, it follows that

α Λ + 1 — A; e A < > ke F1 .

Thus αΛ+1 is connected in G to every member of Fι and to no member
of F2. That is, G satisfies condition (A) and the proof is complete.

REMARK. Let Z be the set of all the integers and A the set
constructed in the proof of Theorem 1.7. Define a graph H with
I HI = Z by letting

Λ(iϊ) = {(α, 6) I α, 6 G Z and 1 α - δ | e A} .

Evidently the functions /, sending α to a + 1, and g, sending a to -α,
are automorphisms of H. Moreover, since l e i , the identity function
from Z to I H \ defines a two-way Hamiltonian path for H. Finally,
if F19 F2 are disjoint, finite subsets of |if|, choose k large enough so
that fk{F1 U F2) c N, and let beN be connected in H to every
member of fk{Fι) and to no member of fk(F2). (Choose b using the
fact that H\N~U1 as proved above.) Then f~k(b) is connected in
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H to every vertex in Fx and to no vertex in F2. That is, H satisfies
condition (A) and is thus isomorphic to U.

This may be summarized by stating that U has a totally sym-
metric, two-way Hamiltonian path. In particular, note that U has an
automorphism with a single orbit.

2* This section is devoted to a family {Gp | p ^ 3} of induced
subgraphs of U, defined by letting

Gp\ = {m\me N and there is no finite set AaN

with m = max A and U | A = jKp} ,

for each integer p ^ 3. It follows that Gp c Gp+1 c Ϊ7(p :> 3). and
that U is the union of the chain of graphs {Gp | p >̂ 3}. In addition,
Gp satisfies the following condition, analogous to (A).
(Ap) ( i ) G does not admit iΓ̂ ,,

(ii) if F19 F2 are disjoint, finite sets of vertices of G and G | ί\
does not admit i^-L, then there is another vertex which is con-
nected in G to every member of Ft and to no member of F2.

LEMMA 2.1. For each p ^ 3, G^ satisfies condition (Ap).

Proof. I t is obvious t h a t Gp satisfies ( i ) . Suppose Fίy F2 are
disjoint, finite subsets of \GP\ and t h a t Gp \ Fx does not admit Kp_ .
Since U satisfies (A') we may choose ve\U\ which satisfies v > max
(Fx U F2) and

F, = {w\w <v and (w, v) e R{U)} .

It suffices to observe that U\Fι — GP\FX dose not admit Kp_x and
therefore ve\Gp\.

LEMMA 2.2. Lei p Ξ> 3 α^d assume that G satisfies condition (Ap).
Suppose also that H is a finite graph which does not admit Kpy ve\H\
and f is an embedding ofH—v into G. Then f can be extended to
an embedding of H into G.

THEOREM 2.3. For each p Ξ> 3, Gp is homogeneous, and admits
exactly those finite graphs which do not admit Kp. Moreover, any
graph G (with c(G) = y$0) which satisfies condition (Ap) is isomorphic
to Gp.

Proof. Using Lemma 2.2, it can be shown by induction on c(H)
that if G satisfies (Ap) and H is a finite graph which does not admit
Kp, then G admits H. That is, any graph which satisfies (Ap) admits
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exactly those finite graphs which do not admit Kp.

It follows by Theorem 1.2 that if c(G) = ^ 0 and G satisfies (Ap)
then G is homogeneous. (In particular, by Lemma 2.1, Gp is homo-
geneous.) Finally, by Theorem 1.3.b, any such G is isomorphic to Gp.

The following result is an immediate consequence of Theorem 1.3.a

and Theorem 2.3, and answers a question raised (for p — 3) by Erdδs

and Hajnal [3, p. 121].

COROLLARY 2.4. For each p ^ 3, Gp is a universal graph in the

class of countable graphs which do not admit Kp.

COROLLARY 2.5. Let p >̂ 3.

(a) If A c I Gp I a n d \Gn\ — A is finite, t h e n GP\A~ Gp

( b ) If ve I Gp+ι! then (Gp+ι)
v = Gp.

