INDICES FOR THE ORLICZ SPACES

David W. Boyd

Abstract

The determination of the function spaces X which are intermediate in the weak sense between L^{p} and L^{q} has been shown, by the author, to depend on a pair of numbers (α, β) called the indices of the space. The indices depend on the function norm of X and on the properties of the underlying measure space: whether it has finite or infinite measure, is non-atomic or atomic. In this paper, formulas are given for the indices of an Orlicz space in case the measure space is non-atomic with finite or infinite measure, or else is purely atomic with atoms of equal measure. The indices for an Orlicz space over a non-atomic finite measure space turn out to be the reciprocals of the exponents of the space as introduced by Matuszewska and Orlicz, and generalized by Shimogaki. Some new results concerning submultiplicative functions are used in the proof of the main result.

Definitions and Main result. We suppose that $(\Omega, \mathscr{T}, \mu)$ is a measure space which is measure-theoretically isomorphic to one of the following three possibilities: the positive reals \boldsymbol{R}^{+}with Lebesgue measure, the interval $I=[0,1]$ with Lebesgue measure or the positive integers \boldsymbol{Z}^{+}with counting measure. We shall denote these standard spaces by S_{i} with $i=0,1,2$ for \boldsymbol{R}^{+}, I and \boldsymbol{Z}^{+}respectively. We shall write $\Omega^{*}=S_{i}$ if $(\Omega, \mathscr{T}, \mu)$ is isomorphic to S_{i}.

Suppose that ρ is a rearrangement-invariant function norm on the measurable functions $\mathscr{M}(\Omega, \mathscr{T}, \mu)$ on $(\Omega, \mathscr{T}, \mu)$, (see [2]). Then for each measurable $f, \rho(f)=\sigma\left(f^{*}\right)$ where f^{*} is the decreasing rearrangement of f onto \boldsymbol{R}^{+}, and σ is a rearrangement invariant norm on \boldsymbol{R}^{+}. We define $E_{\mathrm{s}} f^{*}$ by $E_{s} f^{*}(t)=f^{*}(s t)$ for $0<s<\infty$, and then let

$$
h(s)=\sup \left\{\sigma\left(E_{s} f^{*}\right): f \in \mathscr{M}(\Omega, \mathscr{T}, \mu), \sigma\left(f^{*}\right) \leqq 1\right\} .
$$

It is known that the following limits exist (see Lemma 1, below)

$$
\alpha=\lim _{s \rightarrow 0+} \frac{\log h(s)}{-\log s}, \beta=\lim _{s \rightarrow \infty} \frac{-\log h(s)}{\log s}
$$

and these are called the indices of the space $L^{\rho}(\Omega, \mathscr{T}, \mu)$. Note that in fact α depends only on σ and on Ω^{*} so we will write $\alpha=\alpha\left(\sigma, \Omega^{*}\right)$ and $\beta=\beta\left(\sigma, \Omega^{*}\right)$. (A slightly different definition was used in case $\Omega^{*}=Z^{+}$when the indices were introduced in [2], but it is equivalent to the definition given here as Lemma 3 will show). It was shown in [2] that X is intermediate between L^{p} and L^{q} in the weak sense if and only if $1 / p>\alpha$ and $\beta>1 / q$.

We use the definition of Orlicz space given in [5]. Thus, let φ be a right-continuous nondecreasing function on $[0, \infty]$ and let ψ be its left-continuous inverse. Then the functions Φ and Ψ defined by

$$
\Phi(u)=\int_{0}^{u} \varphi(t) d t, \Psi(u)=\int_{0}^{u} \Psi(t) d t
$$

are called complementary Young's functions. The general form of Φ (or Ψ) is that there are two numbers a and b with $0 \leqq a \leqq b \leqq \infty$ such that $\Phi(u)=0$ for $0 \leqq u \leqq a, \Phi$ is convex and finite valued in $] a, b[$, and $\Phi(u)=\infty$ for $u>b$. If $b<\infty$ we say " Φ jumps" and if $a>0$ we say " Φ is level". Otherwise we say Φ is strictly increasing.

