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SARIO POTENTIALS ON RIEMANNIAN SPACES

HIDEO IMAI

In potential theory on Riemann surfaces three kernels
are considered: the Green's kernel on hyperbolic Riemann
surfaces; the Evans kernel on parabolic Riemann surfaces;
and the Sario kernel on arbitrary Riemann surfaces. Since
the Sario kernel has no restriction on the domain surface,
in contrast with the two other kernels, its potential theory
enjoys the advantage of full generality. From the point of
view of Riemannian spaces potential theory on Riemann
surfaces is included in that on Riemannian spaces.

The object of this note is to construct the Sario kernel
and to develop the corresponding theory of Sario kernel on
Riemannian spaces of dimension n ^ 3. The Sario kernel,
which is positive, symmetric and jointly continuous, posseses
the property of Riez type decomposition (Theorem 1). The
continuity principle, unicity principle, Frostman's maximum
principle, energy principle and capacity principle are valid for
potentials with respect to the Sario kernel. It is also shown
that a set of capacity zero with respect to the Sario kernel
is, considered locally, of Newtonian capacity zero (Theorem
7), and so the relation of capacity function and the equilib-
rium Newtonian potential in Euclidean w-space is obtained.

Historically the Sario kernel on Riemann surface is constructed
by Sario ([8], [9], [10]) as a generalization of the elliptic kernel on
the Riemann sphere, and the potential theory corresponding to the
Sario kernel has been systematically investigated by Nakai ([3], [4],
[5], [6]). Our main tools are similar to those of Nakai.

First we shall construct a Sario kernel which is positive and
symmetric and demonstrate its joint continuity (Theorem 1). These
properties will enable us to prove the continuity principle, unicity
principle, Frostman's maximum principle, energy principle and capacity
principle for the Sario kernel, i.e., for Potentials with respect to the
Sario kernel. It will also be shown that a set of capacity zero with
respect to the Sario kernel is, considered locally, of Newtonian capacity
zero (Theorem 7). In view of this result we obtain a solution of
problem (10) in the monograph of Rodin-Sario [8, p. 257] and Sario
[12], i.e., the relation between the capacity function and the equi-
librium Newtonian potential in Euclidean space.

Let Rn be a Riemannian space of dimension n, that is, a connected
countable oriented C°°-manifold of dimension n ^ 32 with C°°-metric
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tensor g^l ^ i, j fg n). Throughout our presentation we denote by Va

a parametric ball with center at a in Rn, by dVa the boundary sphere
of Va and by gVa(ζ, a) the Green's function of Va with pole at α.
For the Green's function gVa{ζ, α), we always take the normalization

I *dgVa(ζ, a) = 1 and take *d to be the exterior normal. The dis-

tance between two points ζ = (ζ1, , ζn) and a = (α1, , an) in a

parametric ball F will be denoted | ζ - a = (Σ?=i (£* ~ ^) 2)i.

l Construction of the Sario kernel* We shall construct a
Sario kernel on an arbitrary Riemannian space Rn. On Rn take
arbitrary but then fixed points ζs(j = 0, 1) and parametric balls
Vά(j = 0,1) about the ζ, with disjoint closures in Rn. Let ί0(0 =
ί(ζ, ζ0, CO be a harmonic function on iϊw — {ζ0, ζ j with the following
properties (1°) - (5°):

(1°) U(ζ)-2gVo(ζ,ζo)eH(Vo),

(2°)

(3°)

in a neighborhood 4̂ of the ideal boundary β of i?w, where (7)^ is
the normal operator with respect to the identity boundary partition.
By Vj(j = 0,1) we mean the closure of Vj.

(4°) ίo|A =

with singularity function σ for the operator LL defined by

2gVo(ζ, ζ0) in Vo

- 2gVl(ζ, CO in V±

0 in A .

Since the function to(ζ) satisfying (1°) ~ (4°) is uniquely determimed
up to an additive constant, we impose the normalization condition:

(5°) ίo(C) - 2</Fo(ζ, Co) - 0, as ζ - ζ0 in Vo .

For the construction of ίo(C) we refer to Rodin-Sario [8] or Sario-
Schiίfer-Glasner [13].

