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WIENER'S COMPACTIFICATION AND Φ-BOUNDED
HARMONIC FUNCTIONS IN THE CLASSIFICATION

OF HARMONIC SPACES

WELLINGTON H. OW

The class HΦ of Φ-bounded harmonic functions on Riemann
surfaces first investigated by Parreau for the special case
where Φ is increasing and convex, was later characterized by
Nakai in its complete generality by assuming only that Φ was
a nonnegative real-valued function on [0, oo)# In this paper we
show that Nakai's theory can be presented in the axiomatic
setting of Brelot. The theory of Wiener compactifications
which is indispensable in the study of potential theory on
Riemann surfaces is extended to harmonic spaces and shown
to be equally useful in the potential theory there.

In particular we obtain a classification scheme for the theory of
harmonic spaces for the class 0 ^ of spaces for which HΦ consists
only of constants. In this scheme it is shown that boundedness
properties such as positiveness, boundedness in absolute value, quasi-
boundedness, and essential positiveness can all be considered as special
cases of Φ-boundedness. A similar classification is briefly given for
subdomains.

2* Let X be a locally compact Hausdorff space which is connected
and locally connected. Suppose that to each open set Ω in X there
corresponds a linear space H(Ω) of finitely-continuous real-valued
functions defined on Ω. This in turn defines a family H = {H{Ω)}Ω of
functions with domains in X. If Ω is an open subset of 36 then by
dΩ we will always mean the boundary of Ω relative to X. A relatively-
compact open set Ω is said to be regular for H if for every continuous
real-valued function / defined on dΩ there is a unique continuous
function hf defined on Ω such that hf\3Ω = /, hf\ΩeH(Ω) and hf ^ 0
if / ^ 0 .

By a harmonic space we mean a pair (X,B) where X and H are
as above and in addition H satisfies the following axioms:

AXIOM I. A function g with open domain Ω c X is a member of
H if for each XeΩ there is a function heH and an open set ΩBg\
Ω = h\ά.

AXIOM II. The regular regions in X for H form a basis for the
topology of X.
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AXIOM III. If j ^ " is a subset of H{Ω), Ω c X a subregion, and
is an upper-directed family, then the upper envelope of S~ is

either oo or a function in H{Ω).

AXIOM IV. l

When i ϊ is well understood we will simply refer to # itself as the
harmonic space. Axioms I-ΠI were introduced by Brelot [1], while
Axiom IV is similar to Axiom IV of Loeb [10].

3* If Ω is regular and xeΩ then hf(x) as a function of /, is a
bounded positive linear functional on the set C(dΩ) of continuous
functions on dΩ. Hence there exists a finite positive Radon measure

μ(.,x,Ω) on dΩ such that hf(x) = \dof(y)dμ(y,x,Ω).

A lower semicontinuσus function s with open domain Ω c 36 is said
to be in the class H if

(i) s(x) < oo for some x in each component of Ω.
(ii) for each xoeΩ such that s(xQ) < oo and for every neighborhood

Ωι a Ω of #o there is a regular region Ωo with Ωo c Ωγ such that s is

integrable on dΩ0 and s(#0) ^ I s(#) dμ (#, x01 ΩQ). An upper semi-

continuous function t will belong to the class H if -t belongs to H.
We call H the class of harmonic functions and H (resp. H) the class
of superharmonic (resp. subharmonic) functions associated with H.
We denote by H{Ω) (resp. H (Ω)) the functions in H (resp. H) with
domain Ω. The harmonic space X is said to be parabolic (denoted X
G OG) provided there does not exist any nonconstant positive super-
harmonic functions on X.