Define the Minkowski functional by

$$
M_{\phi}\left(f^{*}\right)=\int_{0}^{\infty} \Phi\left(f^{*}(t)\right) d t,
$$

and then $\rho_{\phi}(f)=\inf \left\{c: M_{\phi}\left(c^{-1} f^{*}\right) \leqq 1\right\}=\sigma_{\phi}\left(f^{*}\right)$. The space $L_{\phi}(\Omega, \mathscr{T}, \mu)$ is the subspace of $\mathscr{M}(\Omega, \mathscr{T}, \mu)$ determined by the function norm ρ_{ρ}, and its dual space (in the sense of function spaces) is isomorphic to L^{ψ}.

We shall write $\alpha_{i}(\Phi)=\alpha\left(\sigma_{\theta}, S_{i}\right) \quad(i=0,1,2)$. And similarly for β. Note that the indices of a space X are invariant under isomorphism and that if ($\alpha^{\prime}, \beta^{\prime}$) are the indices of the dual space of L^{ρ}, then $\left(\alpha^{\prime}, \beta^{\prime}\right)=(1-\beta, 1-\alpha)$ (see [2]). The case $i=0$ of the following theorem was proved in [1].

Theorem. Given a Young's function Φ. For $0<s<\infty$, let

$$
\begin{aligned}
& g_{0}(s)=\sup \left\{\Phi^{-1}(t) / \Phi^{-1}(s t): 0<t<\infty\right\} \\
& g_{1}(s)=\lim \sup \left\{\Phi^{-1}(t) / \Phi^{-1}(s t): t \rightarrow \infty\right\} \\
& g_{2}(s)=\lim \sup \left\{\Phi^{-1}(t) / \Phi^{-1}(s t): t \rightarrow 0+\right\}
\end{aligned}
$$

Then

$$
\begin{array}{lr}
\alpha_{i}(\Phi)=\lim _{s \rightarrow 0+}-\log g_{i}(s) / \log s, & i=0,1,2 \\
\beta_{i}(\Phi)=\lim _{s \rightarrow \infty}-\log g_{i}(s) / \log s, & i=0,1,2 .
\end{array}
$$

Preliminary lemmas.

Lemma 1. (a). Suppose that h is a positive function which satisfies $h(s t) \leqq h(s) h(t)$ for all $s>0$ and $t>0$. Let

$$
\theta(s)=-\log h(s) / \log s,
$$

and let

$$
\alpha(h)=\inf \{\theta(s): 0<s<1\}, \beta(h)=\sup \{\theta(s): s>1\} .
$$

Then

$$
\alpha(h)=\lim _{s \rightarrow 0+} \theta(s) \quad \text { and } \quad \beta(h)=\lim _{s \rightarrow \infty} \theta(s)
$$

(b). Suppose h is positive and monotone and satisfies

$$
h(m n) \leqq h(m) h(n)
$$

for m, n in \boldsymbol{Z}^{+}. Let $\theta(n)=-\log h(n) / \log n$, and

$$
\beta(h)=\inf \left\{\theta(n): n \in \boldsymbol{Z}^{+}\right\} .
$$

Then $\beta(h)=\lim _{n \rightarrow \infty} \theta(n)$.
Proof. The proof of (a) is in [1], and that of (b) is in [3]. Note that the extra condition in (b), that h be monotone, is needed; otherwise, one could define $h(p)$ to be an arbitrary positive number for each prime p, and then if $n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$, let $h(n)=h\left(p_{1}\right)^{a_{1}} \cdots h\left(p_{k}\right)^{a_{k}}$. If $h(1)=1, h$ would satisfy (b) except that it would not be monotone, and certainly the conclusion need not be true, e.g., if $h(p)=p^{p}$.