Proof, (a) If i*\, F2 are disjoint, finite subsets of A and GP\F1

does not admit JKί,_1, then there are, in fact, infinitely many vertices

in \GP\ which are connected to every member of Fι and to no

member of F2. Since \GP\ — A is finite, this shows that Gp \ A satis-

fies (AP).

(b) Suppose H is a finite graph satisfying Ha (Gp.hι)
v and sup-

pose that / is an embedding of H into (Gp+])
v. Since Gp+1 is homo-

geneous, there is an automorphism g of G>fl such that g extends /

and g(v) = v. Thus g determines an automorphism of (Gp^)v which

extends /. This shows that (Gp+1)
v is homogeneous. The fact that

(GP+1Y and Gp are isomorphic follows from Theorems 1.3.b and 2.3

and the observation that (Gp+1)
υ admits a finite graph H if and only

if Gp-i admits the graph obtained from H by adding a new vertex

connected to every member of \H\.

Note that for each v e | Gz \ the graph (Gz)
v is infinite, with no

two vertices connected.

The analogue of Corollary l.δ.b for Gp is false, as can be seen

by considering the partition of \GP\ determined by | (Gp)
v \ and its

complement. (Also see § 4.)

If H is a spanning subgraph of Gp (p >̂ 3) and HΦ GPJ then H

cannot be isomorphic to Gp. For there must be vertices α, b in [ Gp \

which are connected in Gp but not in H. If H ~ Gp then there exists

A c I Gp ί so that H \ A U {a} and H \ A U {b} are isomorphic to Kp^.

But this would imply that Gp \ A U {α, 6} ~ iΓp, which is impossible.
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In particular, the analogue for Gp of Theorem 1.6 is false.
Corresponding to Theorem 1.7 are the following two results.

THEOREM 2.6 There exists a totally symmetric (one-way) Hamil-
tonian path for G>

Proof. Let the sequence {Pn \ n e N} be as in the proof of Theorem
1.7, and construct a chain QQ a Q, a of finite subsets of JV-{0} as
follows. Let Qo = {1}; for n^O, if there exist α, bePn so that
0 < I a — b I G Qn, then let Qn+1 = Qn. Otherwise let

Qn+ί = Qn ( J { 3 * + 1 - k I kePn}.

Recalling that Pn c {0, , n], it follows that Qn c {0, , 3"} and
Qn+1 - Qn c {3W + 1, , 3W+1}. Let A = U {Q% | n e N} and construct a
graph G, as in the proof of Theorem 1.7, by letting | G \ = N and

R(G) = {(m, %) I I m - ^ | e A] .

As before, it suffices to prove that this graph satisfies condition (A3).
Suppose that F^ F2 are disjoint, finite subsets of 1 G \ and that

GI ί7! does not admit K2. That is, if α, b e 2^ and α ̂  6 then
1 α — b I £ A. Choose n large enough so that Pn = î Ί and

Since Qw c A there do not exist a, be Pn with 0 < | α — 6 | e Qn. Thus
if 0 ^ A ̂  ^ then Zn+ι - f e e QΛ+1 — kePn. It follows that 3% L is con-
nected in G to every member of F1 and to no member of F2.

Suppose next that G admits K3. It follows that there exist
0 < a < b such that G \ {0, a, b} = iΓ3. That is, α, 6 and δ — a are in
A. Let n be the smallest integer for which a e Qw If 6 e Qw then
n^l, and α, be Qn — Qn^ (since α < 6.) But then a = 3n — c and
6 z= Sn — d, for some c, de Pn-^ Moreover c — d = b — ae A and

0^d<c^n — 1 so that | c — d | G Qn_i, contradicting the definition
of Qn. Therefore &£ Qn, and there exists k^ n such that δe Qk- rl — Qk*
If b — ae Qk+1 — Qk we obtain a contradiction as above, by considering
c, d e P , with 6 - 3*+1 - c and 6 - a = 3fc+1 - d.

