OSCILLATORY PROPERTIES OF SOLUTIONS OF EVEN ORDER DIFFERENTIAL EQUATIONS

HIROSHI ONOSE

Consider the following *n*th order nonlinear differential equation

(1) $x^{(n)} + f(t, x, x', \dots, x^{(n-1)}) = 0$. All functions considered will be assumed continuous and all the solutions of (1), continuously extendable throught the entire nonnegative real axis. A nontrivial solution of (1) is called oscillatory if it has zeros for arbitrarily large t and equation (1) is called oscillatory if all of its solutions are oscillatory. A nontrivial solution of (1) is called nonoscillatory if it has only a finite number of zeros on $[t_0, \infty)$ and equation (1) is called nonoscillatory if all of its solutions are nonoscillatory. In this paper, theorems on oscillation and nonoscillation are presented.

Recently, J. S. W. Wong [8] posed a definition called strongly continuous with which he proved some theorems to (1) for n = 2. The proof is based on that of his earlier results [7]. We introduce more general definition. A function $f(t, x_1, \dots, x_n)$ is called generalized strongly continuous from the left at x_{1c} if $f(t, x_1, x_2, \dots, x_n)$ is jointly continuous in t and $x_i(i = 1, 2, \dots, n)$ and for $\varepsilon > 0$ there exist $\delta > 0, T \ge 0$, and $x_{\delta} \in [x_{1c} - \delta, x_{1c}]$ such that for all $x_1 \in [x_{1c} - \delta, x_{1c}]$, and for all x_i satisfying $|x_i - k_i| \le \delta$ (k_i is any constant) for $i = 2, \dots, T$,

$$(1 - \varepsilon)f(t, x_{\delta}, k_2, \cdots, k_n) \leq f(t, x_1, \cdots, x_n) \leq (1 + \varepsilon)f(t, x_{1c}, k_2, \cdots, k_n)$$

for all $t \ge n$.

Generalized strong continuity from the right is defined analogousely. A function $f(t, x_1, \dots, x_n)$ is said to be generalized strongly continuous if it is generalized strongly continuous both from the left and from the right. If $f = f(t, x_1)$, then our definition is the same as Wong's one. For example, $f(t, x_1, \dots, x_n) = a(t)f(x_1, \dots x_n)$ is generalized strongly continuous.

2. Oscillation and nonoscillation theorems.

THEOREM 1. Assume that n is even and that

(a) $f(t, c, k_2 \cdots, k_n)$ is bounded for any constant c and $k_i (i = 2, \dots, n)$ and $x_1 f(t, x_1, \dots, x_n) > 0$ $(x_1 \neq 0)$.

Let $f(t, x_1, \dots, x_n)$ be generalized strongly continuous from the left

for $x_1 > 0$ and generalized strongly continuous from the right for $x_1 < 0$. Then, a necessary and sufficient condition for equation (1) to have a bounded nonoscillatory solution is

(2)
$$\left|\int_{-\infty}^{\infty}t^{n-1}f(t, c, k_2, \cdots, k_n)dt\right| < \infty$$

 $(c(\neq 0) \text{ and } k_i (i = 2, \dots, n) \text{ are some constants}).$

Proof. Let x(t) be a bounded nonoscillatory solution of (1), which must eventually be of one sign. Then we may assume that x(t) > 0 for $t \ge T > 0$. Since x(t) > 0, then $f(t, x, x', \dots, x^{(n-1)}) > 0$ for $t \ge T$, we see from (1) and the assumption that x(t) is bounded:

$$egin{aligned} x^{(n)} &\leq 0, \, x^{(n-1)} \geq 0, \, x^{(n-2)} \leq 0, \, \cdots, \, x' \geq 0 \;, \ &\lim_{t o \infty} x^{(i)}(t) = 0, \qquad i = 1, \, 2, \, \cdots, \, n-1 \;. \end{aligned}$$

From this and the fact x(t) is positive and bounded implies that x(t) tends to a finite limit L > 0. Integrating (1), we obtain for sufficiently large t

$$x^{(n-i)}(t) = (-1)^{n-i-1} \int_{t}^{\infty} \frac{(s-t)^{i-1}}{(i-1)!} f(s, x(s), x'(s), \cdots, x^{(n-1)}(s) ds$$

(for, $i = 1, 2, \cdots, n-1$).