Lemma 2. (a). Let f be a positive function on $[1, \infty[$ and for $s>1$ let $h(s)=\sup _{t \geqq 1} f(s t) / f(t)$ and $h_{1}(s)=\lim \sup _{t \rightarrow \infty} f(s t) / f(t)$. If β is as in Lemma 1 (a), then

$$
\beta(h)=\beta\left(h_{1}\right) .
$$

(b) Let f be positive and monotone on \boldsymbol{Z}^{+}, and for $m \in \boldsymbol{Z}^{+}$, let

$$
h(m)=\sup _{n \in Z^{+}} f(m n) / f(n),
$$

and $h_{1}(m)=\lim \sup _{n \rightarrow \infty} f(m n) / f(n)$. If β is as in Lemma $1(\mathrm{~b})$, then

$$
\beta(h)=\beta_{1}(h) .
$$

Proof. (a) Clearly h satisfies the condition of Lemma 1 (a) for $s \geqq 1, t \geqq 1$. Let $\beta=\beta(h)$. By definition of β and the conclusion of Lemma 1 , there is a function $\varepsilon(s)$ such that $\varepsilon(s) \geqq 0$ and $\varepsilon(s) \rightarrow 0$ as $s \rightarrow \infty$ such that

$$
\begin{equation*}
s^{-\beta} \leqq h(s) \leqq s^{-\beta+\varepsilon(s)} \text { for } s \geqq 1 \tag{1}
\end{equation*}
$$

Define $\Delta(t, s)=f(s t) / f(t)$. Let m be a positive integer, and s be fixed >1. Then there is a t_{m} so that

Using (1),

$$
\begin{equation*}
\Delta\left(t_{m}, s^{m}\right) \geqq s^{-\beta m-1} . \tag{2}
\end{equation*}
$$

Note that, for any t,

$$
\Delta\left(t s^{n}, s\right)=f\left(s^{n+1} t\right) / f\left(s^{n} t\right)
$$

so that

$$
\begin{aligned}
\prod_{n=m}^{2 m-1} \Delta\left(t_{2 m} s^{n}, s\right) & =\Delta\left(t_{2 m}, s^{2 m}\right) / \Delta\left(t_{2 m}, s^{m}\right) \\
& \geqq s^{-2 \beta m-1 / 1 / s^{-\beta m+\varepsilon}} \\
& =s^{-\beta m-1-\epsilon},
\end{aligned}
$$

where $\varepsilon=\varepsilon\left(s^{m}\right)$.
Thus, if n_{m} is such that

$$
\Delta\left(t_{2 m} s^{n_{m}}, s\right)=\max \left\{\Delta\left(t_{2 m} s^{n}, s\right): m \leqq n \leqq 2 m-1\right\},
$$

one has

$$
\Delta\left(t_{2_{m}} s^{n_{n}}, s\right)^{m} \geqq \prod_{n=m}^{2 m-1} \Delta\left(t_{z_{m}} s^{n}, s\right)
$$

and thus

$$
\Delta\left(t_{2 m} s^{n_{m}}, s\right) \geqq s^{-\beta-(1 / m)-(\varepsilon / m)} .
$$

But

$$
t_{2 m} s^{n_{m}} \geqq s^{m} \rightarrow \infty \quad \text { as } m \rightarrow \infty .
$$

Hence

$$
h_{1}(s) \geqq \lim _{m \rightarrow \infty} \sup \Delta\left(t_{2 m} s^{n_{m}}, s\right) \geqq s^{-\beta}
$$

for any $s>1$, which shows that $\beta\left(h_{1}\right)=\beta(h)$, since obviously $h_{1}(s) \leqq$ $h(s)$. (b) The proof is entirely the same, using Lemma 1 (b) rather than 1 (a).