Next we define the function so(ζ) by

80(0 = log(l + βί0(ζ)) .

Since U\Vo = 2gVo(ζ, ζ0) + 0(1), so| Vo - 2gVo(ζ, ζ0) + 0(1). Also by (4°)
to\Rn - Vo- V1 = 0(1). Thus we obtain:

LEMMA 1. The function so(ζ) is nonnegative on Rn, finitely
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continuous on Rn — {ζ0}, and

For an arbitrary point a in Rn — {ζ0}, we construct £(ζ, a) — t(ζ, α, ζ0)
in the same manner as ί(ζ, ζ0, ζx). In this case we denote by V'o and
V'2 the closure disjoint parametric balls with centers at ζ0 and a
respectively, and choose the normalization condition:

ί(ζ, a) + 2gv,(ζ, ζ0) -> so(α), as ζ — ζ0 in V'o .

Let ^(ζ, α) = so(ζ) + ί(ζ, a) and sx(ζ, ζ0) = so(ζo), i.e., ί(ζ, ζ0) = 0.
The functions s^ζ, α) and sx(ζ, α) + 2 r̂Fό(ζ, ζ0) are finitely continuous
on Rn — {α} and Fo', respectively. Hence by Lemma 1 sx| V" = 0(1)
for the smaller parametric ball V" of Vo and Fό Also by the
property of ί(ζ, α), £ | i^ - Fίr > 0(1). Thus sx(ζ, a) > 0(1) and we
obtain:

LEMMA 2. ^(ζ, α) is bounded from below.

For later use we list three properties of t(ζ, a) which are easily
seen from the definition:

(a) ζ —> ί(ζ, a) is harmonic on U for fixed a e V,
(b) α—>£(ζ, α) is finitely continuous on V for fixed ζe Z7,
( c) (ζ, α) —> ί(ζ, α) is bounded from below on UxV,

where U and F are closure disjoint parametric balls about ζ and a
respectively, and ζ0 g ί/.

We finally define s(ζ, α) = ^(ζ, a) + C, where the constant C is
so chosen that

(1) s(ζ,α)>0

for all (ζ, d)e Rnx Rn. Then s(ζ, α) is symmetric:

LEMMA 3. For any (ζ, α) eRnxRn

(2) β(C, α) = 8(α, ζ) .

Proof. It suffices to prove that ^(α, b) = s^b, a) for any
(α, b)e Rnx Rn. Let {£?} be a regular exhaustion of Rn such that every
Ω properly contains the disjoint parametric balls Fo, Vx and V2 about
the points ζ0, a and δ, F̂ O" = 0> 1» 2) properly. Let tΩ(ζ, a), ί?(ζ), and
δo(Q be the functions constructed in Ω corresponding to t(ζ, α), ίo(ζ)
and so(ζ) respectively. Take level spheres a0, aL and a2 of ^F (ζ, ζ0),
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gVl(ζ, a) and gV2(ζ, b) in Vo, V, and V2 respectively, and orient aQ, alr

and a2 so that dΩ — a0 — a, — a2, with dΩ the boundary surface of
Ω, is positively oriented. Then by Green's formula we obtain

( 3 ) ί tΩ(Z, a) * dtΩ(ζ, b) - to(ζ, b) * dt(ζ, α) = 0 .
J dΩ — «Q—<Xχ~«9

By the L rbehavior of ίβ(ζ, α) and tΩ(ζ, b) on 9β, the integral of (3)
on 3Ω vanishes. The integral of (3) on aλ + a2 yields ~2tΩ(a, b) 4-
2tΩ(b, a). Also the calculation on a0 yields 2s?(6) — 2so(ά) and we
obtain from (3)

so-(α) + tΩ(a, b) = s?(6) + ίfl(6, α) ,

on letting r —> 0 with r the radius of the parametric balls. Since
the convergences tΩ(ζ, a) — • ί(ζ, α) and ί?(ζ) —> ίo(ζ) as Ω —+ Rn are
uniform on compacta (Rodin-Sario [8]; p. 246) the same is true of
Sc?(ζ). Hence on letting Ω —> iί%, we obtain the equation s^δ, a) = s^a, b).

From (1) and Lemma 3, (ζ, a) is a positive symmetric function.
We shall refer to it as the Sario kernel on Rn.

