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A SEMILATTICE DECOMPOSITION INTO SEMIGROUPS
HAVING AT MOST ONE IDEMPOTENT

MOHAN S. PUTCHA AND JULIAN WEISSGLASS

A semigroup S is said to be viable if ab = ba whenever ab
and ba are idempotents. The main theorem of this article
proves in part that S is a viable semigroup if and only if S
is a semi-lattice of ^-indecomposable semigroups having at
most one idempotent.

Furthermore, each semigroup appearing in the decomposition has
a group ideal whenever it has an idempotent. Also included as part of
the main theorem is the more elementary result that S is viable if
and only if every £ ^c las s contains at most one idempotent.

Throughout S will denote a semigroup and E = E(S) the set of
idemotents of S.

DEFINITION. Let α, be S. We say a \ b if there exist x, ye S such
that ax = ya = b. The set-valued function 3ft on S is defined by
2ft (α) = {e\eeE, a\e}. The relation δ on S is defined by a δ b if
Sft(α) = 3K(6).

Our first goal is to show that if S is viable then δ is a congruence
on S and S/δ is the semilattice described above.

LEMMA 1. Let S be viable. If ab = ee E, then bea = e.

Proof, (bea)2 = beabea = bea. Hence bea e E. But cleary abe —
ee E. Hence bea = abe = e.

LEMMA 2. Let S be viable. Suppose ae S and ee E. Then a|e
if and only if ee S^S1.

Proof. If a \ e, then e e S^S1 by definition. Conversely assume
e = sat with s, te S1. By (1), ates = e and tesa — e. Therefore a\e.

THEOREM 3. Let S be viable. Then
( i ) δ is a congruence relation on S containing Green's relation £%f.
(ii) S/δ is a semilattice and
(iii) each δ-class contains at most one idempotent and a group

ideal whenever it contains an idempotent.

Proof, (i) Clearly δ is an equivalence relation. We will show
that δ is right compatible. Assume a δ b. If ac \ e e E, then
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acx = e for some xeS. By (1), cxea = e. Hence a\e. Thus δ|e, so
yb = e for some j / e S . Therefore ybcxea = e, so 6c | β by (2). Hence
Ti{ac) s 3ft(δc). Similary 3ft(δc) g SK(αc) and hence αc σ be. That δ is
left compatible follows analogously. Consequently, δ is a congruence.
It is immediate that ^ r g ί .

(ii) To show S/δ is a band, let aeS. lΐ a2\eeE then by (2),
a\e. Hence 3ft(α2) s 3ft (α). Suppose α |βe i? , say αx = ya = e, α, i/e
S. Then τ/α2x = e. Again using (2), α 2 |e. Thus, Tt(a2) = 3ft (α) and
a δ a2. So S/δ is a band. Now let a,beS. If eeS0ΐ(αδ), then there
exist x, y e S such that αδx = yab = e. Hence ya(ba)bx = e, and by
(2), eem(ba). Therefore m(ab) § 3ft (δα). By symmetry, 2ft (δα) £
2ft(αδ). Hence αδ δ δα and S/δ is a semilattice.

(iii) Suppose, eι δ e2 with el9e2eE. Then ^ e 9ft(ex) = SK(e2)> so
e2 |e i e Similarly e1\e2. Hence ex έ%f e2 and by [2], Lemma 2.15, ex =
e2. Thus each δ-class contains at most one idempotent. Now suppose
A is a δ-class containing an idempotent e. Let ae A. Since e e
3ft(e) = 3ft(α) = 2K(α2), there exists xe S such that a2x = β. Now α δ
a2 implies ax δ a2x, so ax 3 e o a. Hence axe A and a(ax) = e implies
e is a right zeroid of A. Similarly e is a left zeroid and by [2], §2.5,
Exercise 6, A has a group ideal.

A semigroup is said to be ^-indecomposable if it has no proper
semilattice decomposition.

COROLLARY 4. If the viable semigroup S is ^-indecomposable
then S/δ = 1 and is either idempotent-free or has a group ideal and
exactly one idempotent.

LEMMA 5. Assume I is an idempotent-free ideal of S. Then S
is viable if and only if the Rees factor semigroup S/I is viable.

Proof. Assume S is viable and that αδ, ba e E(S/I). If αδ e /, then
δα = δ(αδ)α e /, so αδ = δα in S/I. So we may assume αδ and δα are
not in I. But then αδ, baeE(S). Hence αδ = δα in S and so in S/I.
Therefore S/I is viable. Conversely, let ab,baeE(S). Since S/I is
viable αδ = δα in S/I. But αδ, bail since I is idempotent-free. Hence
αδ = δα in S and S is viable.

