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INFINITE MATRICES SUMMING EVERY ALMOST
PERIODIC SEQUENCE

JAMIL A. SIDDIQI

Necessary and sufficient conditions are given for infinite
matrices to sum every almost periodic sequence and their
basic properties as summability matrices are studied. It is
then shown that these matrices enter naturally in the prob-
lem of the determination of the jump or total quadratic
jump of normalized functions of bounded variation on the
circle in terms of the limits of matrix transforms of certain
functions of their Fourier-Stieltjes coefficients, The results
obtained generalize the classical theorems of Fejér and
Wiener as also the extensions of theorems of Wiener given
by Lozinskii, Keogh, Petersen and Matveev, Applications are
made to the study of coefficient properties of holomorphic
functions in the unit disk with positive real part.

1. R.H.C. Newton [11] proved that a regular matrix A = (a,.;)
sums every periodic sequence if and only if lim, . >3 @, . exp(2wikt)
exists for each rational ¢. Vermes [15] generalized this result by
proving that an arbitrary matrix A4 = (a,,) sums every periodic se-
quence if and only if for every rational ¢, (1) 37, a..exp (2wtkt)
converges and (2) lim,_ . >\, @, exp (2wikt) exists.

The set P of all periodic sequences of complex numbers is a
linear subspace of [. that is not closed in the usual norm topology
of the Banach space l.. since P is meager in l.. Berg and Wilansky
[3] proved that the closure @ of P in [. is the set of all semi-
periodic sequences. (A sequence x = {x,} is called semi-periodic if for
any ¢ > 0, there exists an integer #» such that |z, — 2,.,..| <e for
every n and k). Berg [2], gave a characterization of infinite matrices
summing every semi-periodic sequence which is rather involved. We
first show that these matrices can be characterized simply as follows:

THEOREM 1. An infinite matric A = (a,, sums every Ssemi-
periodic sequence if and only if (1) || A|l = SUPuzo Do | Gu | < o0

and (2) lim,_. >3, @, , exp (2rikt) exists for all rational t.

Proof. If xe@Q, then for any ¢ >0, there exists a ye P such
that ||z — ¥ |l. <e. If y is of period », there exist constants A, «--,
A, such that

Sexp @Tikv/r) c \ =y k=0,1, v 7 — 1
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so that
{ gam,k T — kii‘.o Qo T | = g,( — @) (B — Yi)
mok — <§ exp (kav/r)x>
<2||Alle+¢

for n and m sufficiently large. Hence lim, ... >3- @, 2, exists. Thus
(1) and (2) are sufficient. The necessity of (1) can be established as
in Berg and Wilansky [2] (see also the proof of Theorem 2 below
where similar arguments have been given to prove the necessity of
Theorem 2 (1) independently of the use of Theorem 1), and that of
(2) is immediate since {exp (2wikt)} is periodic when ¢ is rational.

2. A sequence z = {x;,} of complex numbers is called almost
periodic if to any e > 0, there corresponds an integer N = N() >0
such that among any N consecutive integers there exists an integer
r with the property |z, — x,..| <e for all k. If we denote by AP
the set of all almost periodic sequences of complex numbers, then
clearly AP is a linear subspace of l. and Pc P= Qc APcl.. Also
AP is a closed subspace of l.. For if {x™} is a Cauchy sequence in
AP, there exists an z = {z;}el. such that lim,..|[ 2™ — 2|l = 0.
Given any ¢ >0, we can choose an #» such that |z — x,| < ¢/3 for
every k. Since xz™ e AP, there exists an integer N = N(¢) such that
among N consecutive integers there is an integer 7 such that
|z — ™, | < ¢/3 for every k so that

|2 — Tpr | = |xk — oM e — 2|+ el — T

< 3 + ? + 3 €
for every k. Thus AP is a Banach space. We note that @ & AP
since if ¢ is irrational, then {exp (2wikt)} is almost periodic but not
semi-periodic.
Infinite matrices summing every almost periodic sequence in AP
can be characterized as follows:

THEOREM 2. Amn infinite matric A = (a,, sums every almost
periodic sequence if and only if (1) ||A|l = SUDnzo Diieo | Cni| < o0 and
2) lim,_., > @, exp (2rikt) exists for all t.