To obtain the subharmonicity of so(ζ), we show:

LEMMA 4. On Rn — {ζ0, ζ j

holds, and hence JζS0(ζ) is nonnegative there.

In terms of a local parameter ζ = (ζ1, ζ2, , ζn), the Laplacian
and gradient are

A NT1 rj>3 U I X ^

' = i^-i dCidCt " i ^ i

and

Igrad l2 - _Σ gij-^ -^- ,

where the 0ίj'S are elements of the inverse of the matrix {gi5) and
G - d e t ^ ). For any point ζ = (ζ1, ζ2, , ζ%) in Rn - {ζ0, ζ:},

and
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|grad to(ζ)\2

Since ^ίo(C) = 0, we obtain, on Rn - {ζ0, Q ,

^so(ζ) - e'o«>(l + e*o(c))"2 Igrad ίo(ζ)|* .

Now consider an w-form X(ζ)dVζ on iίw — {ζ0, ζ j defined by

λ2(ζ) - Aζs0(ζ) = e^(l + ew)-2 l ^ a d ίo(ζ) |2 ,

with λ(ζ) ^ 0 and dVζ the local Euclidean volume element on Rn, i.e.,
locally, dVζ — no)nr

n~ιdr with ωwrw the volume of a ball of radius r.
Hence ωπ - π"l2/Γ(n/2 + 1). Since X2(ζ)dVζ = 0(1) at ζ0 and ζ,, λ2(ζ)dF^
can be continued to a nonnegative finitely continuous w-form on Rn.
Also since s(ζ, α) = so(Q + ί(ζ, α), on i?w — {α, ζ0, ζ j we have

(4) ^ s ( ζ , α ) - J 8 0 ( 3 ) - λ 2 ( ζ ) .

The two points ζ0 and d satisfy the removable condition of subhar-
monicity so that s(ζ, α) is a finitely continuous subharmonic function
of ζ on Rn - {a}.

We shall prove the joint continuity and Riesz type decomposition
of s(ζ, a).

THEOREM 1. The Sario kernel s(ζ, α) is continuous on
and finitely continuous on RnxRn outside the diagonal set. Moreover,
for every regular region Ω of Rn the decomposition

(5 ) s(ζ, a) = 2gΩ(ζ, a) + vQ(ζ, a)

is valid, where gΩ is the Green's kernel on Ω and vΩ is a finitely
continuous function on Ω x Ω.

The proof of the first part is deduced from (a), (b), (c) and
Harnack's inequality. If we prove the following two lemmas, the
second part is clear. To this end we define the following functions
on Ω and ΩxΩ:

GΩ{ζ) = ( λ2(6)^(6, ζ)dVb ,
JO

HΩ(ζ, a) = \ vΩ(b, a)*dgΩ(b, ζ) ,
J d Ω

where
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vΩ{b, a) = s(ζ, a) - 2gΩ(ζ, a) .

LEMMA 5. The function GΩ(ζ) is continuous on Ω and HΩ(ζ, a)
is finitely continuous on ΩxΩ.

Proof. Let ζ' e Ω and U be a parametric ball with center at ζ'
and radius 1 such that ϋ c Ω. Denote by Ur the parametric ball
16 — ζ' | < r in U with 0 < r < 1, and by gπ{ , ζ') the Green's kernel
on £7 with pole at ζ'. Then

gu(b,ζ) = 0 ( | & - ζ r * ) ^ c | & - ζ Γ *

for a suitable constant c. Since (^(δ, ζ) — gσ(b, ζ) > 0 is finitely
continuous on UxU, sup {#β(δ, ζ) - ^ ( δ , ζ)} in U^xU^ is a finite
number M. Also for 0 < ε < 1/6 and ζ e U7ε, ̂ (ζ , δ) ^ ^ ( ζ , 6) + ikf ^
c [6 — ζ|2~w + Mm {\b - ζ | < 2s}. On setting m = sup{λ2(6)|δe U} < oo
we obtain

gΩ(b, ζ)dVb ^ m . % . α ) B ( c Γ rdr + M (^ r ^ 1 eZr} - O(ε) .
I J J JΠlδ-CKO

Also for any ζ" e Uε.