Let Ω be an open set in X g O# and / a bounded real-valued func-
tion on dΩ. Consider the family ^(i3,/) of superharmonic functions
seH(Ω) with lim mfxeo,x-xQ Kχ) ^ f(χo) for all xoedΩ and liminf^ep^
s(a;) ^ 0 (/2 = ideal boundary of X). Then C{ΩJ) is a Perron family
and by Perron's Theorem (see e.g. Brelot [1]), h(f,Ω) (x) —
inf {s(x)\se^(ΩJ)} and h(f,Ω) (x) = -h(-f,Ω) (x) are harmonic
on β with h ^ h. If h = h we denote the common function by h(f, Ω)
and call / resolutive on dΩ. A point xoedΩ is said to be regular
(for the Dirichlet problem) if lim^e^,^^ h(f,Ω) '= f(x0) for every
resolutive function / on dΩ which is continuous at xQ. In particular
every boundary point of a regular open set is regular. By a result
of Loeb [10] a point x0 on the relative boundary dΩ of an open set
is regular if there exists a barrier for Ω at #0; that is, if there exists
a positive harmonic function s defined in the intersection of Ω and
an open neighborhood of xQ and such that limxeQtX^X(js(x) = 0. An open
subset Ω c X is said to be normal if each xoedΩ is regular.

Let K be a compact subset of X and g" the family of all regular
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regions Ω containing K. Then by a theorem of Loeb [10] if is an ex-
haustion of X. We will always assume that 36 is countable at the ideal
boundary and it is therefore possible to obtain a countable exhaustion
of X by regular regions {Ωn} such that Ωn c Ωn+1 and ϊ = U?=i Ωn.

4* Let G g 0G be a normal subregion of X and / a real-valued
function on X. Denote by 2Ϊ(G,/) (resp.2t(G,/)) the class of super-
harmonic (resp. subharmonic) functions s o n G for which there exists
a compact set Ks c G with s^f (resp. s <. f) on G-iΓλS. If neither
SI(G,/) nor §!((?,/) is empty, then being Perron families, we have

Wf (p) — inf s(p) and WG

f (p) = sup s(p)
seSKG,/) seSt«?,/)

are harmonic on G with WG

f ^ ΐ f ?. If W°f = WG

f we denote their
common value by WG. A function / is harmonizable on X if WG

exists for every subregion G $ 0G which is regular for the Dirichlet
problem. If GeOG we define WG = 0. The idea of harmonizability
is due to Constantinescu-Cornea (2).

5* Consider the family 2B(X) of real-valued, bounded, continuous
functions / on X which are harmonizable on X. Then SB(X) forms an
algebra with respect to addition, multiplication, and scalar multi-
plication of functions and is called the Wiener algebra of X. The
subclass 3Ώ,(X) = {/|/eSB(X), Wj = 0} is an ideal of 2δ(X) called the
potential subalgebra of 3S(X). Both 2B(X) and 2δj(X) are closed under
the lattice operations Π and U , i.e., f[jg = max (g,f) and / Π g —
min(/,#). In addition 2δ(X) is a Banach algebra with norm ||/||ooX =
suppex \f{p)\ and SS^X) is a closed subset. For a complete account
see the monograph of Sario-Nakai (18).

The Wiener compactification X* of X is the unique compact Haus-
dorff space such that X is dense in X*, every fe 2B(X) has a continuous
extension to X*, and 3δ(X) separates points in X*. See Loeb (9) for
the existence of such compactifications. The compact set Γ = X* — X
is called the Wiener boundary of X. Since the subset 2B0(X) of 2B(X)
consisting of functions with compact supports in X is a subset of
2δ(X) the set J = {pe%* \f(p) = 0 for all fe SS/X)}, called the Wiener
harmonic boundary of X, is a compact subset of Γ. The set 2ΰj(X)
can be characterized in terms of A as follows: 2B4(ϊ) = {fe 2B(X) | f{Δ)
— 0}. From this we see that X e 0G if and only if Δ — φ. Here-
after we will use topological notions with respect to X* only. For
example if Ω c X* then Ω means the closure of Ω in X*. However
we will still retain the symbol dΩ for the boundary of Ω relative to
X. Wiener's algebra was first introduced by S. Mori (14), Hayashi
(4), Kusunoki (6), and Constantinescu-Cornea (2). Different treatments
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of the theory of the Wiener harmonic boundary, also presented in
Brelot's axiomatic setting, can be found in the works of Constanti-
nescu-Cornea [3], Loeb-Walsh [12], and Lumer-Naim [13].