Proof. Suppose that A sums every almost periodic sequence.
Since for each ¢, {exp (2wikt)} € AP, (2) holds. To prove the necessity
of (1), we first observe that if yel, its norm ||y |/.p- is identical
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with its /,-norm. For if y = {y,} €l,, we define a sequence % of period
n by the rule: %, = sgny, for k¥ < n so that

Yl ap ZESX;E ly(@) | = [y@) | = 211 |yl + gr;l@kyk )

el =1

where

‘ > %
n+1

=> [yk‘—')o
n+1
as n— co. Thus [|yllup = ll¥ll,- Clearly ||yl s+ = [y, so that

Yl ary = 1lY ”11-
For each fixed n, put

N
yN(x) == Zan,k xk, WheI‘e xr e AP .
k=0

Yy € (AP)* and lim,_, yy(x) exists for each xc AP. By the uniform
boundedness principle,

¥
Hyxllars = 1Yy lly, = 214|an,k| M, < o
for each N so that >7_.|d..| < o for each n. If we put
zn(x) = i an,k xkr xeAP y
k=0

then z,€(AP)* and lim,_..z,(x) exists for each xc AP. Applying
once more the uniform boundedness principle, we get

1Al =sup 3 fans| < o

Thus (1) holds.

To prove the sufficiency of conditions (1) and (2), we note that if
x = {x,} € AP, there exists a sequence {3 b;exp (2wirn;k)}e AP such
that for all %,

N
} @, — 3B, exp (2winsk) { <e.
0

Now

oo oo oo N
kE_loam,kxk — kgo Ao T | = ' ;:lo(am,k — an,k)<xk — g b; exp (27M>wk)) [

= N
+ l 2, (@n — @ns) 3. 0; €Xp (2TiNE) '
=2[Alle+e

for m and n sufficiently large. Thus lim, ., >\ @, ¢, exists.
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We call a matrix A = (a,,,) satisfying the conditions (1) and (2)
of Theorem 2, an almost periodic matrix. We now establish a few
properties of these matrices. We recall that the set of all sequences
summable by a given matrix 4 = (a,,,) is called its convergence field
and is denoted by (A4). If (A) contains all convergent sequences then
A is called conservative. It is known that A is conservative if and
only if (1) || A]] < oo, (2) lim,_.. 37 @,,, = « exists and (3) lim,_.a,,, =
«, exists for each fixed k. We have:

PROPOSITION 1. Amn almost periodic matrix is always conservative.

Proof. It is sufficient to show that lim,_. a,, = «,exists. If we
put K,(t) = >, a, . exp (2rikt), then {K,} is a sequence of continuous
functions on [0, 1] such that lim,_.. K,(t) = K(t) exists for each ¢ and
|K,(t)] £ || Al] < o for all » and all t£. By bounded convergence theorem,

lim a,, = lim X K, (e dt — g K () e di
exists for each k.

The converse is easily seen to be false.

A conservative matrix A = (a,,,) is called multiplicative if there
exists an m > 0 such that lim,_. x, = 2 implies lim,_. A,(x) = lim,_..
Sioa,,x, = me and then A is called m-multiplicative. Since

lim A,(x) = azw + 3, @, (0, — ) ,
n—oco k=0
it follows that a conservative matrix A = (a,, is multiplicative if
and only if lim,_.a,,= 0 for each k. An examination of the proof
of Proposition 1 shows that an almost periodic matrix A = (a,,) is
multiplicative if and only if

S1K<t) At =0 for all k=0, £1, £2, «--

so that, by the uniqueness of Fourier expansion, if and only if K(t) =
0 a.e. Thus we have:

PROPOSITION 2. An almost periodic matriz A = (a,.,) is multipli-
cative if and only if lim, . >7a,.,exp 2rikt) = 0 a.e. in (0, 1).