\Gΰ(ζ') - GQ(ζ")\ ^\ λ2(δ) \go(b, ζ') - ga(b, ζ " ) |

+ Σ ί
ζ = ζ ' , ζ " J { | δ - ; i < 2 ε }

Since gΩ(b, ζ")—*gΩ{b, ζ') uniformly on Ω — Uε as ζ"—>ζ' , we obtain

Thus

lim <?fl(ζ") = Gfl(C) .

LEMMA 6. The function vΩ(ζ, a) has the representation

vo(ζ, a) = - G0(ζ) ~ H0(ζ, a)

on ΩxΩ. Consequently vΩ{ζ) is finitely continuous there.

Since this lemma may be proved in a manner similar to
the case n = 2 (Nakai [3] or Rodin-Sario [8; p. 309]), we omit the
proof.

2* Sario potential* Having obtained a positive symmetric kernel
s(ζ, a) on RnxRn, we shall now construct the potential with kernel
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function s(ζ, a) and investigate its potential-theoretic properties.
By a regular Borel measure μ on Rn with compact support Sμ in

Rn, we mean a measure μ such that for every parametric ball V with
V U Sμ Φ 0 and every local parameter x = φ{ζ) of V, μ(φ(ζ)) \ V Π S
is a regular Borel measure in ^-dimensional Euclidean space En, where
μ(φ(ζ)) I V f] Sμ is the restriction of μ(φ(ζ)) to V Π £v Unless specified
otherwise we consider only nonnegative regular Borel measures μ
with compact support Sμ in Rn. We define

*,(0 =

and, as in the case n = 2, call s^ζ) the (^-dimensional) Sario potential
with respect to the measure μ. By (1) it is nonnegative, and positive
unless μ = 0. As a consequence of Theorem 1, sμ is lower semicon-
tinuous on Rn and finitely continuous on Rn — Sμ. By (4) it is
subharmonic on Rn — Sμ.

For convenience we list below several lemmas without proof. In
these lemmas we always suppose that Rn is hyperbolic, i.e., a Green's
kernel g(ζ, a) exists on Rn. Thus one can consider potentials gμ(ζ) —

J g(ζ, a)dμ(a).

LEMMA 7. (Local Maximum Principle). Let F be a compact
subset of Rn containing Sμ. For any ζ' e F

lim sup gμ(ζ) ^ lim sup gμ(ζ) .

LEMMA 8. (Frostman's Maximum Principle). gμ\Sμ ^ M implies
gμ <; M on J?w.

LEMMA 9. (Equilibrium Principle). jPor α^2/ compact subset K
of Rn, there exists a unique measure v on K, called the equilibrium
measure of K, such that g» <̂  1, gu = 1 a.e., on K and C{K) — v(K) =
\\v\\2, where C(K) is the capacity of K and \\v\\2 is the energy of gv.

LEMMA 10. (Ninomiya [7]). Let Ω be a locally compact Haus-
dorff space and k(x, y) a continuous positive function on ΩxΩ with
k(x, x) = oo and k(x, y) = k(y, x). If the potential

kμ{x) = lc(x, y)dμ(y)
j

satisfies Frostman}s maximum principle and the unicity principle,
then
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k(x, y)dσ(x) dσ(y) > 0

for any nonzero signed measure σ.

With these preparations we shall now establish various principles
of potential theory with respect to Sario potentials. Since sμ is
subharmonic in Rn — Sμ, its magnitude is determined by its behavior
at the ideal boundary of Rn and at Sμ, in view of the maximum
principle for subharmonic functions (Ito [2]).

THEOREM 2. (Local Maximum Principle). For a compact subset
F of Rn containing Sμ and any point ζ' e F,

( 6 ) lim sup sμ(ζ) <£ lim sup sμ(ζ) .
ζεR

n-F ζ-»ζ' ζεF ζ->ζ'

