
PACIFIC JOURNAL OF MATHEMATICS
Vol. 38, No. 1, 1971

ON THE LIMITING DISTRIBUTION OF ADDITIVE
FUNCTIONS (MOD 1)

P. D. T. A. ELLIOTT

A function f(ri), defined on the positive rational integers,
is said to be additive if and only if for every pair of coprime
integers a and b the relation

is satisfied. Thus an additive function is determined by its
values on those integers which are prime powers. In an
extensive paper Erdos raised the question of characterising
those real valued additive functions which have a limiting
distribution (mod 1).

It is our present purpose to give such a characterisation.

He proved, in particular, that an additive function f(n) is certain-
ly uniformly distributed in the sense of Weyl if f(p) —> 0 as p—^co,
and if the series

Σ Γ(P)

P

diverges.

For the remainder of this paper we understand a distribution
function F(z) (mod 1), or more shortly a distribution function, to
have the properties

( i ) F(z) is increasing in the wide sense
(ii) F(z) — F(z + ) for all values of z, that is F(z) is right

continuous.
(iii) F(z) = 0 if z < 0, and = 1 if z ^ 1.

We say that a sequence of distribution functions FJz), n = 1, 2,
has a limiting distribution {mod 1) if and only if there exists a
function F(z), satisfying the above three conditions, so that at every
pair of points of continuity (a, β) of F(z), 0 < a < β < 1, we have

FM ~ Fn(a) - (F(β) - F(eή) , (n -> - ) ..

We notice that in the range 0 < z < 1 any such limiting distribution
F(z) is determined only up to an additive constant. When the func-
tion F(z) is

49



50 P. D. T. A. ELLIOTT

this definition coincides with WeyΓs definition [7] of uniform distribu-
tion (mod 1).

We shall say that the sequence of real numbers xl9 x2, has a
limiting distribution (mod 1) if and only if the sequence of distribution
functions defined by

Fn(z) = n-1 Σ 1 , n = 1, 2,
xjgz (mod l)

for 0 ΐg z < 1, and extended in the obvious way outside this interval,
have a limiting distribution in the above sense.

In what follows, for each real number a we denote by {a} the
fractional part of a, that is the least positive representative of the
residue class α(mod 1); and by | |α' | | the distance of a from the
nearest integer. Thus we have

we shall also have occasion to use the function

Sign y =

1 if y > 0 ,

0 if y = 0 ,

N - l if y<0.

With these definitions, and the above meaning of limiting
distribution, we can now state:

THEOREM 1. A real valued additive number theoretic function
f(n) has a limiting distribution (mod 1) if and only if for each
integer v one of the following three conditions is satisfied:

( i ) For each real value of t the series

is divergent*
(ii) For each positive integer r, vf(2r) is half an odd rational

integer.

(iii) Both of the series

Σ P-ΊIvf(P)\\\ Σ V~ι \\vf{v)\\ Sign (1 - {vf(p)})
P V

are convergent.
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In particular f(n) is uniformly distributed (mod 1) if and only if at
least one of the first two conditions is satisfied for each integer.

THEOREM 2. For each integer v set

Then a limiting distribution {mod 1) for the function f(n) is
(a) Continuous if and only if

N~ι Σ e, exp(- 2 Σ sin2τri;/(p)) -> 0 , (N-+ <*>) .
v^Λr p

(b) Absolutely continuous with a derivative that belongs to the
Lebesgue class L2[0, 1] if and only if the series

Σ εl exp(— 4 Σ sin2τri;/(p))

is convergent.

In the statement of this theorem is to be understood that if a
series

Σ P"1 sin2πv f(p)

diverges, then the corresponding number

exp(-2Σ )
P

si defined to be zero.
We note that in either of the circumstances (a) or (b) of Theorem

2 we can assert that there exists a distribution F(z) so that

holds for every real value of z.

For the proofs of these theorems we need essentially two lemmas.
Before stating the first of these we discuss some results of Halasz
[4].

A number theoretic function g(n) is said to be multiplicative if
for every pair of coprime integers α, 6, the relation

g(ab) = g(a)g(b)

is satisfied. In his paper of 1968 Halasz gives necessary and sufficient
criteria that multiplicative functions of wide classes have mean-value
theorems of the type
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lim rr1 Σ g(m) exists .

It is convenient to restate some of his results. We shall adopt
for the moment the notation of his paper [4], save that in place of
f(n) we set g(n), n~ 1, •••. For a fixed value of P ( ^ 3) we define
a multiplicative function g*(n) by

(0 for p < P, fc = 1, 2, •••

\(9(p))k for p > P , f c = l , 2 , . . . .