It may be remarked that there exist multiplicative almost periodic
matrices for which the above limit is not zero for all ¢e(0,1). The
positive matrix A = (a,, where a,, = 0, @, = #*/(n+1)5 for
k=0,1,2 -.. is one such matrix. We also have:
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PROPOSITION 3. Amn almost periodic matriz A = (a,,) s regular
if and only iof (1) lim, . >rot.,=1 and (2) lim, . >, a,,eXp
@rikt) = 0 a.e. in (0, 1).

We call an almost periodic matrix normal if (1) lim,_ . Do G,
=1 and (2) lim,_. > a, ,exp (2mikt) = 0 for all £e (0, 1). Clearly a
normal almost periodic matrix is regular.

3. A sequence 2z = {x,} is said to be &, summable where A =
(@) 1f lim, oo Dieeo @i Xpyp €Xists uniformly in p=0,1,2,---. An
obvious modification of the reasoning used in the proof of Theorem 2
yields the following:

THEOREM 3. Let A be a given matriz. Then every almost periodic
sequence 1is summable F, if and only if A is an almost periodic
matrie.

In particular, a sequence x = {x,} of complex numbers is called
almost convergent if lim,..(n+ 1) 35, @, exists uniformly in p =
0,1, .- ie.,, if it is summable &, where A is the matrix of the
arithmetic mean. Every almost periodic sequence is almost con-
vergent (cf. Theorem 3) but not conversely. Lorentz [8] has
proved that a matrix A = (a, ) sums every almost convergent sequence
to its almost convergence limit if and only if (1) A is regular and (2)
lim,_., >\, | 4a,, | = 0 where 4da,,, = a,,, — Gy for k=0,1,+--. He
calls matrices A = (a,,,) satisfying (1) and (2) strongly regular. A
simple modification of his proof of the above characterization yields
the following:

THEOREM 4. A matrixz A = (a,,) sums every almost convergent se-
quence if and only if (1) A is conservative and (2) lim,_. S| 4(a, ,— )| =
0, where «a, = lim,_.a,,.

A natural problem in this connection is to determine whether
there exist matrices that sum every almost periodic sequence without
necessarily summing every almost convergent sequence. The fact that
there exist almost convergent sequences that are not almost periodic
does not resolve the problem since, a priori, it is not clear that the
convergence field of an almost periodic matrix does not contain all
almost convergent sequences. This is settled by the following:

THEOREM 5. There exists a normal almost periodic matriz A =
(@,,) such that |A| = (|a,.|) is also almost periodic but A is not
strongly regular.

Proof. Let A = (a,,) be defined as follows:
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an,o = 0 ’

an,kz—l— for1<k<n,
n

a,,, = exp {in(k — n) log (k — n)}/n for n < k < 2n,

A =0 for k& > 2n.
Clearly lim,..> 5 @,,=1, since S5 ,a,,=1+ 1/n) >, exp
{ir(k — m) log (k — »)} and the partial sums s,(x) of the series X exp
{irk log k + ikx} are O((w)"?) uniformly in z (cf. Zygmund [17] p. 199).
Also lim, .. 350 @, €Xp (2mikt) = 0 for all e (0, 1) since, in view of
the above cited result,

;2 0, exp @rikt) = L A=) 4 g (Zﬁ) (n— o) .
=0 n 1—e n

Also since || A || = 2, it follows that A is normal almost periodic. For
te (0, 1)

S5l exp @rikt) = L o=t L= €7 = o1) (1 — o)

k=0 n 1 . ezmt
and

golan,k]__’2<n_’°°) ’

so that |A| is also almost periodic. @~However A is not strongly
regular. In fact,

1

sin£{10g<1 ¥ %)" + log (k + 1)}[ +o(l).