Proof. Take a parametric ball V with center at ζ'. Set μr — μ\ V,
i.e., μ'{ ) = μ(- ΓΊ V), and μ" = μ — μf. Then ŝ  = sμ> + ŝ // and sμ,,
is continuous in F. Without loss of generality we may assume that
F c V. Hence it suffices to prove (6) for sμ, and F c V. Let

v(ζ, a) = s(ζ, α) — 2gv(ζ, a) on F x F. By Theorem 1 \ v(ζ, a)dμ(a) is

finitely continuous on VxV. Thus the proof of (6) is reduced to

f f
lim sup \ gr(ζ, a)dμ(a) g lim sup \ gv(ζ, a)dμ(a) ,

ζεE
n-F :~ζ' J ζεF ζ->ζy J

which is valid by Lemma 7.
As a consequence of the local maximum principle we have:

THEOREM 3. (Continuity Principle). If sμ\Sμ is continuous (resp.
finitely continuous) on Sμ, the same is true of sμ on Rn.

The linear operator μ —> sμ from the measure space into the
function space determined by the potential sμ is injective:

THEOREM 4. (Unicity Principle). sμ — sv implies μ = v. More
generally, if sμ = su + u with ue H(Rn), then μ — v.

Sketch of the Proof. For any point be Rn, let Vε be its parametric
ball of radius ε and dVε be the clockwise oriented boundary sphere
of Vε. Applying Green's formula to the functions s(a, b) and / e Q(Rn)
and the region R — Vε, and letting ε—>0, we obtain

/(b) = \^f(a)X2(a)dVa - J s(a, b)AJ{a)dVa ,
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where Q{Rn) is the space of nt\ι order continuously differentiable
functions with compact supports in Rn. For a signed measure
σ = μ — v and fe C~{Rn), we obtain

( 7 ) J f(b)dσ(b) = σ(S) J f(a)X\a)dVa - J sσ(a)^af(a)dVa

from the above equation. Since sσ — uf i.e., Δasσ(a) = 0, and since

J sσ(α)Λ/(α)^K - J sσ(d)*dj = 0, (7) implies that

) ( ) δ ) - 0

for any feC~(Rn). Thus we obtain

The fact that σ is a signed measure implies σ — μ — y = 0.
Next we shall show that sμ satisfies Frostman's maximum

principle:

THEOREM 5. (Frostman's Maximum Principle). sμ\Sμ ^ M implies
sμ^ M on Rn.

We prove this theorem by dividing it into three lemmas. Let K
be any compact subset of Rn and β the ideal boundary of Rn. Define

M{K) = sup lim sup s(ζ, α)
aεK ζ-*β

if β Φ 0 ; and otherwise ikf(iί:) = 0. Set B(M, μ) = max{ikf,

LEMMA 11. M(K) is finite and the following maximum principle
is valid: sμ\Sμ = M implies sμ <; B(M, μ) on Rn.

Since the proof parallels that of the case n = 2, we omit it here
(cf. Nakai [3; p. 232], Rodin-Sario [8; p. 314]).

If Rn is compact, Theorem 5 is true by Lemma 8. If Rn is
parabolic, the theorem follows from Lemma 8, Theorem 2 and the
subharmonicity of sμ on Rn — Sμ. Thus we have only to prove
Theorem 5 for the case in which Rn is hyperbolic, i.e., Green's kernel
#(ζ, a) exists on Rn.

By the unicity of to(ζ) and ί(ζ, α), (8)-(10) hold with a suitable
constant k.

( 8 ) ίo(C) = 2flf(ζ, Co) - 2flf(ζ, Q + fe .
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(9) So(C) - hg(e-2°^ + e~2^'^+k) + 2g(ζ, ζ0) .

(10) ί(ζ, α) - 2flf(ζ, α) - 2g(ζ, Q + βo(α) - k .

Setting

(11) w(ζ) = log(β~2ί7(ζ'ζo) + e~2g[ζ^)+k) - log(l + ek) ,

the Sario kernel s(ζ, α) has the expression (12) with a suitable
constant m;

(12) s(ζ, a) = 2gr(C, α) + u(ζ) + i φ ) + m .

Let μ be a unit measure and set Mf = M — m — I u{a)dμ{a).

Then it is easily seen that

(13) 2^(ζ) + tt(ζ) g M' on Sμ .

With these preparations we show

LEMMA 12. M' ^ 0.