In particular,

$$x(t) = L - \int_t^{\infty} \frac{(s-t)^{n-1}}{(n-1)!} f(s, x(s), x'(s), \cdots, x^{(n-1)}(s)) ds$$
.

By the generalized strong continuity of $f(t, x_1, x_2, \dots, x_n)$ implies that there exist $0 < \delta < L$, and $L_{\delta} \in [L - \delta, L]$ such that for all x_i satisfying $|x_i - k_i| \leq \delta(i = 2, \dots, n)$ and for all $x_i \in [L - \delta, L]$,

$$f(t, x_1, x_2, \cdots, x_n) \geq \frac{1}{2} f(t, L_{\delta}, k_2, \cdots k_n)$$
.

Choose T sufficiently large, we can restrict the solution x(t) to satisfy $L - \delta \leq x(t) \leq L$ for all $t \geq T$, and that

$$|x^{\scriptscriptstyle(i)}(t)-0| \leq \delta \, (i=1,\,2,\,\cdots,\,n-1)$$
 ,

for all $t \ge T$. Thus, we obtain for $t \ge T$,

$$0 < rac{1}{2} f(t, \, L_{\hat{s}}, \, 0, \, \cdots, \, 0) < f(t, \, x(t), \, x'(t), \, \cdots, \, x^{(n-1)}(t)) \; .$$

Accordingly, we obtain

(3)
$$x(t) = L - \int_{t}^{\infty} \frac{(s-t)^{n-1}}{(n-1)!} f(s, x(s), x'(s), \cdots, x^{(n-1)}(s)) ds$$
$$\leq L - \frac{1}{2(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} f(s, L_{\delta}, 0, \cdots, 0) ds .$$

Since x(t) is bounded, we obtain

(4)
$$\int_t^{\infty} (s-t)^{n-1} f(s, L_{\delta}, 0, \cdots, 0) ds < \infty$$

which implies

$$\int_t^\infty s^{n-1} f(s, L_s, 0, \cdots, 0) ds < \infty$$
 .

Conversely, we show that if (2) holds for some constant c > 0 and $k_i (i = 2, \dots, n)$, then there exists a nonnegative continuous bounded solution to the following integral equation:

$$egin{aligned} &x_{n-1}(t) = k_n + \int_t^\infty f(s,\,x_0(s),\,x_1(s),\,\cdots,\,x_{n-1}(s))ds\ &x_{n-2}(t) = k_{n-1} - \int_t^\infty (s-t)f(s,\,x_0(s),\,x_1(s),\,\cdots,\,x_{n-1}(s))ds\ &x_{n-3}(t) = k_{n-2} + \int_t^\infty &rac{(s-t)^2}{2!}f(s,\,x_0(s),\,x_1(s),\,\cdots,\,x_{n-1}(s))ds\ &dots\ &dots\ &x_0(t) = c - \int_t^\infty &rac{(s-t)^{n-1}}{(n-1)!}f(s,\,x_0(s),\,x_1(s),\,\cdots,\,x_{n-1}(s))ds\ . \end{aligned}$$

(5)

We define
$$E = \{0, 1, 2, \dots, n-1\}$$
. Let a positive number T be chosen such that

(6)
$$\max_{i\in E} \frac{1}{(n-1-i)!} \int_{t}^{\infty} (s-t)^{n-1-i} f(s,c,k_2,\cdots,k_n) ds \leq \frac{c}{M}$$

where M(>2) is some constant.

