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ON THE SOLUTION OF LINEAR G.C.D. EQUATIONS

DAviD JACOBSON AND KENNETH S. WILLIAMS

Let Z denote the domain of ordinary integers and Iet
m(g 1)9 ’}'L(g 1)1 lt(i = 1’ ) m)y l”(’i:]., e, My j:17 tt Ty ’I’L)GZ.
We consider the solutions xe€ Z* of

(1) G.C.D. <l11x1 + s _l‘ lmﬂcn + ll, Sy lm1x1+ e
+lnan + U, c)=d,

where ¢(# 0), d(=1)e Z and G.C.D. denotes ‘‘greatest common
divisor’’. Necessary and sufficient conditions for solvability
are proved. An integer ¢ is called a solution modulus if
whenever x is a solution of (1), x + ty is also a solution of
(1) for all ye Z*. The positive generator of the ideal in Z
of all such solution moduli is called the minimum modulus of
(1). This minimum modulus is calculated and the number of
solutions modulo it is derived.

1. Introduction. Let Z denote the domain of ordinary integers
and let m(= 1), n(=1),L¢=1, -+, m), Lyt =1, ¢, m;j=1,+--,
nyeZ. We write l = (l,, -+, 1,) and for each i1 =1, -+, m we write
L=y, »o+, Lyand L=y, «++, Ly, I;) sothat l e Z™, each l; € Z", and each
lieZrt, Ifx = (%, -+, x,) € 4" we write in the usual way I;-x for the
linear expression Il;x, + ++« + l;,x,. We let L denote the m x n
matrix whose 4th row is I; and L’ denote the m X (n + 1) matrix
whose ith row is Zi.

Henceforth in this paper we will write the abbreviation G.C.D.
for ¢ greatest common divisor’’ of a finite sequence of integers, not
all zero, and consider the solutions x e Z” of

(1.1) GCD. (lsx + 1, e, lpx+ 1,0 =4d,

where ¢(= 0), d(= 1) e Z. A number of authors have either used or
proved results concerning special cases of this equation (see for
example [1], [5]) so that it is of interest to give a general treatment.
This equation is clearly connected with the system

(1'2) l@'x"}—llEO (mod d) (i:l, "‘,M)-

If we denote the number of incongruent solutions modulo d of (1.2)
by N(d, L'), then N(d, L') > 0 is a necessary condition for the solva-
bility of (1.1). A complete treatment of the system (1.2) has been
given by Smith [4]. Let D; = greatest common divisor of the deter-
minants of all the ¢ x 4 submatricesin L (4 = 1, -+, min(m, n)), D; =
greatest common divisor of the determinants of all the ¢ x 7 sub-
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matrices in L’ (¢ = 1, «-+, min(m, n + 1)), v; = greatest common divisor

D;
of d and D...

,t=1, «++, min(m, n), where D, =1, and 7} = greatest

’
i

common divisor of d and y © =1, «++ min(m, n), where Dj = 1.

D;_,
Smith has shown that (1.2) is solvable if and only if
min(m, n) min(m, n)
.= II 7

=1 =1

and

o _ .
Dl = 0 (mod d), if m>n .

When solvable he shows that
N(d, LI) — ,.),dmax(n—-m,o) ,

where

min(m, n)
v = E Vi .
We show in Theorem 1 that the conditions
1.3) dle, Nd, L") >0,G.C.D. ({,---,1,d =G.CD. {, -+, 1,0

are both necessary and sufficient for solvability of (1.1). When (1.1) is
solvable, (1.3) shows that the quantity ¢ = G.C.D. (,, +-+,1,,d) is a
factorof 1;,l; (¢ =1, --+,m), c and d. Cancelling this factor throughout
we obtain the equation

G.C.D. (L/g-x + U/g, +++, Lu/g-x + l.]g, ¢/9) = d/g .