Since b — a < be Qk+1 and 6 — αe A, it follows that b — a must
be in Qk. Thus α and b — a are both ^ 3fc and therefore

b ^ 2 3fc < 3fc+1 - A; .

But since δ e Qk+1 — Qk, which implies that 3*+1 — k ^b ^ 3I:~\ this is
a contradiction. That is, G does not admit K3.

This shows that G satisfies the condition (A3) and therefore G is
isomorphic to G3, completing the proof.
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As in the Remark following Theorem 1.7, it can be shown that G3

has a totally symmetric, two-way Hamiltonian path. In particular,
G3 has an automorphism with a single orbit. In contrast, for the
graphs Gp with p >̂ 4 we have the following result.

THEOREM 2.7. If p ;> 4, ίfcew ίfeerβ is πo automorphism of Gp

with a single orbit.

Proof. If otherwise, we can construct a graph G with an auto-
morphism / such that G = G>, \G\ = Z and /(α) = α + 1 for all α e ^ .
We let

A - {α|(α, 0)eR(G)} .

It then follows that

= {(a,b)\ | α - δ | e A } .

Since Gp admits Kp_2, there exist aL < < αp__2 in | G | so that
G I {α15 , αp_2} = i^_2. That is, if 1^i<j ^p-2 then αy — aζeA.
Since G satisfies condition (Ap) there exists α e | G | which is connected
in G to 0 but is not connected to any of the vertices a{ — αy (where
i Φ j) and is distinct from them.

If a{ is connected in G to aά + a, so that | α̂  + α — a{ \ is in A,
it follows that a is connected to α̂  — %. Thus i = j . (Conversely,
I α I G A, so that a{ is connected to a{ + α.) If we let

B = {αx, , αp_2, αL + α, , αp_2 + α} ,

it follows that G | B admits Kp^2 but not iΓ3)_1 (recall that p ^ 4).
Thus there exists a vertex & which is connected in G to every
member of B.

Consider C — {0, α, k — aly , k — ap-2} If i ^ j then

I (ft - a%) - (k - α, ) I = | a, - a3- \ e A ,

so that

G\{k - aly , ft - αp_2} ^ iΓ^, .

By the choice of ft, | ft — a{ \ e A and \k — a{ — a\e A. Thus each
ft — α, is connected in G to 0 and to a. Since α is connected to 0 in
G by choice, it follows that G\ C ~ Kp. This contradicts the fact
that G = Gp, and completes the proof.

REMARK. It is easy to show that if G is a homogeneous
graph, then so is G. Thus the graphs Gp are all homogeneous, and
evidently distinct from the graphs U and Gp (p ^ 3.) If G is a homo-
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geneous graph, but not connected, the components of G must be
complete (consider the induced subgraphs with two vertices which are
not connected) and pairwise isomorphic (since G is vertex symmetric.)
It is an interesting and apparently open question if there are any
homogeneous graphs G (with c(G) = ^ 0 ) which have G and G con-
nected, other than U, Gp and Gp (p >̂ 3.)

The existence of the graphs Gp may be approached indirectly,
by noting that the class .%£ of all graphs which do not admit Kv

satisfies the amalgamation property of [7] (property D in [4].) Thus,
in the language of [7], Gp is the J^-homogeneous universal structure
of cardinality ^ 0

3* This section is concerned with the problem of embedding an
infinite graph H in U (or in one of the graphs Gp) in such a way
that automorphisms of H extend to automorphisms of U (Gp.) In ad-
dition it is shown that each of these graphs has a maximal inde-
pendent set M whose permutations all extend uniquely to automor-
phisms.

THEOREM 3.1. Let H be a graph with c(H) = y$0 There exists
an embedding of H onto an induced subgraph H' c U such that each
automorphim of H' extends uniquely to an automorphism of U.