We define. for N a positive interger $N \ge T$: for $t \ge N$,

(7)
$$\begin{aligned}
x_{n-1,N}(t) &= k_n \\
x_{n-2,N}(t) &= k_{n-1} \\
\vdots \\
x_{1,N}(t) &= k_2 \\
x_{0,N}(t) &= c
\end{aligned}$$

and for $T \leq t \leq N$,

HIROSHI ONOSE

$$\begin{aligned} x_{n-1,N}(t) &= k_n + \int_{t+(1/N)}^{\infty} f(s, x_{0,N}(s), x_{1,N}(s), \cdots, x_{n-1,N}(s)) ds \\ x_{n-2,N}(t) &= k_{n-1} - \int_{t+(1/N)}^{\infty} \left(s - t - \frac{1}{N}\right) f(s, x_{0,N}(s), \cdots, x_{n-1,N}(s)) ds \\ (8) &\vdots \end{aligned}$$

$$egin{aligned} &x_{1,N}(t) = k_2 + \int_{t+(1/N)}^{\infty} & rac{(s-t-(1/N)^{n-2}}{(n-2)!} f(s,\,x_{0,N}(s),\,\cdots,\,x_{n-1,N}(s)) ds \ &x_{0,N}(t) = c - \int_{t+(1/N)}^{\infty} & rac{(s-t-(1/N)^{n-1}}{(n-1)!} f(s,\,x_{0,N}(s),\,\cdots,\,x_{n-1,N}(s)) ds \ . \end{aligned}$$

This formula defines $x_{i,N}(t)$ for $i = 0, 1, \dots, n-1$, successively on the intervals [N - (K/N), N - (K-1)/N] for $k = 1, 2, \dots, N(N-T)$: hence $x_{i,N}(t), i = 0, 1, \dots, n-1$, are defined on $[T, \infty)$. For $N - (1/N) \leq t < \infty$, we have by (6)

$$\begin{aligned} |x_{i,N}(t) - k_{i+1}| &\leq \int_{t+(1/N)}^{\infty} \frac{(s-t-(1/N))^{n-1-i}}{(n-1-i)!} f(s, x_{0,N}(s), \cdots, x_{n-1,N}(s)) ds \\ &\leq \int_{t+(1/N)}^{\infty} \frac{(s-t-(1/N))^{n-1-i}}{(n-1-i)!} f(s, c, k_2, \cdots, k_n) ds \\ &\leq \frac{c}{M} (i = 1, 2, \cdots, n-1) \end{aligned}$$

and also

(9)

$$0 < c - rac{c}{M} \leq x_{\scriptscriptstyle 0,N}(t) \leq c$$
 .

By easy induction, we have

$$egin{aligned} 0 &\leq |x_{i,N}(t) - k_{i+1}| \leq rac{c}{M}i = 1,\,2,\,\cdots,\,n-1 \;, \ 0 &< c - rac{c}{M} \leq x_{\scriptscriptstyle 0,N}(t) \leq c \end{aligned}$$

on the entire interval $[T, \infty)$. Consequently, for $t \ge T$, since f is generalized strongly continuous and $f(t, c, k_2, \dots, k_n)$ is bounded, we have

(10)
$$|x_{n-1',N}(t)| = f\left(t + \frac{1}{N}, x_{0,N}\left(t + \frac{1}{N}\right), \cdots, x_{n-1,N}\left(t + \frac{1}{N}\right)\right)$$
$$\leq \frac{3}{2}f\left(t + \frac{1}{N}, c, k_{2}, \cdots, k_{n}\right)$$
$$\leq \frac{3}{2}K \quad (K \text{ is constant}),$$

OSCILLATORY PROPERTIES OF SOLUTIONS

$$|x_{i,N}'(t)| = |x_{i+1,N}(t) - k_{i+2}| \leq \frac{c}{M}$$
, $(i = 0, 1, \dots, n-2)$.

Since the family $\{x_{i,N}(t)\}(i = 0, 1, 2, \dots, n-1)$, is uniformly bounded and equicontinuous on [T, B] (B is arbitrary), we extract from $\{x_{i(N}(t)\}\$ $(i = 0, 1, \dots, n-1)$, a uniformly convergent subsequence $\{x_{i,k}(t)\}$,

$$\lim_{k\to\infty} x_{i,k}(t) = \overline{x}_i, \quad \text{(on } [T, B], \text{ for } i = 0, 1 \cdots, n-1\text{)}.$$