6* We shall denote by iίP(X), HB(1) the classes of functions on
X which are nonnegative harmonic, and bounded harmonic, respec-
tively; and by OHP (resp. OHB) the class of harmonic spaces X for
which the class ί£P(χ) (resp. ϋB(X)) consists only of constants. Note
that OG c OHP c OHB. A harmonic function u on X is called essentially
positive if u can be represented as a difference of two HP functions
on X, or equivalently, if \u\ has a harmonic majorant on X. The
space HP'(X) of essentially positive harmonic functions on X forms a
vector lattice with lattice operations V and Λ, where for two func-
tions u and v in i/P'(X) we denote by u V v (resp. u A v) the least
harmonic majorant (resp.the greatest harmonic minorant) of u and v.
Clearly HP{H) c 2ΓP'(X). If Xe OG we define ίfP'(X) = {0}.

For any u e HP(%) we define the function Bu by Bu(p) = sup
{v(p) \veHB(Jl), v ^ u on X}. Next for ueHP\Tί) we define Bu =
Buγ — I?u2 where u = uλ — u2f with ux, U2G HP(£). This last definition
is independent of the particular decomposition of u since B is additive
on HP. One can verify that B is order preserving, linear, and
satisfies B2u = 5 ^ on f/P'. Moreover i?(^L V u2) = BuL V Bu2 and
5(^i Λ u2) — Bui Λ 5^2. An HP' function u is called quasi-bounded
(resp. singular) if 1?% = u (resp. Bu = 0). We denote the class of
quasi-bounded (resp. singular) functions on X by HBr(H) (resp. HP"
(X)). Since B2 — B and 1= B+ (I—B), where I is the identity operator
on HP' we have the direct sum decomposition of Parreau (17):

HP'(£) = HB'β) + HP"(X).

7. We now state the maximum principle for HB' functions with
respect to the Wiener harmonic boundary (S. Mori (14), Hayashi (5),
Kusunoki (6)).

THEOREM 1. Let G be a subregion of a harmonic space X and
ueHB'(G) such that

m ^ lim inf u(z) ^ lim sup u(z) <̂  M
zeG,z-+p zeG,z-*p

for each p e dG (J (A U G). Then m<,u^M on G.

A compact set K of X* will be called distinguished is (i) K Π X =
IT, (ii) d(iί Π X) consists of regular points, and (iii) each component
of d(K Π X) has nonempty interior.

If X ί OG we denote by £ϊf (X) the vector lattice of continuous
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harmonizable functions / on X such that there exists a continuous
superharmonic function sf for which the set {peϊ \s(p) — 00} is discrete
and 8f^\f\ on X. Note that Sδ(X) c ^T(S) and that if fe <ST(X)
and G is a subregion of X then f\Ge β^(G). The following decom-
position theorem is valid for harmonic spaces:

THEOREM 2. Let fe Jg (̂X) cmd K be a distinguished compact set.
Then f can be uniquely expressed in the form f = u + v where u e
HB'(Tί - K) Π <^(X) and ve Stfl$) with v = 0 on K \J Δ. Moreover

Both Theorem 1 and Theorem 2 may be proved by methods simi-
lar to that in Sario-Nakai (18).

8* As a consequence of Theorem 2 we may define a projection
function πκf e Jg (̂X) for an / e Jg (̂X) and K a distinguished compact
subset of X*: π^/IX - JSΓ = ueHB'(X - K) and π*/ |ϋΓU^ = jf| I fu 4.
The following theorem illustrates the function-theoretic smallness of
Γ - Δ.

THEOREM 3. Suppose H$QG and F is any compact subset of
Γ — A. Then there exists a finitely continuous positive superharmonic
function sF on X which is continuous on X* such that sF | Δ — 0 and
SF\F = oo .