Proof. Let nx < n2 < be an increasing sequence of positive
integers. Construct a chain of graphs Ho c H1 c H2 c by letting
Ho = H and continuing as follows. For k ^ 1 obtain | Hk | by adding
to I Hk^11 a new vertex v(A, k) for each finite set A c | iίA._11 such
that A Γ\\ HQ\ has exactly nk elements. Each new vertex v(A, k) is
connected in Hk to the vertices in A and to no others. (Recall that
Hk^ c Hk is also required.) Define K to be the union of the chain
{Hk\k ^ 0} so that HkaK for each k ^ 0 and, in particular, HczK.

If JP1? F2 are disjoint, finite subsets of \K\, choose k large enough
so that Fγ U F2 c | Hk_L | and F^ΓWH^l has at most nk elements.
Since \ Ho\ is infinite there is a set B a\ HQ\ such that B f) F2 = 0 ,
F1f\\H0\c:B and B has exactly nk elements. Letting A = Fλ \J B,
it follows that v(A, k) is a vertex in Hk which is connected in Hk

(and thus in K) to every vertex in ί\ and to no vertex in F2. This
shows that K satisfies condition (A). Since only countably many
vertices are added at each stage of the construction of K, it follows
that K ~ U.

Any automorphism / of Hk_γ which satisfies /( |J? 0 | ) = \HQ\ can
be extended to an automorphism of Hk by setting f(v(A, k) =
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v(f(A), k) (for each new vertex.) Moreover, since f(v(A, k)) must be
connected in Hk to the vertices in f(A) and no others, this is the
only possible way to extend such an /. Therefore, each automorphism
of Ho can be extended to an automorphism of K, and this extension
is unique among automorphism of K which leave each set | Hk | in-
variant (k > 0.)

But the members of \Hk\ are distinguished, among vertices of
K, by virtue of being in \HQ\ or being connected in K to at most
nk elements of | i J 0 | Thus any automorphism of K which leaves |ifo|
invariant must also leave | Hk | invariant, for each k > 0. That is,
each automorphism of H{~H<) has a unique extension to an auto-
morphism of K = U, completing the proof.

COROLLARY 3.2. There is a maximal independent set of vertices
M c I U I such that every permutation of M extends uniquely to an
automorphism of U.

Proof. Let H be a graph with y$0 vertices, no two connected,
and carry out the construction in the proof of Theorem 3.1. Set
M — I H' I c I 27 I and note that every permutation of the set M is
an automorphism of if', and thus extends uniquely to an automor-
phism of U. Since nk > 0 (for k Ξ> 1) each vertex in \K\ — \H\ is
connected to at least one member of \H\ in K. It follows that M
is a maximal independent set of vertices in | U | as desired.

To extend Theorem 3.1 to the homogeneous graphs Gp requires a
modification of the construction given above. Fix p ^ 3 and let H be
any graph, with c(H) — ^ 0 , which does not admit Kp. Construct a
chain {Hk | k ^ 0} by letting Ho = H and proceeding as above, except
that v(A, k) is a vertex in \Hk\ — \ H^ | only when Af\\H0\ has
nk elements and Hk^\A does not admit Kp_}. (A any finite subset of

JEJΓΛ —I I, k ^ 1.) Letting K be the union of the chain {ffj, it is easy
to see that the restriction on adding new vertices at each stage in-
sures that K does not admit Kp. Moreover, the same argument as
above shows that each automorphism of H(= iJ0) extends uniquely to
an automorphism of K.

It is not always true, however, that K satisfies condition (Ap).
This difficulty can be overcome if we assume that H satisfies

(B) if Fιd\ H\ is finite, then there exists an infinite independ-
ent set A c IHI — Fx such that no vertex in Fx is connected in H
to any vertex in A.