oo 9 n=
Z | an,k - an,k+l I = _Z
k=0 n T 2

Since
1
k log (1 ¥ ?) —1
as k— o, we have
sin—n—{lclog <1 + l) + log (k + 1)} =cos Zlog (k+ 1) + o(1)
2 k 2

so that
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We assert that

n—1

cos% log(k + 1) ’
does not tend to zero. In fact, if we put
Uy, = Icosizr—log(k + 1) ' - ‘cos—g—loglc‘ ,
then we have
luy | < 2 ] sin 7 log (& + 1) [ , sin%log(l + %)‘ — 0(%) ( — o).
It is known (cf. Zygmund [17], p. 78) that if a series Ju, is sum-

mable (C, 1) and u, = 0(1/k), then Zu, is convergent. Hence, if in
our case the series Yu, were summable (C, 1) to zero i.e., if

n—1

=

1 cos L. log (& + 1) ’

n 2

were to tend to zero as % — oo, the series Ju, would be convergent
which is not the case since

ﬁuk = lcosg—log (n + l)l

does not tend to a limit as n — .
As a corollary of Theorem 5, we get that there exist sequences
that are almost convergent without being almost periodic.

4, Let V][0, 27] denote the class of all normalized functions F
of bounded wvariation in [0, 27] such that F(x + 27) — F(x) =
F(@2r) — F(0) for all z and let {C,} be the sequence of Fourier-Stieltjes
coefficients of F. We now show that almost periodic matrices enter
naturally in the solution of the problem of the determination of
the jump or the total quadratic jump of a function F'e V][0, 2x] by
means of the limits of the matrix transforms of {C.¢**} or {|C.)}
respectively.

THEOREM 6. Let A = (a,,) be such that [|A|| < . Then for
every Fe V[0, 2n] and for every xze€l0,271], the sequence {C,e**} is
summable A or F, to 2r)™ D(x) where, D(x) = F(x + 0) — F(x — 0),
of and only if A is normal almost periodic.

Proof. We prove the assertion for summability A, the proof for
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summability &, being similar. The condition is necessary, for if we
choose F': F'(t) = 2m for 0 < ¢t <27 and F'(0) = 0, then C, =1 for all
kE, D) =27 and D(x) =0 for 0 <z <27 so that lim,.. >, ..
exp (2rikx) = 0 for all € (0, 1) and lim,.., >, a,,, = 1.

Suppose that A is a normal almost periodic matrix. Then

3 u Coe™ = 3] a2 3 D= + @)~ | K, (LL)ar ,
k=0 k=0 2w i=o 0 2r

where K, (t) = >, a,,, exp (2wikt), {x;} are the points of jump of F
in [0, 27) and F, is the continuous part of F. Clearly the first term
on the right tends to D(x)/2r as n— . The second term on the
right tends to 0 as #— o, for, given an ¢ > 0, there exists a ¢ >0
such that

x40 e -
| larw | < nay
so that

x40

| (G)arm | <

and, by bounded convergence theorem,

(L) (5 are| <4

for large n. Thus {C,e***} is summable A to D(x)/2x.

Theorem 6 generalizes a theorem of Fejér [4] (cf. also Zygmund
[17] p.107) and, in particular, it shows that in Fejér’s theorem the
summability (C, 1) can be replaced by almost convergence.

THEOREM 7. Let A = (a,,) be such that ||A|| < . Then for
every Fe V|0, 2r], the sequence {|C.} is summable A and F, to
An®) = 355 | D(x;) %, where {x;} are the points of jump of F in [0, 27)
if and only if A is a mormal almost periodic matrix.

Proof. If we put F*(x) = (21)~ S“F(H t)dF(t), then F*e

0
VI0, 2n], F*(+0) — F*(—0) = 27)™* >7= | D(z;)|* and the Fourier-
Stielt,jes coefficients of F'* are {|C,’}. Applying Theorem 6 to F'* at
2 = 0 we get the proof of the sufficiency part of the above theorem.