A semigroup S is said to be S-inversive if for every ae S there
exists x G S such that ax e E.

THEOREM 6. The following are equivalent.
( i ) Every ^f-class of S contains at most one idempotent
(ii) S is viable.
(iii) S is a smilattice of S^-indecomposable semigroups each of
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which contains at most one idempotent and a group ideal whenever it
contains an idempotent.

(iv) S is a semilattice of semigroups having at most one idem-
potent.

(v) S is viable and E-inversive or an ideal extension of an
idempotent-free semigroup by a viable E-inversive semigroup.

Proof, (i) => (ii) If ab and ba are idempotents then ab = a(ba)be
S^aS1. Similarly ba e S'abS1. Hence ab ^ ba, so ab = ba.

(ii) ==> (iii) By Tamura [3], S is a semilattice of ^indecomposable
semigroups. Since subsemigroups of viable semigroups are viable,
each component is viable. The result follows from (4).

(iii) => (iv) a fortiori
(iv) => (i) Suppose e,feE with e ^ f. Then e and / are in the

same component of the given semilattice decomposition. Hence e = /.
(ii)=>(v) Let 1= {aeS\Wl(a) = 0} . If I is empty then S is

i£-inversive. Otherwise, I is obviously an idempotent-free δ-class of
S. Moreover if ax\e or xa\e,eeE, then by (2), a\e. Hence, ael
implies ax, xael so that / is an ideal of S. By (5), S/I is viable.
Since S/I has a zero, it is JS'-inversive. In fact, every nonzero element
of S/I divides a nonzero idempotent of S/I.

(v) => (ii) Follows from (5).

REMARK. Observe that the semilattice decomposition of (iii) in
general will not be isomorphic to S/8 since in fact S may be idem-
potent free. Also, cJF may be replaced & in the theorem.

LEMMA 7. S is an ideal extension of a group by a nil semigroup
if and only if S is a subdirect product of a group and a nil semigroup.

Proof. Suppose S is an ideal extension of a group G by a nil
semigroup N. Let e be the identity of G. It is easy to see that e
is central in S. It is well known that S is a subdirect product of
subdirectly irreducible semigroups Sa (aeΩ). Let σa: S —+ Sa be the
natural map. Let ea = eσa. Then ea is a central idempotent in Sa

and hence is zero or 1 (cf. [1]). If ea = 0, then σa(G) = 0 and hence
Sa — oa(S) is a nil semigroup. If ea = 1, then all of Sa is contained
in σa(G) and hence Sa is a group. Consequently each Sa is a nil
semigroup or a group. Let Ωί = {a\aeΩ, Sa is nil} and let Ω2 =
{a\aeΩ, Sa is a group}. Let ψ- = J\a£Ωi σa: S-+ΐ[aeΩi Sa be defined
for i = 1, 2. One can check that S is a subdirect product of Sψλ and
Sψ2 with Sψi a nil semigroup and Sψ2 a group.

Conversely, suppose S is a subdirect of a group G and a nil
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semigroup N. Consider S embedded in G x N. Let e be the identity
of G. There exists a e N such that (β, a) e S. There exists a positive
integer k such that ak = 0. Hence (β, 0) = (β, ak) = (e, a)k e S. If g e
G, there exists beN such that (#, b) e S. Thus (g, 0) = (e, 0) (#, 6) e
S. Hence G x {0} g S and G x {0} is an ideal of S. Let (g, a) e S.
Since ae N, there exists a positive integer k such that afc = 0. Hence
(g, <*)k = (^, «*) = (̂ *, 0) e G x {0}. Therefore S is an ideal extension
of the group G x {0} by a nil semigroup.

COROLLARY 8. The following are equivalent.
( i ) S is viable and a power of each element lies in a subgroup,
(ii) S is a semilattice of semigroups which are ideal extensions

of groups by nil semigroups.
(in) S is a semilattice of semigroups each of which is a subdirect

product of a nil semigroup.
Moreover the decompositions in (ii) and (iii) are the same and coincide
with the δ-decomposition as specified in Theorem 3.

A semigroup S is separative if x2 = xy = y2 (x, pe S) implies x = y.

COROLLARY 9. The following are equivalent.
(i) S is viable, separative and a power of each element of S lies

in a subgroup.
(ii) S is a semilattice of groups.

Proof, (i) => (ii) By (8), it suffices to show that if T is separa-
tive and an ideal extension of a group G by a nil semigroup, then
T = G. Let e be the identity of G. Then e is central in T. If T Φ
G, then there exists aeT, a&G with a2eG. Then a2 = (ae)2 = a(ae).

Thus a — aeeG, a contradiction. Hence T = G.
(ii) => (i) Obvious.
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