This equation is equivalent to (1.1) in the sense that every solution of
this equation is a solution of (1.1) and vice-versa. Thus we can
suppose without loss of generality that

G.CD. {, -+, 1,,d) =1.
The solution set of (1.1) is denoted by .&4° = .&4°(L') that is,
1.4 Sr=9L)={xecZ"|GCD.(li:x+1, -, l,-x+1, ¢ =d}.
Moreover when .&4° #+ @, we have
dle, N(d, L") > 0,G.C.D. (I}, --+,l,,¢) =1,

and we write ¢ for the integer c¢/d.
IfteZ,a=(a,+"+,a,)eZ" and b= (b, -+, b, € Z", we say that
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a and b are congruent modulo ¢ (writing a=b (mod t)) if and only
if @; = b; (mod ¢) for each ¢ =1, «--, n. This congruence=is an equi-
valence relationship on Z*. If .$5°# @, any integer ¢ for which this
equivalence relationship is preserved on &5°(< Z") is called a solution
modulus of (1.1). Thus a solution modulus ¢ has the property that
if x e S45° then x 4ty e &4 ° for all y e Z*. Clearly 0 and = ¢ are solution
moduli. In Theorem 2 it is shown that the set of all solution moduli
with respect to .&4° viz.,

=ML ={teZ| x + tye &5 for all xe &5 and all ye 2},

is a principal ideal of Z. The positive generator of this ideal is
denoted by M:(L') and called the minimum modulus of the equation
(1.1). We show

(1.5) M;=M((L)=d

ple,N(pd,L’')>0
(Here and throughout this paper the empty product is to be taken
as 1). The product in (1.5) is taken over precisely those primes ple
for which the system of congruences l;+x + 1, =0 (mod pd) (7 =1,
«++,m) is solvable.

In §5 we consider the problem of evaluating N = N;(L'), the
number of incongruent solutions x of (1.1) modulo the minimum
modulus M9, from which the number of solutions modulo a given
modulus can be determined. In Theorem 4 we derive a technical
formula which allows the evaluation of % in some important cases
(see §6). In particular we prove that if G.C.D. (d,e¢) = 1 then

. , . _1
(1.6) W= N L) T (1),

where 7(p, L) is the rank of the matrix L obtained from L by re-
placing each entry [;; by its residue class modulo p in the finite field Z,.

Finally in § 7 an alternative approach is given which enables us
to generalize a recent result of Stevens [6].

2. A necessary and sufficient condition for &4° # ¢@. We begin
by dealing with the case d = 1. We prove

LEMMA 1. &%= @ of and only if
2.1) G.C.D. (], -+, l,,c) =1.

Proof. The necessity of (2.1) is obvious. Thus to complete the

proof it suffices to show that if (2.1) holds then &4°# @. In view
of (2.1) for each prime p|c¢ there must be some I; or ;0 (mod p).
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If some [; = 0 (mod p) we let x'(p) = 0, otherwise we have some I;; =
0 (mod p) and we let x'(p) = (0, ---, 0, x;, 0, -+ +, 0), where the j** entry
x; is any solution of [;;x; = 1 (mod p), so that in both cases we have

G.C.D. (I, x"(0) + 1y, =+, Lpx"(0) + 1, p) =1.

We now determine x by the Chinese remainder theorem so that x =
x'(p) (mod p), for all plc. Hence we have

G.C.D. (ll.x + lu tt lyox + lm: H p)
le
=ML GCD. (Lioxx + 1, o, Lyex + L, p)
ple
= [1 G.C.D. (I, x'(p) + L, +++, Lp-x"(p) + ln, D)

ple

= ’

proving that x e .&4°
Now we use Lemma 1 to handle the general case d = 1. We prove

THEOREM 1. .&5° # @ if and only if

2.2) dle, N, L)) >0, G.C.D. (L, -+~ L, d) = G.C.D. (I, +++, I, ¢).

Proof. The necessity is obvious. Thus to complete the proof we
must show that if (2.2) holds then &5° = @. As N(d, L’) > 0 there
exists ke Z" and h = (hy, ++-, h,) € Z™ such that

(2.3) Lok + Lo=dhyi=1, 0 m.