To prove the necessity part, we observe if {C,} and {C/} are the
Fourier-Stieltjes coefficients of F and F’ in V[0, 27], then

(0.Ci + G = {10, + CiF — |G - CiP)}
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is summable A to (4x%~* 3=, {D(y,) D'(y;) + D(y,) D'(y,)}, where {y;}
denotes the set of all points of jump of F and F’. On replacing
F’ by iF’, we get that {C,C{— C,C/} is summable A to (4779
S {Dw) D) — D@y) D'(y)} so that {C,C/} is summable A to
(4~ 2, { D) D ()} If we choose F’e V[0,2x] such that
F't) =0 for 0=<t<w, F'(t) =21 for <t <2x, then C; = e so
that {C,¢**} is summable A to D(x)/2r for each ze€[0,27] and
Theorem 6 applies. Thus we conclude that A4 is normal almost
periodic.

Theorem 7 generalizes a theorem of Wiener [16] (cf. also Zygmund
[17] p.108) and, in particular, it shows that in Wiener’s theorem the
summability (C, 1) can be replaced by almost convergence.

As an immediate consequence we have the following:

THEOREM 8. For functions Fe V][0, 2x], the following conditions
are equivalent:

(1) F 1is continuous,

@) {IC.IP} is summable A or F, to 0 by a mormal almost
periodic matriz A,

3) {IC.I} 1is summable A or F, to 0 by a mnormal almost
periodic matriz A = (a,,) for which lim, . > 7 ,]|a,..| exp @2rikt) =0
Sor all te (0, 1).

Proof. The equivalence of (1) and (2) is a direct consequence of
Theorem 7. Suppose that F is continuous. Then the convolution F'*
as defined in the proof of Theorem 7 is continuous and belongs to
V10, 2x]. If we go through the steps of the proof of Theorem 6 for
F* with « =0 and D*0) = 7)™ >, | D(x;)|* and note that the
Fourier-Stieltjes coefficients of F'* are {|C,|*}, we conclude that the
hypothesis lim,_.. >v., |a, .| exp (@rikt) = 0 for all te (0, 1) without
the requirement that lim,_. >.7.]|a,. .| exists, assures that lim,_.. >,
|a,.| |C,]?=0. Applying Schwarz inequality, we get that lim,_..
Siieol @il |Cr] = 0 and consequently that {|C,|} is summable A4 to
0. Similarly we show that {|C,|} is summable &, to 0. Thus (1)
implies (3). Suppose that {|C,|} is summable A to 0. If we write
C,=C| + C/', where C; and C/’ are respectively the Fourier-Stieltjes
coefficients of the saltus part and the continuous part of F, we

have
2 00 Cuis| = [Clap )| = Bl aus G2, | S BS la, | [CL, P

Since the last term tends to zero in view of the equivalence of (1) and (2)
already proved and since the almost periodic sequence {| C/|} is sum-
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mable #,, we have

lim 3 a,,:|Cits| =0

n—oo k=0

uniformly in p. Similarly we prove that
E_{E ]Znol | |Crip | = L (s2y) ,
exists uniformly in p. If we set

I~
Opp = kgaoan,k [Crinls

we see that
20| Onp = 2100 3 Wni| Crsp |
=0 p=0 k=0
- Zan,kz lanm' Ick—l-pl .
k=0 p=0

If for an ¢ > 0, we choose an N = N(¢) such that for all n = N

(0usl < | (2 100nlCuinl) = L] <6

uniformly in » and & respectively, it follows that for nw = N

oo
}:(xni
f=0

L=| 50|03 00, Cl |

> e 2 | Up || Crsp |
k=0 p=0

+

<llAlle + 3 lan, |0
<l Alle+ 1 4lle=2]14]le.

Making #n— o, we get L <2||Al|le so that L = 0. Thus {|C,|} is
summable &, to 0. Hence {|C,|?} is summable .#,, to 0 and
therefore summable &, to 0. Since (1) and (2) have already been
shown to be equivalent, we conclude that F' is continuous. Thus (3)
implies (1).

Theorem 8 generalizes a theorem of Wiener [16] (cf. Zygmund
[17] p.108) and contains as special cases various generalizations of
that theorem including those given by Lozinskii [9] and Matveev (cf.
Bari [1] p. 256).