Lemma 3. Suppose that f is positive and monotone on $[1, \infty[$ that

$$
h_{1}(s)=\limsup _{t \rightarrow \infty} \frac{f(s t)}{f(t)} \text { and } h_{2}(s)=\limsup _{n \rightarrow \infty} \frac{f(s n)}{f(n)} \text { for } s>0 .
$$

Then

$$
h_{2}(s) \leqq h_{1}(s) \leqq h_{2}(s \pm),
$$

where the upper (lower) sign is used if f is increasing (decreasing), and

$$
\beta\left(h_{2}\right)=\beta\left(h_{1}\right) .
$$

Proof. Clearly $h_{2}(s) \leqq h_{1}(s)$. We treat the case that f is decreasing.

Given $\varepsilon>0, s>1$ and an integer $m \geqq 1$, there is an $N \geqq m$ such that $n \geqq m$ implies

$$
\frac{f\left(\left(s-s m^{-1}\right) n\right)}{f(n)} \leqq h_{2}\left(s-s m^{-1}\right)+\varepsilon
$$

Since f is decreasing, and $\left(s-s m^{-1}\right) n \leqq\left(s-s n^{-1}\right) n=s(n-1)$, we have

$$
\frac{f(s(n-1))}{f(n)} \leqq h_{2}\left(s-s m^{-1}\right)+\varepsilon, \quad \text { for } n \geqq N
$$

Now if $t \geqq N+1$, then there is an integer $n \geqq N$ such that

$$
n-1 \leqq t<n
$$

so that $f(n-1) \geqq f(t) \geqq f(n)$, and $f(s(n-1)) \geqq f(s t) \geqq f(s n)$. Hence

$$
\frac{f(s t)}{f(t)} \leqq \frac{f(s(n-1))}{f(n)} \leqq h_{2}\left(s-s m^{-1}\right)+\varepsilon \quad \text { for } t \geqq N+1
$$

Thus

$$
h_{1}(s) \leqq h_{2}\left(s-s m^{-1}\right)+\varepsilon \quad \text { for all } m \text { and } \varepsilon
$$

so that

$$
h_{1}(s) \leqq h_{2}(s-)
$$

Clearly $\beta\left(h_{2}\right)=\beta\left(h_{1}\right)$ follows from these inequalities.
Proof of the Theorem. $i=0$. This was proved in [1], Theorem 5.5. In fact, in this case, $h(s)=g_{0}(s)$ for all s.
$i=1$. We prove first that $\beta_{1}(\Phi)$ is as in the statement of the theorem. Then we use $\alpha_{1}(\Phi)=1-\beta_{1}(\Psi)$, and the well-known inequality:

$$
\begin{equation*}
t / \Phi^{-1}(t) \leqq \Psi^{-1}(t) \leqq 2 t / \Phi^{-1}(t) \quad \text { for all } t>0 \tag{3}
\end{equation*}
$$

to show that the expression for $\alpha_{1}(\Phi)$ is as stated. (For the inequality see [4], p. 13).

Let us thus take $s>1$. We recall that if E is a set of measure u and χ_{E} is its characteristic function, then $\chi_{E}^{*}=\chi[0, u]=\chi_{u}$, and $\sigma_{\varnothing}\left(\chi_{u}\right)=1 / \Phi^{-1}(1 / u)$, so that

$$
\begin{align*}
h(s) & =\sup \left\{\sigma_{\Phi}\left(E_{s} f^{*}\right) / \sigma_{\Phi}\left(f^{*}\right): f \neq 0, f \in L^{\Phi}(I)\right\} \\
& \geqq \sup \left\{\sigma_{\Phi}\left(E_{s} \chi_{u}\right) / \sigma_{\Phi}\left(\chi_{u}\right): 0<u \leqq 1\right\} \tag{4}\\
& =\sup \left\{\Phi^{-1}\left(u^{-1}\right) / \Phi^{-1}\left(s u^{-1}\right): 0<u \leqq 1\right\} \\
& =\sup \left\{\Phi^{-1}(t) / \Phi^{-1}(s t): t \geqq 1\right\}
\end{align*}
$$

We define the latter quantity to be $k(s)$. Then (4) implies

$$
\beta(h) \leqq \beta(k)
$$

Note that by Lemma 2,

$$
\beta(k)=\beta\left(g_{1}\right) .
$$

Now we proceed to show that $h(s) \leqq k(s / 2)$ for $s \geqq 2$, which clearly implies $\beta(h) \geqq \beta(k)$ so that

$$
\beta(h)=\beta(k)=\beta\left(g_{1}\right) .
$$

Assume now that Φ is strictly increasing. We leave the other cases to the reader.