Proof. Let V 3 JP be an open neighborhood of X* such that F
is a distinguished compact set of X* satisfying V Π Δ = 0. For a
regular exhaustion {fln}Γ of X choose an /G3S Z ( (X) such that f\ V — 1.
Let 6̂W = 7Γ^ / where iΓ% = F — <0%. By Theorem 1 {un}~ is a decreas-
ing sequence and u = ϊim% uw e iϊβ'(X). Since 0 ^ t6 ^ un and un\Δ = 0
we conclude % Ξ O by Theorem 1. For a £0 e ^ we may choose a subse-
quence again denoted {un} such that un(z0) < 2~% (w = 1,2, ). Then
s,p = Σ ϊ - i ^^ is a finitely continuous positive superharmonic function
on X with sF \ F — oo.

We note that if s is any continuous superharmonic function on
X bounded from below and if m = min^ s then s ^ m o n l For let
m > c > — oo and iΓ = {p e Γ\ s(p) ^ c}. Then for s^ defined just as
sF above we have for any ε > 0 limzex,z_p (s(z) + esκ(z)) ^ c for all
pe Γ. It follows that s + εS# ^ c on X and consequently s^ m.
Hence if ve HB'(X) and sF ^ v then 0 Ξ> v on X since un \Δ = 0, (w =
1,2, •)• Now if §p|J =έ 0 then consider v = πφ(sF Π 1) e JΪS'(X) where
v > 0. Observing (sF — v) \ Δ ^ 0 we have sF ^ v > 0 on X contradict-
ing the fact that sF^v implies v ^ 0.
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9* We have the following maximum principle for superharmonic
functions:

THEOREM 4 Let s be a superharmonic function on a subregion
G of a harmonic space X <g O^ such that s is bounded from below and
lim inίteG%t^p s(z) ^ m for every pe (Δ Π G) (J dG. Then s ^> m on G.

Proof. Define a lower semicontinuous function s on 7 = G — G
by s(p) — liπiβeσ,^, inf s(z). For any real number c such that c < m
51 = {p e 71 s (p) > c} is an open set in 7 containing (G fl 4 U 3G.
Thus F = 7 — U a Γ — Δ is compact and we may apply Theorem 3
to obtain a function sF. For each n set Wn — s + sF/n. Then PP» is
a superharmonic function on G, bounded from below, satisfying lim
infze <?,*-„ Wn(z) > c for all pey. Hence Wn(z) > c on G for each n.
In the limit as n—»°o we obtain s ^ m on G.

10* A function w > 0 in HB(H) will be called ilB-minimal on X
if the following is true: whenever v e HB(£) and u >̂ v ^ 0 then
1; = cv^ for some constant cv. We denote by UHB the class of har-
monic spaces X on which there exists at least one ί/B-minimal func-
tion. Note that UHB Π 0G = 0 since HB(36) = {0} for X e OG. Also
Otfs — OG c ί7iy5. The following iίB-minimal criterion for Riemann
surfaces is due to S. Mori (14) and Hayashi (5).

THEOREM 5. A function u e HB(£) is HB-minimal if and only

if there exists an isolated point pe J for which u(p) > 0 and u\{Δ —

Proof. Assume that p e Δ is isolated and there exists a u e HB($)
such that u{p) > 0 and u = 0 on Δ — p. Since HB c i?B' we have
u > 0 by Theorem 1. By the Stone-Weierstrass theorem 3B(Ϊ) coin-
cides with the class i?(£*) of bounded continuous functions on X*.
Hence by Urysohn's lemma there exists an fe SB(ϊ) such that /(p) =
1 and / = 0 on Δ - p. Now u = π>/ e HBf{Tί) with #(p) = 1 and u =
0 on J - p. For cG (0,u(p)) the function u — cue HBr(H) is nonnega-
tive on Δ. Hence by Theorem 1 u ^ cu on X. For ^0 € X we have
c <: u(zo)/u(zo) and hence 0 < ^ 0 ) < 00. If v e ί/B(X) and w ^ v ^ 0
on X then v — 0 on Δ — p and 0 ^ 'y(p) < 00. Setting cv = v(p)/u(p)
it follows that cvu — v vanishes identically on Δ. Consequently v =
cvu and ^ is an iϊZ?-minimal function.