Theorem 8 can be reformulated in the following strengthened
forms which we state separately.

THEOREM 9. For Fe V|0, 2x] to be continuous, it is necessary
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that {|C,|*} should be summable , to 0 by each mormal almost
periodic matricx A and sufficient that {| C,|*} should be summable A
to 0 by some mormal almost periodic matric A.

THEOREM 10. For Fe V]0,2r] to be continuous, it is mecessary
that {|C,’} and {|C,|} should be summable 7, to 0 by each normal
almost periodic matriz A = (a,) for which (1) lim, .. >5| @l
exp 2nikt) = 0 for all te(0,1) and sufficient that either {|C.[*} or
{| C,1} should be summable A by some mormal almost periodic matrix
satisfying (1).

It may be pointed out that the assertion regarding summability
“Z4 in Theorem 10 has been established in the course of the proof
of Theorem 8. Theorem 10 generalizes the following strengthened
form of Wiener’s theorem given by Keogh and Petersen [7].

THEOREM A. For Fe V[0, 2n] to be continuous, it is mecessary
that {|C.I’} and {|C,|} should be almost convergemt to zero and suf-
ficient that either {|C,|*} or {|C,|} should be summable to zero by
some summation method which contains almost convergence.

Since every strongly regular matrix A = (a,,,) is an almost peri-
odic matrix satisfying (1) and the (C, 1) matrix is strongly regular,
the direct proposition of Theorem A is a particular case of the cor-
responding assertion in Theorem 10. We have already remarked ear-
lier (§ 3) that Lorentz [8] has shown that a matrix sums all almost
convergent sequences to their almost convergence limits if and only
if it is strongly regular. The sufficiency part of Theorem A is there-
fore also a special case of the corresponding assertion in Theorem
10.

Lorentz [8] has proved that (a) if A is regular, then summability
Z, implies almost convergence and that (b) if A is strongly regular,
then summability £, and almost convergence are equivalent.
Although not explicitly stated by Lorentz, it follows that summability
#, and almost convergence are equivalent if and only if A is strongly
regular. For, if A is not strongly regular, there exists an almost
convergent sequence that is not summable A and hence a fortiori not
summable #,. Hence if A is not strongly regular, summability &,
is strictly weaker then almost convergence. Since there exist non-
strongly regular normal almost periodic matrices satisfying (1) (cf.
Theorem 5), Theorem 10 is sharper than Theorem A in both direc-
tions.

A particularly interesting corollary of Theorem 10 is the following:
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COROLLARY. For a continuous Fe V[0, 2n] with Fourier coef-
ficients {c;}, we have > 2%*|¢,| = o (log n) (n— o) uniformly in p.

This result is significant since there exist continuous functions
of bounded variation for which ¢, == o (1) (k — ).

5. In Theorems 6 and 7 of the preceding section, we started
with matrices A satisfying the condition that ||A|| < c and then
found the necessary and sufficient condition in order that these be
effective in the problem of the determination of jump or total quad-
ratic jump of functions belonging to V[0, 2r]. However, as we shall
see below, this restriction is not necessary. In fact, if we call a
matrix A = (a,,,) for which

K,: K,() = i @, €XD (2mikt)

is continuous in [0, 1] for each =, a matrix with continuous kernel,
we have the following:

THEOREM 11. Let A = (a,,) be a matrix with continuous kernel
{K,}. Then for every Fe V[0,2r] and for every xz¢cl0,2r], the
sequence {C,e**} is summable A or Z, to (2m)~'D(x), where

D)= F@x+0) — F(x —0)
if and only if
(i) sup max |K5(t)| = M, < = for every n,
(i) sup max |K,(0)] = M< =,
(i) Tim K.(¢) = 0 for te(0,1) and =1 otherwise,
where Kﬁggm: S, exp Crikt), N=20,1, ---.