We note here that no essential use is made of the size of P during
any of the proofs of the theorems in Halasz' paper, it being a
parameter introduced as a technical convenience to ensure the non-
vanishing of certain products (see pp. 369-370 of [4]). We shall also
need the function

1 ί if n = pk, p prime, k = 1, 2,
χ(n) = ~r]

κ ( 0 otherwise.

If now g(n) is assumed to satisfy the inequality | g(n) \ ̂  1 for every
integer n, then as Theorem 2 of his paper Halasz proves that

a?-1 Σ g{m) = Co ^ ^ ^ L0(log x)xι+ίa» + o(x) , (x - oo) ,
»£* 1 + ̂ α0

with the following understanding:
If for every value of t the series

diverges ([4] p. 380), or if

(1 + flr(2)2-1 + ^(2 2)2" 2+ . . . ) = 0

([4] p. 369) then C0L0(logx) is to be replaced by zero.
On the other hand, if for some values of t (which is in fact

unique) the above series converges, then we set aQ — t, and have ([4]
p. 382),

Co - exp - Σ n-1 X(x)(l - Re g*(n)n-u)

The function L0(hgx) is defined by

Li—1—) - expf i Σ ^ - Im {g*{n)<nr*)) , σ>l,

so that as σ —> 1 +
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C O L O ( _ 1 _ ) ~ e x p ( -
\σ — 1/ V

^ ( ( ) ) )

Here H(s) is the function defined for complex numbers s by

which is absolutely convergent for σ = Re s ^ 1.
Finally, we need the fact, also proved in [4], that LQ(u) is a

slowly oscillating function. In other words, \LQ(u)\ = 1 for all values
of u > 0, and

i
L0(u)

holds uniformly for u < y ^ 2u, as u —> ̂ o.
We can now state our first lemma.

LEMMA 1. Let g(n) be a complex valued multiplicative number
theoretical function which satisfies

\g(n)\ ^ 1 , fa=l,2, . . . ) •

Then

lim n-1 Σ 9(™>) = C

exists under the following circumstances:
( i ) with C = 0:

Either

Or, ίAβ series

Σ P"1 (1 ~ Re

diverges for each real value of t.

(ii) wiίfe C ^ 0:
series

Σ ^toίP) - 1)

converges.

The second of these two assertions was first proved by Delange
[1]. The first assertion was proved for real valued functions, in
particular, by Wirsing [8], and in its full generality by Halasz [4].
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Proof. If for any positive integer r, Re g(2r) > — 1, then

Re(l + Σ 2~m 9(2m)) > 1 - Σ 2~w = 0 ,
\ m=l / m = L

so that in our present circumstances the series

1 + Σ 2-m g(2m)

can vanish only if Im g(2r) = 0, (r = 1, 2, •••). The first assertion
now follows from the remarks concerning Halasz' paper [4] which
were made preeceding the statement of Lemma 1, provided we note
that uniformly for all integers N > P,

Σ -1 λ(n)(l - Re g*{n)n~ιt) -

— 1)

In order to prove the second assertion we note that if the non-
zero mean-value exists then, (in the notation of the earlier remarks),
Co Φ 0, so that for some value of t the series

Σ n-1 X(n)(l - Re g^iήn-")

converges. Moreover, as x—^co,

( 1 ) L0(log x)xu -> A Φ 0 ,

say.
We next note that we can find an unbounded sequence of positive

real numbers zuz29 so that z^ —> 1 as n-+oo. For, given any
positive real number ε we can apply Dirichlet's theorem on Diophantine
approximation (see for example Hardy and Wright [5] pp. 156-157)
to deduce that there exists a nonzero integer m so that

mt <

Setting z = en we see that

I ziι - 11 = I exp(imί) - 11 ^ 27rε exp(ε) .

If t\2π is irrational our assertion is justified by choosing a sequence
of ε converging to zero. It t/2π is rational it is clear that we can
even choose a sequence zu z2, so that z% — 1 holds for all members
of the sequence.
It follows that
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L0(log zn)-*A, n —> oo .

Suppose now that t Φ 0. Then because of the slowly-oscillating
nature of the function LQ(n),

L0(log(zn expίπί-1))) -> A , (n -> oo) ,

and therefore from (1)

(zn expίπί-1))*' — 1 , (%--)•

Since by the construction of the 2W the left-hand side converges to
— 1, we obtain a contradiction. It follows that t — 0, and that

lim Σ
σ->14 n=i n"

exists, and is finite. By a standard Tauberian theorem of Hardy
and Littlewood we deduce that the series

Σ n~~ι Mn)(l — g*(n)) and Σ V~\^ — 9(p))
n — l p

converge.
That these conditions are indeed sufficient follows from Theorem

1 of Halasz [4].
This completes the proof of Lemma 1.