Conversely let u be HB-minimal on X. Now there exists a peΔ
with w(p) > 0. If there is a q e Δ, q Φ p and u(q) > 0 then pick a
/e2δ(X) such that ί(p) = 1, /(g) = 0, and 0 ^ / ^ l on X*. Then
v = πφ(fu) satisfies the relation 0 <; v ^ u on J and hence on X. Thus
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there exists a c ^ O such that v = cvu. But then we have a contra-
diction 0 = v(q) = cυu(q) > 0. Hence u = 0 on Δ — p, u(p) > 0 and
moreover p is isolated due to the continuity of u on J .

COROLLARY 1. Xe OHB — OG if and only if Δ consists of a single
point.

Proof. Assume X e OHB — OG. Then since any u e HB(£) is con-
tinuous at Δ and Xe UHB we conclude by Theorem 5 that Δ consists
of a single point.

Conversely if Δ consists of a single point then the continuity of
any u e HB{H) at Δ together with Theorem 1 implies that X € OHB —
OG.

11* Let G c ϊ be a subregion such that each point of dG Φ 0
is regular. We say that G e SOHB if every HB-function on G which
vanishes continuously on dG is identically zero on G. More generally
suppose G = U jGj is a union of subregions Gό c X such that dG3- Φ 0
is regular for the Dirichlet problem (we will refer to G simply as a
regular open set). Then GeSOHB if each subregion GjeSOHB, where
the Gj U dGj are assumed to be disjoint. We have the following
theorem for harmonic spaces whose counterpart for Riemann surfaces
is due to Kusunoki-Mori (7,8), Hayashi (5), and S. Mori (14).

THEOREM 6. Let G c X be a subregion such that each point of
dGφ 0 is regular. Then GeSOHB if and only if (G - dG) Π Δ = 0

Proof. Assume first that (G — dG) Π Δ = 0 . Suppose u e
HB(G U dG) and u \ dG = 0. Define #(p) = lim infβe<?,*-„ w(s) for p e G - (?.
Let F = {p e Γ Π G| ft(p) ̂  m < 0}. If F = 0 then u^ m. If F ^ 0
then there exists a function sF as in Theorem 3. Now u > m — esF

on G — G for each ε > 0. Hence u ^ m — esF on G. Letting ε —>0
it follows that u ^ m, and consequently ^ ^ 0. Applying a similar
argument to — u we get w ̂  0 and u == 0 on G.

Conversely assume GeSOHB. If (G — 3G) Π J ^ 0 then choose
fe SB(X) such that / = 0 on X - G and / ^ 0 on Δ. Then T Γ ^ / is an
iίB-function which vanishes continuously on dG but is not identically
zero on G. From this contradiction we conclude (G — dG) Π Δ = 0 .

12. In this section we shall define a new class of functions
called Φ-bounded harmonic functions and show their relation to the
classes HB and HP. Denote by Φ(t) a nonnegative real-valued func-
tion defined on [0,oo). A harmonic function u on a harmonic space
X is called Φ-bounded if the composite function Φ( \ u \) possesses a
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harmonic majorant on X. The family of all Φ-bounded harmonic func-
tions on X will be denoted HΦ{H) and OHΦ the totality of harmonic
spaces on which every Φ-bounded harmonic function reduces to a
constant. We define

d(Φ) = lim s u p - ^ - and d(Φ) = lim inf

We note first that if Φ is bounded on [0, oo) then any nonconstant
harmonic function on X is a nonconstant HΦ-function. Hence OHΦ

must consist only of trivial harmonic spaces. On the other hand if
Φ(t) is completely unbounded on [0, oo), that is, if Φ{t) is not bounded
in any neighborhood of any point of [0, °o) then for any nonconstant
harmonic function u on X, Φ(\u\) is completely unbounded on X.
Hence OHΦ consists of all harmonic spaces. Having dispensed with
these simpler cases we have the following theorem first established
on Riemann surfaces by Nakai (14).