We write d, = d/g, 9; = LiJge Z", g;: = lijge Z"*, 9; = l;Jge Z(t =1, «++,
m) where g = G.C.D. (I, ---,1,, d) and suppose that

(2.4) G.CD. (g, **+, Gm, h,e) > 1,
where ¢ = ¢/d. Then there exists a prime p such that
(2.5) g.=00¢=1,---,m), h=0,¢e=0 (mod p) .
Now from (2.3) we have

g::k+g,=dh,t=1, -, m,

and so appealing to (2.5) we deduce g; =0 (mod p) (¢ =1, -+, m),
giving g; =0 (mod p) (¢ =1, «+-, m). Thus we have G.C.D. (g}, -+,
gn, de) =0 (mod p), which contradicts G.C.D. (g, ++-, g,., de) = 1.
Hence our assumption (2.4) is incorrect and we have G.C.D. (g,, ---,
gn, h,e) = 1. Thus by Lemma 1 there exists A e Z, such that

G‘C‘D‘ (gl.x + hly ...s ym.x + h/my 6) = 1

and so x = d\ + ke 55",
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3. Throughout the rest of this paper we suppose that .&5° + &
and G.C.D. ({,, +++,1,, d) =1. Thus by Theorem 1 we have d|¢, N(d,
L) >0 and G.C.D. (I, +++,1,,¢) = 1. Also throughout this paper
corresponding to any xec.&4° we define ueZ™ by u= (u, *+-, ),
where l;ox + l; = du,(i =1, -+, m), so that G.C.D. (u,¢) =1. The
following lemmas will be needed later.

LemMMA 2. (i) If xe.%5° and p is a prime dividing e for which
the system of simultaneous congruences
3.1) li:z+u;=0 (mod p), =1, «--, m,

is solvable then N(pd, L') > 0.
(ii) Conversely if p is a prime dividing e for which N(pd, L') > 0
then there exists x € S45° such that (3.1) is solvable.

Proof. (i) For xe .54° and z a solution of (3.1) we let w = x + d=.
Then for 1 =1, ---, m we have

l,,;'w + li = (l,;'x + l,) + dl.;'z
= d(u; + 1;+2)
= 0(mod pd) ,

showing that N(pd, L) > 0.
(ii) We define v; by L;-w + I; = pdv; (i = 1, ---, m) and claim that

3.2) G.C.D. (1, +++,1,, pv,, *++, DV, 0) = 1.
For if not there is a prime p’|e such that
l,=0,pv;, =0 (mod p’) 1 =1, «++, M) .

Thus from l;-w + I; = d pv; we have [;=0 (mod ') ¢ =1, -+, m),
giving I} = 0 (mod »') (¢ =1, ---, m), which contradicts G.C.D. (I, - --,
l,,,de) = 1. Hence (3.2) is valid and so by Lemma 1 we can find ¢t e Z"
such that

G.C.D. (It + pv,, «oo, Lt + DV,,0) = 1.
We set x = w + d ¢t so that for 1 =1, ---, m we have
lLiex +1; =d(l;-t + pv)),
giving
GCD. (lysx+1, -+, l,x+ 1,0

= d G.C.D. (ll’t + Py, "'ylm't + DU, e)
—d,
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so that x ¢ “°. F inally taking z = — ¢ we see that the system
lLiez4+u; =0 (modp) (t=1,-+,m)

is solvable, as u; = I;-t + pv;.

LEMMA 8. Let t be a positive integer, A a subset of Z" which
consists of A(t) distinct congruence classes modulo t. Now if t is a
posttive integer such that t|t’ then A consists of (¢'[/t)"A(t) congruence
classes modulo t'.

Proof. It suffices to prove that a congruence class C modulo ¢ of
A consists of (#'/t)" classes modulo ¢'. This is clear for if x € C then
so does x + ty;, (¢ =1, .-+, ({'/t)"), where the y; are incongruent
modulo #'/¢, moreover the x + ty; are incongruent modulo ¢’ and every
member of C is congruent modulo ¢’ to one of them.

4. The minumum modulus. In this section we determine the
minimum modulus M;. We prove

THEOREM 2. If &5°+# @ and G.C.D. (I, +++,1,,d) =1 the min-
mum modulus M4 with respect to 4° is given by
(4.1) M =d
»le,N(pd,L')>0
Proof. As &5°# @, M:—the set of all solution moduli with
respect to .&5°—is well-defined and moreover INS is non-empty as 0

and =+ ¢ belong to M:. The proof will be accomplished by showing
that g is a principal ideal of Z generated by d 11

ple,N(pd,L’)>0

(i) We begin by showing that ¢ is an ideal of Z. It suffices
to prove that if ¢, € M3 and ¢, IN; then ¢, — £, € M;. For any x € &45°
and any yc€ Z" we have x + tye.55° as t, € M. Hence as t,c Mg
we have

(x + t.y) + t(— y) e S4°,
that is
x+ @t —t)ye s,
so that
t, — t,e M.