Proof. By Lemma 9, there exists a unique equilibrium distribu-

tion v0 on Sμ. Set v = 1^(5^)1 i Ό Since I gμdμdμ < ©o by (13), the

property of y implies that the ^-measure of the set {ζ e Sμ \ gv(ζ) Φ Vg(Sμ)}

is zero. Here Vg(Sft) — inf 1 gμdθdθ with the unit measures θ such

that So c Sμ. On integrating (13) with respect to v, and using

I gμdv = Vg(Sμ), we obtain

(14)

By (11) we see that

(15)

with

9»(ζ) = t(2<7(ζ, Co) - 2flr(ζ, ζj) ,

= log(l + eί+k) - log(l + ek) .

Since ψ-(f) is a convex function, applying Jensen's inequality to (15)
with ξ(ζ) = 2g(ζ, ζ0) - 2flr(ζ, ζ,), we obtain
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This with (14) implies M' ^ 0.

LEMMA 13. Let ^" be the family {{ζw}»=ι c Rn\ζn-+ β as n —> 00}
and ^ ~ + be the subfamily {{ζj c &~ | l i m inΐng(ζny a) > 0 for all a e Rn}.
Then there exists a nonnegative superharmonic function v on Rn such
that \imn^v{Zn) = - for { Q

By the monotone compactness of H(Rn) and the solvability of the
Dirichlet problem for regular regions and continuous boundary func-
tions in jβ*, the method in Constantinescu-Cornea [1; p. 48] is valid
in Rn. We omit the proof.

We now prove Theorem 5 in the hyperbolic case. Without loss
of generality we may assume that μ(Sμ) = 1. By (12) and (13) it
suffices to prove that 2gμ(ζ) + u(ζ) ^ W on Sμ implies 2gμ(ζ) + u(ζ) <^ Mf

on Rn. For the function v in Lemma 13 and m = 1, 2, 3, •••, define
superharmonic function Wm on Rn — S as

Wm(ζ) = M' - (20,(ζ) + u(ζ)) + v(ζ)/m .

Then by Lemma 7, we obtain

(16) lim inf Wm{ζ) ^ 0

for ζ' € dSμ. Also for {ζw} e ^ + we have

(17) limninf Wm(ζn) ^ 0 .

By (16), (17) and the minimum principle for superharmonic functions
we see that Wm(ζ) ^ 0 on Rn — Sμ. On letting m —> 00, we have
2gμ(ζ) + u(ζ) ^ Mr on Rn - Sμ and hence on Rn.

From the above statement it follows that Sario potentials enjoy
both Frostman's maximum principle and the unicity principle.

Applying Lemma 10 we obtain

THEOREM 6. (Energy Principle). For measures μ and v with
σ = μ — v Φ 0,

' s(ζ, ά)dσ(ζ)dσ(a) > 0 .

3* Sario capacity and the fundamental theorem* We define

a set function V(K) first for compact sets K c Rn by

V{K) = inf, J s(ζ, a)dμ{Qdμ{a)
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where μ runs over all unit measures with Sμ c K. For general sets
X c Rn we set

V(X) = sup* V(K)

where K runs over all compact sets K c X.
The quantity

c(X) = cs{X) = 1/F(X)

will be referred to as the (inner) Sario capacity of X. For Borel

sets X, c(X) — 0 is equivalent to

(18) μ(X) = 0 for each μ with 1 s(ζ, a)dμ(ζ)dμ(a) = oo .

Using this we can prove:

THEOREM 7. 4 seί I m i?π is of Sario capacity zero if and
only if X is locally of Newtonian capacity zero.

Proof. We may suppose that X is compact. By virtue of (5)
and (18), c(X) — 0 is characterized by μ(X Π V) — 0 for every μ in
each parametric ball V with

<7F(ζ, a)dμ(ζ)dμ(a) = oo .

Since gv(ζ, a) = 0(1 ζ — a\2~n), c{X) = 0 means that X Π V has New-
tonian capacity zero for each parametric ball V.

As a consequence of Theorem 7, we obtain a solution of problem
(10) in Rodin-Sario [8] and Sario [12].