THEOREM 7. If Φ is not bounded nor completely unbounded on
[0, °o) then OHΦ = OHP (resp. OHΦ = OHB) if d(Φ) is finite (resp. infinite).

Proof. First assume d(Φ) < oo. Then there exists a c > 0 such
that Φ{t) <: ct for t >̂ ί0. If u is a nonconstant HP function on X so
is v = u + ί0. Since Ί; ;> t0 ^ 0 we have Φ(\v\) ^cv. Hence v is a
nonconstant HΦ-function and so OHΦ c O^p.

Conversely suppose u is a nonconstant HΦ-function on X. We
must show there exists a nonconstant HP-function X. Now there
exists an HP-function v on X such that Φ(\u\) ^ v on X. If v is
nonconstant or u is bounded we are done. So we may exclude these
cases. The set A = {\u(j))\; pe X} is an open connected subset of
[0, oo) not containing 0. For if 0 e A then A = [0, oo) and this would
contradict the fact that Φ{\u\) ^ v = const, on X. Thus θ£ A and
so either u or — u is a nonconstant iίP-function on X. This proves
OHP c O#φ and consequently OHΦ = OHP.

Now consider the case where d(Φ) = oo. Suppose u is a noncon-
stant HB-function on X. By hypothesis Φ is bounded in some interval
(α, b) c [0, oo) within which Φ(t) <̂  c — const. So the range of v —
Cj.it, + c2 is contained in (α, 6) if cly c2 are suitably chosen constants.
It follows that v is a nonconstant ίZΦ-function on X and so OHΦ c

Conversely assume that u is a nonconstant HΦ-function on X.
Suppose to the contrary that Xe OHB. Now Φ( | u | ) ^ v on X for some
HP-function v. This implies X g OH P since otherwise from the fact
that Φ(\u\) ^v = const, and d(Φ) = oo we would get that u is
bounded, contrary to our assumption Xe OΠB Thus X<2 OHP and hence
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Xg OG. Since X e O M — 0G by Corollary 1 J consists of a single point.
From the fact that d(Φ) = oo there is a strictly increasing sequence
{tn}T of positive numbers for which l i m , ^ Φ(tn)/tn — oo and lim^,*,
tn — oo. Now each set Gn = {p e X | | w(j>) | < ίn} is a regular open set.
For if p0 e dGn and u(pQ) = tn (resp. — tn) then tn — u (resp. ίΛ + u) is
a barrier function at p0 with respect to Gn. Also since % is unbounded
6 f ϊ . Now GΛ ? S 0 M for some n, and hence for all sufficiently large
n. For if not consider the function anv — \u\ where an = tJΦ(tn).
Then anv — \u\ is superharmonic, bounded from below on Gn, conti-
nuous on Gn U dGn and nonnegative on dGn. Hence anv — \u\ ̂  0 on
Gn. Since an —•> 0 and Gπ | ϊ we have u = 0 on X, a contradiction.
Hence GΛ g SO^^ for n^nγ say, and so we may as well assume Gn $
S0HB for n = 1, 2, . Now by Theorem 6 JeG1 — dGι and so

lim sup |tt(p)| = lim sup \n{p)\ ^ rx.

The function anv + n — \u\ is superharmonic, bounded from below on
Gn, continuous on Gn U dGn, and nonnegative on dGn. Hence by
Theorem 4, anv + rλ — \u\ ̂  0 on Gn. Since an-+0 we get | ^ | ^ n
on X which contradicts our assumption X e 0HB. Hence we conclude
X g 0HB and so 0^ β c 0HΦ.

13* We now give relations between the classes HΦ, HBr and
HP'. The following theorems due to Nakai (16) for Riemann surfaces
are also valid for harmonic spaces.

THEOREM 8. // d(Φ) > 0 then HΦβ) c HP' (X).