By definition of $k(s)$,

$$
\Phi^{-1}(t) / k(s) \leqq \Phi^{-1}(s t) \quad \text { for } s \geqq 1, t \geqq 1
$$

Thus,

$$
\Phi\left(\Phi^{-1}(t) / k(s)\right) \leqq s t
$$

$$
s \geqq 1, t \geqq 1
$$

and so

$$
\Phi(u / k(s)) \leqq s \Phi(u), \quad \text { for } u \geqq \Phi^{-1}(1)
$$

Given $0<f \in L^{\phi}(I)$ with f decreasing let

$$
c=\sup \left\{t: f(t) \geqq \Phi^{-1}(1)\right\} .
$$

Then from (5),

$$
\Phi(f(t) / k(s)) \leqq s \Phi(f(t)), \quad 0 \leqq t \leqq c
$$

and

$$
\begin{equation*}
\Phi(f(t) / k(s)) \leqq \Phi\left(\Phi^{-1}(1) / k(s)\right) \leqq s, \quad \text { for } c<t \leqq 1 \tag{6}
\end{equation*}
$$

Hence, for $s \geqq 2$, (6) implies that

$$
\begin{aligned}
M_{\Phi}\left(E_{s} f / k(s / 2)\right) & =\int_{0}^{1 / s} \Phi(f(s t) / k(s / 2)) d t \\
& =s^{-1} \int_{0}^{1} \Phi(f(t) / k(s / 2)) d t \\
& =s^{-1}\left(\int_{0}^{c} \frac{s}{2} \Phi(f(t)) d t+\int_{0}^{1} \frac{s}{2} d t\right) \\
& \leqq \frac{1}{2} \int_{0}^{1} \Phi(f(t)) d t+\frac{1}{2} \leqq 1, \quad \text { if } M_{\Phi}(f) \leqq 1
\end{aligned}
$$

Thus,

$$
\rho\left(E_{s} f\right) \leqq k(s / 2) \quad \text { for } \rho(f) \leqq 1
$$

which proves that

$$
h(s) \leqq k(s / 2)
$$

$$
\text { for } s \geqq 2 \text {. }
$$

$i=2$. According to Lemma 4 of [2], if F_{m} is the operator on sequences $\{f(n)\}$ given by

$$
F_{m} f(n)=f([(n-1) / m]+1)
$$

and if

$$
K(m)=\sup \left\{\rho\left(F_{m} f\right): f \in L^{\rho}\left(Z^{+}\right), \rho(f) \leqq 1\right\}
$$

then

$$
\alpha_{2}=\lim _{n \rightarrow \infty} \log K(m) / \log m=-\beta(K)
$$

Note that the action of F_{m} on $\{f(1), f(2), \cdots\}$ is to repeat each term m-times, e.g., $F_{2}\{f(1), f(2), \cdots\}=\{f(1), f(1), f(2), f(2), \cdots\}$. Let us define

$$
p(m)=\sup _{0<u \leqq 1} \Phi^{-1}(u) / \Phi^{-1}(u / m) \quad \text { for } m \in Z^{+}
$$

Then, as in (5) above we obtain

$$
\begin{equation*}
\Phi(t / p(m)) \leqq m^{-1} \Phi(t) \quad \text { provided } \mathrm{t} \leqq \Phi^{-1}(1) \tag{7}
\end{equation*}
$$