For any large number B > T, we may write (8) in the form

(11)
$$x_{i,k}(t) = d + (-1)^{i+1} \left\{ \int_{t+(1/k)}^{B} \frac{(s-t-(1/k))^{n-1-i}}{(n-1-i)!} f(s, x_{0,k}(s), \dots, x_{n-1,k}(s)) ds + \phi_k(B) \right\},$$

where,

$$\phi_k(\mathbf{B}) = \int_B^{\infty} \frac{(s-t-(1/k))^{n-1-i}}{(n-1-i)!} f(s, x_{0,k}(s), \cdots, x_{n-1,k}(s)) ds,$$

$$(d = c \text{ for } i = 0, \ d = k_{i+1} \text{ for } i = 1, 2 \cdots, n-1).$$

For fixed B we let k tend to infinity in (11) and obtain

$$\lim_{k\to\infty}\inf\phi_k(B)\leq (-1)^i(-\bar{x}_i+d+(-1)^{i+1}\int_t^B\frac{(s-t)^{n-1-i}}{(n-1-i)!}f(s,\bar{x}_0,\\\cdots,\bar{x}_{n-1})ds)\leq \limsup_{k\to\infty}\phi_k(B).$$

From (6) and (9) and f is generalized strongly continuous, we obtain

(12)
$$0 \leq \phi_k(B) = \int_B^{\infty} \frac{(s-t-(1/k))^{n-1-i}}{(n-1-i)!} f(s, x_0 k(s), \cdots, x_{n-1,k}(s)) ds$$
$$\leq \frac{3}{2} \int_B^{\infty} \frac{(s-t)^{n-1-i}}{(n-1-i)!} f(s, c, k_2, \cdots, k_n) ds < \infty .$$

By (2), the integral in (12) tend to zero as $B \to \infty$. Thus, we conclude that $\bar{x}_i(t)$ $(i = 0, 1, \dots, n-1)$, is a solution of (5) and also $\bar{x}_0(t)$ is a bounded nonoscillatory solution of (1).

THEOREM 2. Assume that n is even and that

(β) $x_1 f(t, x_1, x_2, \dots, x_{n-1}, \gamma) > 0$ $(x_1 \neq 0)$, where γ is constant.

Let $f(t, x_1, x_2, \dots, x_{n-1}, \gamma)$ be generalized strongly continuous from the left for $x_1 > 0$, and generalized strongly continuous from the right for $x_1 < 0$. Then, a necessary and sufficient condition for equation

(1')
$$x^{(n)} + f(t, x, x', \dots, x^{(n-2)}, \gamma) = 0$$
 (γ is constant),

to have a bounded nonoscillatory solution is

(2')
$$\left|\int_{0}^{\infty}t^{n-1}f(t, c, k_{2}, \cdots, k_{n-1}, \gamma)dt\right| < \infty$$

 $(c(\neq 0) \text{ and } k_i (i = 2, \dots, n-1) \text{ are some constant}).$

Proof. The necessity follows from the necessary part of the proof of Theorem 1.

Conversely, we show that if (2') holds for some constant c > 0and $k_i (i = 2, \dots, n - 1)$, then there exists a nonnegative continuous bounded solution to the following integral equation:

(13)
$$x_{n-2}(t) = k_{n-1} - \int_{t}^{\infty} (s-t) f(s, x_{0}(s), \cdots, x_{n-2}(s), \gamma) ds$$
$$x_{n-3}(t) = k_{n-2} + \int_{t}^{\infty} \frac{(s-t)^{2}}{2!} f(s, x_{0}(s), \cdots, x_{n-2}(s), \gamma) ds$$
$$\vdots$$

$$x_{0}(t) = c - \int_{t}^{\infty} \frac{(s-t)^{n-1}}{(n-1)!} f(s, x_{0}(s), \cdots, x_{n-1}(s), \gamma) ds$$
.

Let a positive number T be chosen such that

(14)
$$\max_{i \in E} \int_{T}^{\infty} \frac{(s-t)^{n-1-i}}{(n-1)-i!} f(s, c, k_2, \cdots, k_{n-1}, \gamma) ds \leq \frac{c}{M}$$

(M(>2) is some constant).