Assume now that H satisfies (B) and let F19 F2 be disjoint, finite
subsets of I K \ such that K \ F, does not admit Kp^. Choose k large
enough so that F] \J F2 c | Hk^ \ and FιC[\HQ\ has at most nk elements.
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Let F3d\H0\ consist of Fλ Π I Ho | together with every vertex in \H0\
which is connected to some member of F1 — \H0\. Since F1 is finite
and each vertex in | K | — | Ho | is connected to only finitely many mem-
bers of I JHΌ l> it follows that Fz is a finite set. Applying condition (B),
there exists an infinite independent set A' in Ho such that A! Π F* = 0
and no vertex in Fz is connected in HQ to any vertex in A''. In par-
ticular, K\Fι\J A' does not admit Kp^. Since A! is infinite, we may
choose a set B c ^ U A ^ Π I-Ho I such that Bf\F2 = 0 , jF\n IflolcB
and B has exactly nk elements. Letting A = Fλ \J B, it follows that
K IA does not admit Kp_γ and A Π I Ho \ = B has nk elements. Thus
v(A, k) is a vertex in K which is connected to every member of Fλ

and to no member of F2. That is, K satisfies condition (Ap) whenever
H satisfies condition (B).

THEOREM 3.3. Let p >̂ 3 and suppose H is a graph with c(H) =
ŷ 0 which does not admit Kp. Then there is an embedding of H onto
an induced subgraph Hf a Gp such that each automorphism of ίΓ ex-
tends uniquely to an automorphism of Gp.

Proof. If H satisfies (B) then the proof has been given above.
Otherwise, extend H to a graph H" by adding a vertex v" for each
ve\H\y connecting v" only to v in H". Then HaH" and H" clearly
does not admit Kp. If F1 is a finite subset of | H" \ then letting
A = {v" \ve\H\-Fι}~F1 shows that H" satisfies condition (B). Finally,
note that each automorphism / of H extends uniquely to an auto-
morphism of H" (by setting f(v") = (f(v)".) The desired embedding
of H into Gp is thus obtained by restricting to H an appropriate
embedding of H" into Gp.

COROLLARY 3.4. For each p ^ 3 there exists a maximal inde-
pendent set of vertices Ma\Gp\ such that every permutation of M
extends uniquely to an automorphism of Gp.

Proof. Prooceed as in the proof of Corollary 3.2, noting that the
graph H with y$0 vertices, no two connected, satisfies condition (B).

THEOREM 3.5. Let G be U or Gp for some p^Z and let

a19 , ane \G \ .

There is an automorphism f of G which has aiy , an as its only

fixed points.

Proof. Let H' be G\{a19 •••, an}. Obtain H from H' by adding
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a set C — {vn I n e Z) of new vertices, but without adding any new
edges. Obviously H can be embedded in G and H satisfies (B). Let
c(Hf) <nλ<n2< and using the sequence {nk} carry out the ap-
propriate construction (as in the proof of Theorem 3.1 or Theorem 3.3.)
We obtain a graph K which is isomorphic to G and satisfies HaK.
Moreover, K has an automorphism / which satisfies f(v) = v(iϊ v is
one of a19 •••, αn) and f(vn) = vn+1 (if neZ). If v = v(A, k) is any
member of |ϋΓ| — \H\, suppose f(v) — v. It follows that f{A) — A,
and hence that f(A Π I H |) = A fl IH |. Now A Π IH | has nk> c{H')
elements, so that Af) C Φ 0 . Moreover, f(A Π C) = A Π C, which
implies that A z> C, contradicting the fact that A is a finite set. Thus
/ has no fixed points in | K | — \H\ and therefore has only a19 , an

as fixed points. Finally note that there is an isomorphism g of K
onto G so that g(v) = v if i;e{α!, •••, αn}. The automorphism gofog-1

of G has as its fixed points only αx, , αΛ, and is therefore the desired
function.

4* It is well known that there are finite graphs of arbitrarily
large chromatic number which do not admit K%(eg. [1].) Thus for each
p >̂ 3 the graph Gp has chromatic number ^ 0 . This may be expressed
by saying that if \GP\ = A1 (J \J An then for some j = 1, , n
Gp I Aj admits K2. The results of this section amount to a streng-
thening of this fact.