Observe that, if $0 \leqq f \in L^{\Phi}$, and k is fixed, then $f(k) \chi_{\{k \mid}(n) \leqq f(n)$ for all $n=1,2, \cdots$ so that

$$
\rho_{\Phi}\left(f(k) \chi_{(k)\rangle}\right) \leqq \rho_{\Phi}(f)
$$

That is

$$
f(k) \leqq \rho_{\Phi}(f) / \rho_{\Phi}\left(\chi_{(k k)}\right)=\rho_{\Phi}(f) \Phi^{-1}(1), \quad \text { for all } k
$$

Hence, if $\rho_{\Phi}(f) \leqq 1$, we have from (7) that

$$
\Phi(f(k) / p(m)) \leqq m^{-1} \Phi(f(k)) \quad \text { for all } k \text { and } m
$$

Thus

$$
\begin{aligned}
M_{\Phi}\left(F_{m} f / p(m)\right) & =\sum_{n=1}^{\infty} \Phi\left(F_{m} f(n) / p(m)\right) \\
& =m \sum_{n=1}^{\infty} \Phi(f(n) / p(m)), \quad \text { by an earlier remark } \\
& \leqq m \sum_{n=1}^{\infty} m^{-1} \Phi(f(n))=M_{\Phi}(f)
\end{aligned}
$$

Thus,

$$
K(m) \leqq p(m)
$$

But, if $f=\chi_{\{1,2, \ldots, k\}}$, then

$$
\rho\left(F_{m} f\right) / \rho_{\Phi}(f)=\Phi^{-1}\left(k^{-1}\right) / \Phi^{-1}\left(k^{-1} m^{-1}\right)
$$

Thus

$$
K(m) \geqq \sup _{k \in Z^{+}} \Phi^{-1}\left(k^{-1}\right) / \Phi^{-1}\left(k^{-1} m^{-1}\right)=p_{1}(m)
$$

say .

By Lemma 2, with $f(t)=1 / \Phi^{-1}(1 / t)$, if

$$
\hat{p}(m)=\lim \sup _{t \rightarrow \infty} \Phi^{-1}(1 / t) / \Phi^{-1}(1 / t m)
$$

and

$$
\hat{p}_{1}(m)=\limsup _{n \rightarrow \infty} \Phi^{-1}(1 / n) / \Phi^{-1}(1 / n m),
$$

then $\beta(p)=\beta(\hat{p})$ and $\beta\left(p_{1}\right)=\beta\left(\hat{p}_{1}\right)$. And, by Lemma 3, $\beta(\hat{p})=\beta\left(\hat{p}_{1}\right)$. Hence $\beta(K)=\beta(p)=\beta\left(p_{1}\right)$ and we thus obtain

$$
\begin{aligned}
\alpha_{2}(\Phi) & =\lim _{m \rightarrow \infty}-\log g_{2}\left(m^{-1}\right) / \log \left(m^{-1}\right) \\
& =\lim _{s \rightarrow 0+}-\log g_{2}(s) / \log s
\end{aligned}
$$

As in the case $i=1$, we can obtain the result for $\beta_{2}(\Phi)$ from this and the inequality (3).

Remark. One can relate the functions $g_{i}(s)$ to the functions $K_{i}(s)$ which are given by

$$
\begin{aligned}
& K_{0}(s)=\sup \{\Phi(s t) / \Phi(t): 0<t<\infty\} \\
& K_{1}(s)=\lim \sup \{\Phi(s t) / \Phi(t): t \rightarrow \infty\} \\
& K_{2}(s)=\lim \sup \{\Phi(s t) / \Phi(t): t \rightarrow 0+\}
\end{aligned}
$$

whenever these make sense (e.g., if Φ is strictly increasing).
In fact K_{i} is left-continuous and increasing and its right continuous inverse is $1 / g_{i}$. Formally this is clear, since if we let