Proof. If A sums every sequence {C,¢**} for each x in [0, 27],
and for each Fe V|0, 2x], it follows that for each fixed % the se-
quence of continuous functions {K7} converges weakly in C[0, 1] so
that, by the uniform boundedness principle, we get (i). Since

S, 0,00, = tim L (" (28) ar = L (ki (22
xzz'oan'kck - }vl—»moo 2 So K”(Zn‘) dF (8) = 21 Jo K"(Zn‘)dF(t)

and

. 27 __t

inf k(50
exists for all F e V|0, 2], again, by the uniform boundedness principle,
we get (ii). If for each te[0,1], we choose F':F(x) =0 in [0, ¢],
F(z) = 2w in (¢, 27], we get C, = ¢~*** so that (iii) holds. Thus con-
ditions (i), (ii) and (iii) are necessary. The proof of the sufficiency
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of these conditions is the same as in case of Theorem 6, if we ob-
serve that the continuity of K, and (i) assure that

Sy Co ot = L SK (ﬂ) dF(t) .
=0 2w Jo 2
The assertion for summability F, can be similarly proved.
We call a matrix A = (a,,,) normal Fejér effective if it satisfies
conditions (i), (ii) and (iii) of Theorem 11.
We can similarly prove the following analogues of Theorems 7
and 8 respectively.

THEOREM 12. Let A = (a,,,) be a matriz with continuous kernel.
Then for every Fe V|0, 2x], the sequence {|C,[*} is summable A and
Fa to (AnH) ™ 35| D) [P, where {x;} are the points of jump of F in
[0, 27), if and only if A is a normal Fejér effective matrix.

THEOREM 13. For functions Fe V|0, 2r], the following conditions
are equivalent:

1) F 1is continuous,

2 {IC.I"} s summable A or F, to 0 by a normal Fejér effec-
tive matric A with continuous kernel,

®) {|C.|} s summable A or F, to 0 by a mormal Fejér effec-
tive matricz A = (a,,) with continuous kermel, for which lim, . >,
| @, | €Xp 2rikt) = 0 for all te (0, 1).

Theorems analogous to Theorems 9 and 10 can also be established.

A normal almost periodic matrix is clearly a normal Fejér effec-
tive matrix since the hypothesis || A || < < implies that the conditions
(i) and (ii) of Theorem 11 are satisfied. But the converse is not
true. Consider the matrix A = (a,,), where

a’n,() :O!
an.k:}' for1<k<n,
n

@ = 220 {zzgf(kﬁ);;%ff ) (0 <a< %) for k>mn.
It can be verified that A is a normal Fejér effective matrix with
continuous kernel that does not satisfy the condition || A || < «, since
even >, a,,| = o so that applying Theorem 2 one concludes that
the matrix A is not an almost periodic matrix. It follows that for
the validity of the theorems of this section we need normal matrices
that may not be conservative.
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6. Hayman [6] and Petersen [12] have applied Wiener’s theorem
and its generalization Theorem A respectively to the study of coef-
ficient properties of holomorphic functions with positive real part.
We can apply Theorem 10 to obtain the following:

THEOREM 14. Let () =1 + Dioey 0,2" = u + w be holomorphic
in |z| <1 satisfying the condition w > 0 there and let

2t ,i0
v@) = |7 EEE dgto)

be the Herglotz representation of + where g 1is mnon-decreasing omn
[0, 27]. Let g, denote the saltus part of g.

a. If A= (a,,;) s a nmormal almost periodic matrixz for which
lim, .. Do | Qi | €xp Crikt) = 0 for all te (0,1), then there exists a
complex Borel measure p uniquely determined by g, and A, defined
on the disk 4 = {w:|w]| < 2} such that

lim 3% 0, 6(bs) = | p0)de for all geC ()
uniformly in p, where C(d4) denotes the space of all complex con-
tinuous functions on 4.

b. If, moreover, lim,_ .. >, |a,,.| exists, then there exists a posi-
tiwe Borel measure v uniquely determined by g, and A, defined on 4
such that

lim 33| 0y s| $(br) = | gw)dy  for all peC(4)

uniformly in p.

c. If we define Yz xz(by) =1 if bye E and =0 if b, ¢ E where
E is a Borel set, then under the same assumption on A = (a,,) as in
b, we have

lim 3% | @4 | 26(bess) = ¥(E)

uniformly in p.