LEMMA 2. A sequence of distribution functions Fn(z) (mod 1)
n — 1, 2, has a limiting distribution (mod 1) if and only if for
each integer v

av = \imΫ e*πivz dFn(z)
J

exists.
Moreover, the limiting distribution, if it exists, is continuous if

and only if

and absolutely continuous with a derivative which belongs to the class
L2[0, 1] if and only if the series

Σ W

converges.

Proof. The results of this lemma are well known to workers
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in the field. A proof of the main assertion can be sketched briefly
as follows:

The necessity of the condition is clear from integration by parts
and an application of Lebesgue's theorem of dominated convergence.

For sufficiency, we note that the sequence au a2, satisfies

mm Γl

Σ Σ ocu^zuzv = lim p2πiux 2dFn{x) ^ 0

for all integers m and complex numbers zu

 m ,zm. In the classical
terminology it is positive definite. Then by a theorem of Herglotz
[6] there is a Borel measure μ on [0, 1], and so a corresponding
distribution function F(x) — μ[0, x], so that

a, = Γ e2zivx dF(x) , (v = 0, ± 1, ± 2 , ..) .
Jo

If now a and β satisfy 0 < a < β < 1, then by the stone-Weierstrass
theorem the characteristic function of the interval (a, β] can be
uniformly approximated on the unit interval 0 ^ x < 1 by polynomials
in exj)(2πix). If a and β are points of continuity of F(x) it follows
easily from the monotonicity of distribution functions that

FJa) ~ Fn{a) — (F(β) - F(a)) , (n — - ) .

The second and third results of the lemma are special cases of
results from the theory of Fourier series. Both can be found for
example, in Edwards [2]. In its present form the assertion concern-
ing the possible continuity of a limiting distribution is due to Wiener.

Proof of Theorem 1. It is clear from Lemma 2 that the distribu-
tions

Fn{x) = n~ι Σ n 1
/(m)gaΓ(mod 1)

have a limiting distribution (mod 1) if and only if the limits

lim n~ι Σ eπif{m)v = lim Γ e2zίux dFn(x) , (i; = 0, ± 1, ± 2, •)
n->co m—1 n-*oo J Q

exists. We can then apply Lemma 1 to deduce that for each integer
v one of the following three conditions is to be satisfied:

( i ) For each value of t the series

diverges
( i i ) - 1 = e2πif{2)v = e2πif{22)v =
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(iii) The series

converges.
Of these conditions only the first and third call for comment.
Since for each real number y

Re(l - β2'^) = - 2 sin2τπ/ = - 2(sin π \\y\\)2

and

2y/π ^ s i n y ^ y if O ^ y ^ π/2 ,

the first condition is equivalent to the series

~t log p\\2

being divergent for each value of t.
Likewise, in (iii) the series

Σ P~ι(l — Re{>2τ^/(p))) and
V P

converge and diverge together. Moreover, for each real number y

I Sin y - y |
6

so that

Sin 2πvf{p) = Sin 2π{vf{p)} = Sin 2π \ | vf{p) \ \. Sign(i - {vf{p)})

= Sign(i - {»/(*>)}) (2ττ || v/(^)|| + 0(|| vf{pW))

and uniformly for all P > 0

Σ /(2) - 2ττ Σ Sign(i - {vf{v)})v~ι \\vf(p)\\

^ constant Σ p " ' II υ/(ί>) II2

It is now clear from the previous remark that the series

Σ p ^ a - <?7Λvf{v))

and the pair of series

Σ P~ι \\vf(p)\\ Sign(i - {i>f(p)}) Σ P~ι

converge and diverge together.
This completes the proof of Theorem 1.

Proof of Theorem 2. To prove Theorem 2 we prove that uniform-
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ly for all integers v, \av\ lies between two positive constant multiples
of

εv exp ( - 2 Σ p~ι Sitfπv f(p)) .

We note from the remarks preceeding Lemma 1 that if av Φ 0 then
it has the form

1 + ^α0

where

H(i + ίaQ)

p p / \ p yp£p\ p

+ j \ r i - f(V)f(V2) [ .,

It is clear that since g(2r) Φ — 1, for every integer r (since av is
nonzero),

Ci ^ I H(l + mo)ε~1(l + ΐαo)"11 ^ c2

for suitable positive constants cu c2 depending at most upon f(n).
Moreover,

fM(i-, (»)θ-Σi(i-

and from these two facts the desired inequalities (2) follow.
If av — 0 then either ev = 0, or εv Φ 0 but

diverges, so that with our earlier convention

exp(- Σ P~ι Sin2πvf(p)) = 0 ,

and the inequalities (2) are still valid.
Theorem 2 now follows immediately from Lemma 2.
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