We define, for N a positive integer $N \ge T$: for $t \ge N$,

and for $T \leq t \leq N$

$$x_{n-2,N}(t) = k_{n-1} - \int_{t+(1/N)}^{\infty} \left(s - t - \frac{1}{N}\right) f(s, x_{0,N}(s), \cdots, x_{n-2,N}(s), \gamma) ds$$

$$x_{1.N}(t) = k_2 + \int_{t+(1/N)}^{\infty} \frac{(s-t-(1/N))^{n-2}}{(n-2)!} f(s, x_{0.N}(s), \cdots, x_{n-2.N}(s), \gamma) ds$$

$$x_{0.N}(t) = c - \int_{t+(1/N)}^{\infty} \frac{(s-t-(1/N))^{n-1}}{(n-1)!} f(s, x_{0.N}(s), \cdots, x_{n-2.N}(s), \gamma) ds.$$

As same as the proof of Theorem 1, $x_{i,N}(t)$ $(i = 0, 1, \dots, n-2)$, are defined on $[T, \infty)$ and that for $i = 0, 1, \dots, n-3$,

$$|x_{i,N}'(t)| = |x_{i+1,N}(t) - k_{i+2}| \leq rac{c}{M}$$

and for i = n - 2,

$$|x_{i,N}^{\prime}(t)| = \int_{t}^{\infty} f(s, x_{0,N}(s), \cdots, x_{n-2,N}(s), \gamma) ds \leq rac{c}{M}$$
 .

Hence the family $\{x_{i,N}(t)\}$ $(i = 0, 1, \dots, n-2)$ is uniformly bounded and equicontinuous on [T, B] (B is arbitrary). Using an argument similar to that given in the proof of Theorem 1, we have a bounded nonoscillatory solution of (1').

REMARK. For n = 2, Theorem 2 coincides with Theorem 3 in [8].

COROLLARY 1. Suppose that n is even and that

 $x_1 f(t, x_1, \dots, x_n) > 0$ $(x_1 \neq 0)$.

Let $f(t, x_1, \dots, x_n)$ be generalized strongly continuous from the left for $x_1 > 0$ and generalized strongly continuous from the right for $x_1 < 0$ and that

$$\left|\int_{t_0}^{\infty} t^{n-1}f(t, c, k_2, \cdots, k_n)dt\right| = + \infty (c(\neq 0) \text{ and } k_i(i = 2, \cdots, n)$$

are any constants). Then, every bounded solution of (1) is oscillatory.

Proof. The proof of Corollary 1 follows immediately from the necessary part of Theorem 1.

COROLLARY 2 [1, Theorem 1]. Consider

(15)
$$x^{(2n)} + p(t)g(x, x', x^{(2)}, \cdots, x^{(2n-1)}) = 0$$

under the following assumption:

(i) $p: I \to R_+ = (0, +\infty), \quad I = [t_0, +\infty), \quad t_0 \ge 0, \quad p \in C[t_0, +\infty),$ and

(A)
$$\int_{t_0}^{+\infty} t^{2n-1} p(t) dt = +\infty$$

is satisfied;

(ii) g:
$$R^{2n} \to R = (-\infty, \infty), \quad x_1g(x_1, x_2, \cdots, x_{2n}) > 0 \quad for \quad x_1 \neq 0$$

and continuous on \mathbb{R}^{2n} ;

then, under the above conditions, every bounded solution of (15) is oscillatory.

HIROSHI ONOSE

Proof. The function $p(t)g(x_1, x_2, \dots, x_{2n})$ is generalized strongly continuous. Hence, Corollary 2 is included in Corollary 1.

COROLLARY 3 [4, Theorem 1]. Under the assumption (α') p(t) is bounded and eventually nonnegative:

 $x_1g(x_1,\,x_2,\,\cdots,\,x_{2n})>0 \quad (x_1
eq 0), \qquad ext{for} \quad (x_1,\,x_2,\,\cdots,\,x_{2n})\in R^{2n} \;,$

a necessary and sufficient condition that (15) have a bounded nonoscillatory solution is

(16)
$$\int_{\infty}^{\infty} t^{2n-1} p(t) dt < \infty .$$

Proof. The function $p(t)g(x_1, x_2, \dots, x_n)$ is generalized strongly continuous, hence Corollary 3 is included in Theorem 1.