$$
\theta_{t}(s)=\Phi(s t) / \Phi(t)
$$

for any $t>0$, then θ_{t} is convex and increasing and

$$
\theta_{t}^{-1}(u)=\Phi^{-1}(u \Phi(t)) / t
$$

so that

$$
\theta_{\Phi^{-1}(t)}^{-1}(s)=\Phi^{-1}(s t) / \Phi^{-1}(t)
$$

Thus we would expect

$$
\inf _{t>0} \theta_{\Phi^{-1}(t)}^{-1}(s)=1 / g_{0}(s)=\left(\sup _{t>0} \theta_{t}\right)^{-1}(s)=K_{0}^{-1}(s),
$$

and similarly for $\lim \inf$ as $t \rightarrow 0+$ or $t \rightarrow \infty$. This intuitive argument can be justified as is done in [1] for the special case $i=0$. This shows that if σ_{Φ}, s_{Φ} are the exponents defined in [6] and [7] for the case that $\Omega=[0,1]$, then $\alpha_{1}=1 / s_{\Phi}, \beta_{1}=1 / \sigma_{\Phi}$.

Example. Let

$$
\begin{array}{cr}
\Phi(t)=e^{t}-t-1, & t \geqq 0 \\
\Psi(t)=(1+t) \log (1+t), & t \geqq 0
\end{array}
$$

Then, for K_{0} as above

$$
K_{0}(s)=\left\{\begin{array}{l}
s^{2}, 0 \leqq s \leqq 1 \\
\infty, s>1
\end{array}\right.
$$

For, $\Phi(s t)-s^{2} \Phi(t)=\sum_{n=2}^{\infty}\left(\left(s^{n}-s^{2}\right) / n!\right) t^{n} \leqq 0$, for $0 \leqq s \leqq 1$, showing that $K_{0}(s) \leqq s^{2}$ for $0 \leqq s \leqq 1$ and $\Phi(s t) / \Phi(t) \rightarrow s^{2}$ as $t \rightarrow 0$. Also

$$
\lim _{t \rightarrow \infty} \Phi(s t) /(t)=\infty \text { for } s>1, \text { showing } K_{0}(s)=\infty, \quad s>1
$$

Thus,

$$
g_{0}(s)=\max \left(s^{-1 / 2}, 1\right)
$$

For large $t, \Phi(t) \sim e^{t}$ so $\Phi^{-1}(t) \sim \log t$, and hence

$$
g_{1}(s)=1
$$

For small $t, \Phi(t) \sim \frac{1}{2} t^{2}$ so $\Phi^{-1}(t) \sim \sqrt{ } 2 t$, and thus

$$
g_{2}(s)=s^{-1 / 2}
$$

Hence

$$
\left(\alpha_{0}, \beta_{0}\right)=\left(\frac{1}{2}, 0\right),\left(\alpha_{1}, \beta_{1}\right)=(0,0),\left(\alpha_{2}, \beta_{2}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)
$$

Remark. The result given in Lemma 2 seems to be new. There is a corresponding result for subadditive function on $[0, \infty[$, which may be obtained by setting $x=\log t, y=\log s$ and

$$
F(x)=\exp (f(\log x))
$$

in that lemma.

References

1. D. W. Boyd, The Hilbert transform on rearrangement invariant spaces, Canad. J. Math., 19 (1967), 599-616.
2. - Indices of function spaces and their relationship to interpolation, Canad. J. Math., 21 (1969), 1245-1254.
3. -, Monotone semigroups of operators on cones, Canad. Math. Bull., 12 (1969), 299-310.
4. M. A. Krasnosel'skii, and Ya. B. Rutickii, Convex functions and Orlicz spaces, (Groningen, 1961).
5. W. A. J. Luxemburg, Banach Function Spaces, Thesis, Delft Technical Univ. (1955).
6. W. Matuszewska and W. Orlicz, On certain properties of φ-functions, Bull. Acad. Polon. Sci, Ser. sci. math. astr. et phys., 8 (1960), 439-443.
7. T. Shimogaki, Exponents of norms in semi-ordered linear spaces, Bull. Acad. Polon. Sci, Ser. math. astr. et phys., 13 (1965), 135-140.

Received June 17, 1970. Supported in part by NSF Grant GP-14133.
California Institute of Technology