(ii) Next we show that k= d II pe Ms.

ple,N(pd,L')>0
For xe.%4° and any y e Z" we have
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G.C.D. (l,-(x + ky) + L, +++, Lo (x + ky) + 1, ©)
= G-C.D. (ll'x + ll + k(ly_'y), * Y lm'x + lm + k(lm.y)’ de)
=d G.C.D. (% + kl (ll'y)y cecy Up + kl (lm'y)’ e) ’

where k, = k/d. To complete the proof we must show that for all
y< Z" we have

G.C.D. (ul + kl (lpy), ey Uy + kl (lm'y)l 6) =1.

Suppose that this is not the case. Then there exists y,€Z" and a
prime ple such that w; + k, (l;-y,) = 0 (mod p) fori =1, -+, m. Let
z=x + ky, so that for ¢t =1, ---, m we have

Liez+Li=lL-x+ 1+ k(-y)
=d (?l/,' + kl (li'yo)) ’

that is,
li-z+1; =0 (mod pd) ,

so that N(pd, L’) > 0. Hence as ple we have p|k, and so p|u; for
=1, -+, m. This is the required contradiction as G.C.D. (u,, ---,
U, €) = 1, since x e . 75°.

(iii) In (i) we showed that M5 is an ideal of Z and since Z is a
principal ideal domain, ING is principal. Thus by the definition of the
minimum modulus M we have I; = (M. In (ii) we showed that
ke M so that Me|k. Hence to show that M =k we have only to
show that k| M;.

Now for all xe.94° and all ye Z* we have

G.CD.(l-(x+Myy) + 1, -, l-(x+ Msy) +l,0)=4d.

Hence
G.C.D. (du, + M3l -y, «++,du, + M:1l,-y,de) =d,
and so we must have
Mil;-y =0 (mod d) ,

for all yeZ" and all 7« (1 < i < m). Taking in particular y = (0, ---,
0,1,0, ---,0), where the 1 appears in the j** place we must have for
i=1,+-,mand j=1,---, 0

M;l; =0 (mod d) ,
that is
G.C.D. (M1, -, M51,,) =0 (mod d)

or
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M5 G.C.D. (I, +++,1,) = 0 (mod d) .

But G.C.D. (, ---,1,,d) =1 so we must have M3 =0 (mod d). Thus
it suffices to prove that

k|5, where k, = k/d = 11 p and w5 = M;s/d .

ple,N(pd,L’')>0

We suppose that k, } 75 so that there exists a prime ple for which
the system l;-w + 1, =0 (mod pd) (1 =1, ---, m) is solvable yet p}
w5 By Lemma 2 (ii) there exists ze€ Z" such that for some xe &%°
we have

livz-f—u,- _:.O (modp), ’i:l’ cee .M .

As p i we can define A by 751 =1 (mod p) and let y = Az so that
for 1 =1, ..., m we have

(4.2) u; + w5 Loy =0 (mod p) .
But as M} is the minimum modulus and x € .%° we must have
GCD. (l,s(x+Miy) + 1, -, lp:(x+ Miy) +1l,¢)=4d,
that is
G.C.D. (u, + 7 Loy, oo, Uy + 75 L, y,e) =1,

which is contradicted by (4.2). Hence 7 = 11 p and this com-
ple,N(pd,L’)>0

pletes the proof.

We note the following important corollary of Theorem 2.

COROLLARY 1. x€Z" is a solution of
(4.3) GCD. (lx+ 1, 1l,-x+1,c)=4d
if and only if
(4.4) GCD. (sx + 1, e, lpx+ 1, M) =d.

Proof. (i) Suppose x is a solution of (4.3). Then we can define
u; (0 =1, -+, m) by L;-x + I, = du; and we have
G.C.D. (Uyy ==y Up,e) =1.