COROLLARY 4 [4, Theorem 2]. Under the assumption (β') p(t) is eventually nonegative and $x_1g(x_1, x_2, \dots, x_{2n-1}, c) > 0$ $x_1 \neq 0$, for $(x_1, x_2, \dots, x_{2n-1}, c) \in \mathbb{R}^{2n}$ where c is constant, a necessary and sufficient condition that the differential equation

(17) $x^{(2n)} + p(t)g(x, x', \dots, x^{(2n-2)}, c) = 0, \quad n \ge 1,$

c is constant, have a bounded nonoscillatory solution is (16).

Proof. The proof follows immediately from Theorem 2.

THEOREM 3. Consider

(18) $x^{(2n)} + p(t)g(x) = 0$,

under the following assumptions:

- $(\text{ i }) \quad p: \quad I \rightarrow R_+ = (0, \ +\infty), \quad I = [t_0, \ +\infty), \quad t_0 \geqq 0, \quad p \in C[t_0, \ +\infty),$
- (ii) g: $R \to R = (-\infty, -\infty)$, $g \in C'(-\infty, +\infty)$, xg(x) > 0 for $x \neq 0$, and continuous on R; $g'(x) \ge 0$ for $|x| \in [K, +\infty)$ (K is some positive constant), and

$$\int_{arepsilon}^{+\infty} rac{1}{g(u)} du < +\infty$$
 , $\int_{-arepsilon}^{-\infty} rac{1}{g(u)} du < +\infty$

for every $\varepsilon > 0$;

then a necessary and sufficient condition that every solution of (18) is oscillatory is

(19)
$$\int_{t_0}^{+\infty} t^{2n-1} p(t) dt = +\infty$$

Proof. From Theorem 2, if $\int_{t_0}^{+\infty} t^{2n-1} p(t) dt < +\infty$, then (18) is nonoscillatory. Hence we conclude that if every solution of (18) is oscillatory, then $\int_{t_0}^{+\infty} t^{2n-1} p(t) dt = +\infty$.

Conversely $\int_{t_0}^{+\infty} t^{2n-1} p(t) dt = +\infty$, then every solution of (18) is oscillatory in the case n > 1 [1] and n = 1 [6; 7].

THEOREM 4. Assume that n is even and that (β). Let $f(t, x_1, \dots, x_{n-1}, \gamma)$ be generalized strongly continuous from the left for $x_1 > 0$, and generalized strongly continuous from the right for $x_1 < 0$. Then, a necessary and sufficient condition for every bounded solution of (1') to be oscillatory is

(20)
$$\left|\int_{-\infty}^{\infty} t^{n-1} f(t, c, k_2, \cdots, k_{n-1}, \gamma) dt\right| = +\infty$$
$$(c \neq 0) \text{ and } k_i (i = 2, \cdots, n-1) \text{ are any constant}.$$

Proof. Assume that (20) does not hold, then (2') holds for some $c \neq 0$ and $k_i (i = 2, \dots, n-1)$. Hence by Theorem 2, equation (1') has a bounded nonoscillatory solution, so clearly condition (20) is necessary. Conversely, let x(t) > 0 be a nonoscillatory solution of (1'). In view of the arguments of Theorem 1, x(t) must be nondecreasing and the limit is finite. Hence the argument in the proof of Theorem 1 is applicable, which shows that leads a contradiction.

THEOREM A [5]. If in addition to the hypothesis of Corollary 3 (or Corollary 4), for some r > 1 and n is even,

(21)
$$\liminf_{|x_1| \to +\infty} \frac{|g(x_1, x_2, \cdots, x_n)|}{|x_1|^r} > 0$$

then a necessary and sufficient condition that all solution of (15) (or (17)) be oscillatory is

(22)
$$\int_{0}^{\infty} t^{n-1} p(t) dt = +\infty$$

THEOREM B [2]. Consider

(23)
$$x^{(n)} + p(t)g(x, x', \cdots, x^{(n-1)}) = 0$$

with n even, and moreover,

- (i) p: $I \rightarrow R_+ = (0, +\infty)$, $I = [t_0, +\infty)$, $t_0 \ge 0$.
- (ii) g: $R^n \to R = (-\infty, +\infty)$, and such that Condition (G): $x_1g(x_1, x_2, \dots, x_n) > 0$ for every $(x_1, x_2, \dots, x_n) \in R^n$ with $x_1 \neq 0$,