Proof. Set d(Φ) = 2c > 0 and choose £oe (0, oo) so that Φ(t) > ct
for ί > ί0. If ueHΦ(£) then Φ ( | M | ) has a harmonic majorant v on
X. It follows, that v + ct0 ^ Φ(\u\) + ct0 *t c \u\ on X and |%| posses-
ses a harmonic majorant on X. Thus ueHP'(H).

THEOREM 9. If d(Φ) - oo then HΦ{%) Π ίίP'(X) c HB'QL).

Proof. For % e HΦ{Έ) Π HP'{H) there exists an iϊP-funetion v on
X with Φ( | u | ) ^ v. Define Λf% = u V 0 + (—u) V 0. Since B com-
mutes with the operations M, V, and Λ we need only show BMu —
Mu. Since d(Φ) = oo there is an increasing sequence {tn}T of positive
numbers with Φ(tn) > 0 and an = tn/Φ(tn)-+O. Setting GΛ = {pe X| \u
(p) I < n̂} we have Gn | X. Let {Ωm}~ be an exhaustion of X. Observe
that the boundary points of Ωm Π Gn are regular. Let wm be har-
monic on Ωm Π Gn with tί;m | (dΩm) f] Gn = min(Mu — BMu, tn) and wm

Π Ωm = 0. Furthermore if we define wm | (flm - Gw) = 0 then wm
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is subharmonic on Ωnf and wm ^ wm+ι on Ωm. Also let w'n be har-
monic on Ωm with boundary values yor

m \ (dΩm) Π Gn = min(Mu — BMu,
tn) and w'm\ (dΩm — Gn) = 0. Then {τ*4} is a bounded sequence and
0 ^ < ^ Mu — BMu, m = 1, 2, . It follows from a theorem of
Loeb-Walsh [11] that if Ω c 3£ is a regular region and the family ψ =
{& e iJ(£?) I 0 ^ Λ} is bounded then Ψ is equicontinous on Ω. Consequ-
ently by the Arzela-Ascoli theorem Ψ is a normal family. Hence
{w'm} has a convergent subsequence with limit function w'. We obtain
0 <£ J5w' ^ J5(M£ — ^M%) = 0. Since w' is bounded and nonnegative,
w' = Bw' Ξ 0 on ϊ . In addition w'm^> wm^ 0 implies l im^^ wm = 0 on
£. Now on (3i2m) Π G« we have | u \ <^tn and | u \ ̂  Mu = BMu + (Mu —
BMu). Hence on (dΩm) n (?„ | u | - £ M ^ ^ min(Mu - BMu, tn) = wΛ.
On 3CrΛ, | u | = ίn = an Φ( \u\) ^ anv, and so | u | ^ anv + JBMU + wm

on d(Ωm Π Gn) and hence on Ωm Π Gw. Upon letting m —> 00 and then
^ —> 00 we obtain | u | g JBMU on X. Since i t o is the least harmonic
majorant of | u | on X we must have i fe ^ ΰ i f e and hence BMu = Mu
as desired.

Combining Theorem 8 and Theorem 9 we have the following

COROLLARY 2. // d(Φ) = 00 and d(Φ) > 0 then HΦ(X) c HB'(£).

14* Finally we briefly mention something about relative classes.
Let F c 36 be a regular open subset. We denote by H$(H, F) the
class of harmonic functions u on F vanishing continuously on dF and
such that Φ(\u\) has a harmonic majorant on F. The corresponding
null class SOHQΦ will consist of subregions F for which H${H, F) —
{0}. Note that SOHQΦ consists of all relatively compact regular open
subsets of harmonic spaces if Φ(t) is bounded on [0, 00). If on the
other hand Φ{t) is not bounded at ί = 0 then SOHQΦ consists of all
regular open subsets of harmonic spaces. The remaining case is
treated in the following theorem of Nakai (15).

THEOREM 10. If Φ{t) is bounded at t = 0 but unbounded in [0, 00)
and d{Φ) = 00 then SOHQΦ = SOE'HB

The proof follows by an argument similar to that in Theorem 7.
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