Hence we deduce

G.C.D. (tyy =+, Up, I p)=1

ple,N(pd,L’) >0
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and so

GoCoD- (li'x + l1, "',lm'x + lmyd H p) = d ’

ple,N(pd,L")>0
which by Theorem 2 is
GCD. (lyox + 1,y vyl x+ 1, M5 =d.

(ii) Conversely suppose x is a solution of (4.4). Then there exist
u; (¢t =1, -+, m) such that l,-z + [; = du; and

G.C.D. (s, +++, Uy, 11 p=1.

plesN(pd, L) >0
Suppose however that
G.C.D. (tyy ==+, Up,€) = 1.
Then there exists a prime p such that
u; =0 (x=1,++,m),e =0 (mod p), N(pd, L') = 0.
But for ¢t =1, .-+, m we have
lix + 1, =du; =0 (mod pd) ,

that is N(pd, L’) > 0, which is the required contradiction. Hence we
have

G.C.D. (uy, ++vytUp,e) =1
and so
GCD. (L, x+ 1, ", x4+ 1,0)=4d.
5. Number of solutions with respect to the minimum mod-

ulus. We begin by evaluating 9t, that is, the number of solutions of
(1.1), when d = 1, which are incongruent modulo M¢. We prove

THEOREM 3. & = 11 p”(l — Ti;;), where r(p, L) ts the
ple,N(p,L")>0 o

rank of the matrixz L' obtained from L by replacing each entry 1;;
by its residue class modulo p in the finite field Z,.

Proof. By Corollary 1 the required number of solutions 3¢ is just
the number of solutions taken modulo M of

G.C.D- (ll'x + lly AR lm‘x + lm! Mlc) = 1 M

Thus as M¢ = 11 p is a product of distinet primes, a standard
ple,N(p,L")>0
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argument involving use of the Chinese remainder theorem shows that
this number 9 is just [ 9(p), where 9(p) is the number of solutions

Pl
x taken modulo p of

(5.1) G.CD. (I;»x + 1y +o+, Lyx+ 1uyp) =1,

Now x is a solution of (5.1) if and only if x® is not a solution of the
system (T denotes transpose)

L@x®T 1 @»f — o7 ,

Since N(p, L') > 0, this system is consistent over the field Z, and has
p*"® 1 solutions. Thus the number of solutions (modulo p) of (5.1)

, 1 .
is p" — prt = p" <1 - m;,u) giving

p

1
mc _= n <1 . >
' Pfc,NgL'»o p pﬂp,L)

as required.

In the proof of Theorem 2 we have seen that any solution
modulus M of (1.1) is a multiple of M;. As .545° consists of N con-
gruence classes modulo M4, Lemma 3 shows that .&4° consists of
(M| M3)"R; congruence classes modulo M. Hence by Theorem 3 we have

COROLLARY 2. The nmumber of solutions x of (1.1), with d =1,
determined modulo M—a multiple of Mi—is

1
M <1 _ _> .
plc,N(l;I,Lf)>o pr(p,L)

As a consequence of Corollary 2 we have the linear case of a
result recently established by Stevens [6]. A generalization of this
result is proved in § 7.

COROLLARY 3. (Stevens) The number of solutions of
G.C.D. (a2, + b, +++, a2, + b,y¢) =1,

taken modulo ¢, is

CnH(l_&@:ﬁM),

ple

where v;(p)(t = 1, «-+, n) is the number of incongruent solutions modulo
p of a;x; + b; = 0 (mod p).

Proof. The system
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ax; +b;, =9 (modp) (2=1,---,m),
is solvable if and only if
G.C.D. (a;, p)|b; (2 =1, --+,m),
that is, if and only if
pYa;or p|G.C.D. (a;,0;) (¢ =1, -+, m) .

Hence by Corollary 2 the required number of solutions is

(5.2) e 1 (1 - p}m) ,

where the dash (') denotes that the product is taken over all p such
that pfa; or p|G.C.D. (a;, ;) (1 < ¢ < n) and r(p) is the number of
a; (1 =1, ---, n) not divisible by ». As

lrp*ai9
vi(p) =40, | a;, 1t b; ,
p,p|a,pl b,

for i =1,---,m,(5.2) is just

o 1;[ (1 v p” vn(p)) ’

which is the required result.