THEOREM 4.1. Let p >̂ 3 αraί suppose \GP\ = At\J A2. Then

either there exists Be: A1 such that Ax — B is finite and GP\B ~ Gp

or Gp I A2 admits every finite graph which does not admit Kp.

Proof. Let Aly A2 be as above for Gp and suppose that the
desired set B does not exist. Construct a sequence {(Cn, Dn) \n^l},
where Cn, Dn are disjoint, finite subsets of Aι (for each n ^ 1) as
follows. Since Gp \ Aι is not isomorphic to Gp, it fails to satisfy con-
dition (Ap). Thus there exist disjoint, finite subsets (CΊ, D) of Ax

such that Gp | CL does not admit Kp^ and every vertex in \GP\ which
is connected to every member of Cι and to no member of Όγ lies in
-A..

Assuming that (CL, A), , (Cn, Dn) have been constructed, let
En = U {Cί U A l i = 1, , n} so that En is a finite subset of Λ
Since Gp\Aι — En is not isomorphic to Gp there exist disjoint, finite
subsets (CΛ+1, DΛ+1) of Ax - J^n such that Gp \ Cn+1 does not admit Kp^
and every vertex in \GP\ which is connected to every member of Cn+1

and to no member of Dn+1 lies in A2 \J En.
Now let H be any finite graph which does not admit Kp and
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suppose I H | = {a19 , αΛ}. For convenience assume that \H\Γ\\GP\ ~
0 . Construct a graph G with vertex set | G | = | H\ \J En so that
G\(\H\) = H, G\En = Gp\En and each α, in | J ϊ | is connected in G to
every element of Cό and to no element of En — Ĉ  . If G\F ~ Kp,
then F Π I H\ Φ 0 and Ff\EnΦ 0 . Since each vertex in En is
connected in G to at most one member of \H\ it follows that

FΓ\\H\ = {aj} (for some j = 1, , n) and ί 7 f| K c Cy .

That is, G\C3 (= Gp\Cj) admits Kp^, which is a contradiction.
Therefore G does not admit Kp.

Since Gp is homogeneous, there is an embedding / of G into Gp

such that f{v) = v for each v e En. Therefore f{a5) $ En(ϊor each j =
1, •••,?&) and /(%) is connected in Gp to every vertex in C3- and to
no vertex in D3. By the construction of (Cjf Do) it follows that
f{a5) e A2. That is, / maps H into Gp \ A2, showing that Gp \ A2

admits every finite graph which does not admit Kp.

COROLLARY 4.2. Let p^S and suppose that \ Gp \ = Λ U β

Then for some j = 1, , n the graph Gp \ Aj admits every finite graph

which does not admit Kp.

Proof. By induction on n, using Theorem 4.1.

We raise the question of whether or not the conclusion of Corol-
lary 4.2 can be strengthened to read: "Gp\Aά admits Gp, for some

COROLLARY 4.2 is equivalent to the following result of Folkman
[5] concerning finite graphs, which he proved by entirely different
methods.

COROLLARY 4.3. (Folkman) Let p ^ 3, n^2 and suppose G is
any finite graph which does not admit Kp. There exists a finite graph
H, which also does not admit Kp, such that if | H \ — AL \J JJ An,
then for some j — 1, , n, H\ Aj admits G.

The proof of this equivalence is a standard application of (for
example) Konig's Infinity Lemma, as in the proof of the Erdos-de
Bruijn Theorem which states that an infinite graph G has chromatic
number ^ k if and only if it has a finite induced subgraph with
chromatic number ^ k(keN). Thus the details will be omitted.

F. Galvin has raised the question of whether or not an "edge
coloring" version of Corollary 4.3 holds when p = 3. (See [3] for a
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discussion of this and related problems.) It seems possible that
further investigation of G3 might shed some light on this problem.

The author is indebted to Fred Galvin for his useful comments
on an earlier version of this paper.
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