Proof. If {0,} denote the points of discontinuity and {a,} the
jumps of g in [0, 27), and g, = g — ¢,, we get

27 6 2T 6 2 260
v@) = | SEE o) = |7 512 ag0) + |7 S EE dau)
o e’ —2 [ o e’ —2

o 1 —i0y, 2 0
S, 22 + |7 G dg,0)
y= —ze v 0o e —2

Il

=)

I
Ms

c,2" + >, d,z",
n=0

n

0
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where ¢, = 32, 2a,¢7"% (n=1). It is known (cf. Hayman [5] p.12)
that |b,| < 2. Since

1=9(0) = | dgl0) = S, + 020 - 0,0) = S,
lenl =23, =20, <2.

If we set ¢(Re’) = B—R) ¢ (2¢) Q< R<3) and ¢(Re') = 0(R = 3),
then ¢ is continuous in the whole plane, ¢ = 0 for [w|= 3 and hence
¢ is uniformly continuous. This extension of ¢ outside the disk
|w] <2 does not alter ¢ (b,) and ¢ (c,) since |b,| <2 and |e¢,| < 2.

If we put

L(p) = }gg g__‘% Ot @ (Crisp) s

then this limit exists uniformly in p, since {¢(c,)} is almost periodic.
We now show that

}LI_I.E gf, G [$(Crrn) — 3(brsp)] = 0

uniformly in p. Since ¢ is uniformly continuous, given any ¢ >0, we
can choose 6 > 0 so that if |w — w'| <, then |é(w) — ¢(w’) | <e. Now

3100l (buss) = #(ene) | S (5

dp+pl<d ldp+pl2d

X | e || 8 (Or19) — B(Crsp) |
Selldll+2M 3 |a..l.
ldp4+pl2d
Since A is normal almost periodic and is such that lim,.. >
|, | exp (2nikt) = 0 for all te (0, 1) and {d,} are the Fourier-Stieltjes
coefficients of continuous part of g, it follows from Theorem 10 and
the inequalities

0 2 Okl = X Ol |G| £ 2 0] | i |
ldg4plzd ldp4pl2o k=0

that lim, .. 34,125 | @] = 0 uniformly in p. It follows that
L(g) = lim 3, 6, §(osss) = lim 33 @, s 6(Bir)

exists uniformly in p and depends only on g,. Since L is a bounded
linear functional on the space of all continuous functions in the plane
with compact support, there exists a complex Borel measure g in
the plane such that

L(@) = lim 5 0,46 (bsy) = | p)dp.
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This establishes (a), and (b) follows from it.

Suppose E is a set, whose frontier has y-measure zero. Then we
can find a compact set K C Int E such that v(K) > v(E)—e. Further,
we can construct ¢ continuous in the plane such that 0 <4 <1,
#(K) =1 and ¢é(cE) = 0. Then

310l 6 (bss) = 3 @ue | 260s)
so that

lim 3% @y £o(bes) = | pw)dy = 9(K) > v(B) - ¢

Similarly there exists a bounded open set UDFE such that
y(U) < y(E) + e. Choose a continuous function - in the plane such
that 0 <y =1, v(E) =1 and (cU) = 0. Then

ng) [ @ | P (br15) = go [ @i | X (Brsp)
so that

T 33 @y 25(bics) = | y(w)dy < 9(U) < (B) + < .
Since ¢ is arbitrary, we get

lim 3% | @0 Zs(bir) = ¥(B) |

uniformly in p.
We remark that in the above theorem we can replace the normal
almost periodic matrix by a Fejér effective matrix with continuous

kernel.

Finally, I would like to express my thanks to Professor B. Kutt-
ner for kindly reading the manuscript of this paper and making
valuable suggestions.
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