HIROSHI ONOSE

and for every $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, and every $\lambda \geq K$ (=fixed positive constant), $g(-x_1, -x_2, \dots, -x_n) = -g(x_1, x_2, \dots, x_n)$, and $g(\lambda, \lambda x_2, \dots, \lambda x_n) = \lambda^r g(1, x_2, \dots, x_n)$, where $\gamma = q/r$, q r odd positive integers relatively prime;

then under any one of the following conditions, all solutions of (23) are oscillatory:

(a)
$$0 < \gamma < 1$$
 , $\int_{t_0}^{\infty} t^{\gamma(n-1)} p(t) dt = +\infty$;

(b)
$$\gamma = 1$$
 , $\int_{t_0}^{\infty} t^{n-1-\varepsilon} p(t) dt = +\infty$,

for some ε with $0 < \varepsilon < 1$;

(c)
$$\gamma>1$$
 , $\int_{t_0}^{\infty}\!\!t^{n-1}p(t)dt=+\infty$.

Kartsatos [2, Remark 3] posed a problem that under what additional assumptions on the function g, the conditions of Theorem B are also necessary for the theorem to hold. In case $0 < \gamma < 1$, the condition (a) is also necessary for theorem B to hold. When $\gamma = 1$ (this is the linear case), it is well known that condition (b) can not be necessary. Consider the Euler equation. Thus, we answer the problem for $\gamma > 1$.

THEOREM 5. In addition to the assumptions of Theorem A, assume p(t) being bounded. Then (c) is necessary for all solutions of (23) to be oscillatory.

Proof. As p(t) being bounded, the proof follows immediately from Theorem 1.

THEOREM 6. Consider the equation

(24) $x^{(n)} + p(t)g(x, x', \dots, x^{(n-2)}, \delta) = 0$ (for *n* even),

where δ is constant. Then (c) is necessary for all solutions of (24) to be oscillatory.

Proof. The proof follows immediately from Theorem 2.

REMARKS. Theorem 5 and Theorem 6 are proved also from Theorem A, since from Condition (G), we see

$$\lim_{|x_1| \to +\infty} \inf_{\frac{|g(x_1, x_2, \cdots, x_{n-1})|}{|x_1|^r}} = \liminf_{|x_1| \to +\infty} \frac{|x_1|^r g(\mathbf{1}, (x_2/x_1), \cdots, (x_{n-1}/x_1))}{|x_1|^r} > 0 \ .$$

In case $0 < \gamma < 1$, Ličko and Švec [3] proved Theorem 6 with

 $g = x^{\gamma} \ (0 < \gamma < 1).$

The author wishes to express his thanks to the referee for some very useful comments.

References

1. A. G. Kartsatos, On oscillation of solutions of even order nonlinear differential equations, J. Differential Equations, 6 (1969), 232-237.

2. _____, Criteria for oscillation of solutions of differential equations of arbitrary order, Proc. Japan Acad., 44 (1968), 599-602.

3. I. Ličko and M. Švec, Le caractère oscillatoire des solutions de l'équation $y^{(n)} + f(x)y^{\alpha} = 0$, n > 1, Czechoslovak Math. J., 13 (1963), 481-491.

4. H. Onose, Oscillatory property of certain nonlinear ordinary differential equations, SIAM J. Appl. Math., 18 (1970), 715-719.

5. _____, Oscillatory property of ordinary differential equations of arbitrary order, J. Differential Equations, 7 (1970), 454-458.

6. _____, Oscillation theorems for nonlinear second order differential equations Proc. Amer. Math. Soc., (in press).

7. J. W. Macki and J. S. W. Wong, Oscillation of solutions to second-order nonlinear differential equations, Pacific J. Math., 24 (1968), 111-117.

8. J. S. W. Wong, On second order nonlinear oscillation, Funkcial. Ekvac., 11 (1969), 207-234.

Received May 11, 1970.

UNIVERSITY OF IBARAKI, HITACHI, JAPAN.