THEOREM 8. Let P be the equilibrium potential of a unit mass
distribution dμ on a compact set K of Rn defined by

P{x) =
(n - 2)ωn

Let Ω be a regular region of Rn which contains the set K and let
pΩ be the capacity function for Ω with pU3\dΩ — kΩ (c.f. Sario [12],
Rodin-Sario [8]). Then we have locally

P(x) = kΩβ - I pOβ(x, y)dμ(y) + M,

with a suitable positive constant M.
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Proof. Without loss of generality we may assume that K is
contained in some local coordinate system (φ, V) of Rn, that is, we
may regard K as a compact set in the parametric ball V and the
point y as the center a of V. Thus it suffices to show that

ζ - α
(n - 2)ωn

r
dμ(a) = kΩβ - \ pΩβ(ζ, a)dμ(ά) + M

in the parametric ball V, with μ a unit measure such that Sμ = K c V.
Since gΩ(ζ, a) = kΩβ — pΩβ (Rodin-Sario; p. 253) and gΩ\ V = gv(ζ, a) + h(ζ)
with h(ζ) e H(V), gv(ζ, a) = kΩβ - pΩβ(ζ, a) + h(ζ) in V. Integrating
both sides with respect to μ, we obtain the desired equation with

M = [ h(ζ)dμ(ζ).

Let K be a compact set m Rn with c(K) > 0. Since s(ζ, a) is
jointly continuous, by the selection theorem for a sequence of measure
in Rn we obtain the capacity measure μ, that is, the unit measure

with Sμ c K such that \sdμdμ = V(K). Our final aim is to obtain

the capacity principle for the Sario kernel,

THEOREM 9. (Fundamental Theorem of Potential Theory). Let
K he a compact subset of Rn with c(K) > 0 and μ its capacity measure.
Then sμ ^ V(K) on Rn and s,t = V(K) except for an Fa-set of Sario
capacity zero. Furthermore, this capacity measure is unique.

Proof. First we shall show that sμ >̂ V(K) on K except for an
jPσ-set of Sario capacity zero. Let A and An be the subsets of K on
which sμ < V(K) and sμ ^ V(K) - 1/n (n = 1, 2, •) respectively.
Then the An's are compact sets with Aί c A2 c c An c , and
A = U? An. Hence A is an ,F>set and we need only show that
c(A) = 0. Suppose, to the contrary, that for a suitable ε > 0 there
exists An = K1czK with sμ \ K, < V(K) - 2ε and <?(!£) > 0. The

equality 1 sμdμdμ — V(K) implies the existence of a point ζ0 e ASΛ v/ith

sμ(ζ0) > V{K) — £. Thus ζ0 g JBTle Therefore we may take an open
ball U concentrated at ζ0 with U Π ίΓ = 0 and s/ί[Z7> F(iϋΓ) - ε.
Moreover since ζoeS>, μ(U) > 0. The fact c ^ ) > 0 implies the
existence of a measure v with Su a Kλ,

j) = μ{U), and with \ sdvd^ < oo .

Construct a signed measure vι by

^ I J K ; - v\Kly vx\U= - μ\U, v,\Rn - K,U U - 0 .
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Clearly μt = μ + tv1 is a unit measure for every t e (0, 1) with S^ c
Therefore

(19) ί sdμtdμt ^ [ sd^d^ = V(K) .

A simple calculation shows that

I sdμtdμt < — tlμ(U)ε — t \ sdv^vλ < 0

for sufficiently small t. This violates (19) and we have c(A) — 0.
If we show that sμ\Sμ ^ F(iΓ), by virtue of Theorem 5 the proof

is complete except for the uniqueness of μ. Contrary to the assertion,
assume that s^ζ,) > V{K) for a ζteSμ. Choose an open ball U, about
d such that

sμ\Ut> V{K) + ε, ε > 0 .

Then μ{U^ > 0 and we see that

V(K) = ( sμdμ + [ sμdμ > V(K) + eμ(ϋd > V(K) ,

a contradiction.
The unicity of the capacity measure follows from Theorem 6 in

the same manner as in Nakai [6], or Rodin-Sario [8; p. 332].

As an application of the fundamental theorem, we obtain the
subadditivity of the Sario capacity. Since the method is similar to
that of Nakai [4; no. 7], we state this without proof.

THEOREM 10. // Xn (n = 1, 2, .) are sets in Rn and X = \JJ=1 Xn,
then

c(X) =S Σ c(Xn) .
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