We now turn to the general case d = 1. Let p be a prime and
let E denote an equivalence class of .&4° consisting of elements of .&7¢
which are congruent modulo d. We assert that if x¥,x®c E then
the system Z;-z® + 4" =0 (mod p) (¢ = 1, - -+, %) is solvable if and only
if the system [;-z® + 4, =0 (mod p) (¢t =1, ---, m) is solvable. As
x® = x® (mod p) there exists e Z" such that x® = x" + dt. Hence
for 1 =1, ---,n we have

du?) - li‘x(2) + li
- li’x(l) ‘I‘ l¢ _{‘ dl,b‘t
= du{® + dl;-t
giving
w® =u® + L-t.
If there exists z¥eZ" such that [;-z" + 4 =0 (mod p) (: =1,

-+, m) letting 2® = z% — ¢ we have [;-2® + u® = [;+29 — [« + ul’ +
l;-t = 0 (mod p), which completes the proof of the assertion. Hence
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the solvability of the system
Lez4+u,=0 (modp) G=1,-+-,m)

depends only on the equivalence class E to which x (recall ;-x + I; =
du;) belongs. Thus we can define a symbol 5,(E) as follows:

1, if for some x € E (and thus for all x € E) the system
0,(H) = { lLirz+ u; =0 (mod p) 1 =1, .-+, m) is solvable,
0, otherwise.

We now prove the following result.

N(d,L’)

1 S, (E(F)
THEOREM 4. N5 = 3 { o » (1 — m) ! }, where
ple,N(pd,L’) >0 o

Jj=1

the E? denote the N(d, L') congruence classes modulo d in S5°.

Proof. We let
& ={xeZ'|l;x+1;,=0 (mod d), i =1, ---, m}

so that we have &5° < <. Now .&” consists of N(d, L') congruence
classes modulo d and if we restrict this equivalence relation modulo
d to &45°, we show that .&%° also contains the same number of classes.
We write E(x) (resp. E’(x)) for the equivalence class to which x e .&5°
(resp. xe€.%”) belongs. From the proof of Theorem 1 we see that for
each x e.&” there exists e Z* such that x + dr e . &4°. We define a
mapping f from the set of equivalence classes of & into the set of
equivalence classes of &4 as follows: For xe.&”

f(E'(x)) = E (x + d\) .

This mapping is well-defined for if x’e.&” is such that E'(x’') = E'(x)
then E(x’ + d\) = E(x + d\). f is onto for if x € &4° then f (E'(x)) =
E(x) and is also one-to-one, for if f(E'(x)) = f (E'(y)), then E(x + d\) =
E(y + d\), that is x = y (mod d), giving E'(x) = E'(y). Thus the
number of equivalence classes of .&4° is the same as the number of
equivalence classes of .&%, that is N(d, L’).

Since d| M, each equivalence class E of .%5°, consists of a certain
number of distinct classes in .$4° modulo M;. We now determine this
number. If xe FE, x + dt also belongs in E if and only if it belongs
in .%4°, that is, if and only if,

G.C.D. (I(x + dt) + 1y wovy Lyo(x + db) + Upyo) = d,

that is, if and only if,



ON THE SOLUTION OF LINEAR G.C.D. EQUATIONS 199

(5.3) G.C.D. (w, + L, voeythy + Lot e) = 1.

Thus the number of distinct classes modulo M3 contained in K is
just the number of distinct classes modulo 75 = M:/d which satisfy
(5.3). But the minimum modulus of (5.3) is II,.»?»*. By lemma
2 (1) 6,(E)=1 implies N(pd,L') >0, so that [I[,.»»" divides
Ioenwarrse P = e Writing I3, for Il,.wwpezi>e and JI5. for
Iloie.vpa,2h=0s the required number of classes is by Corollary 2

3p(E)

1
= [T+ p". H<1_W>

ple ple

) 1 \im® / 1 o
=H+10<1—W> : H°\1—W>

ple ple

/ 1 0p(E)
— + M —_— —_——
- £Ie D \1 p'r(p,L)> ’
as N(pd, L) = 0 implies 6,(E) = 0.

Finally letting E®, ..., E® denote the h = N(d, L') distinct equi-
valence classes in .&%° we deduce that the total number of incongruent
solutions modulo M of (1.1) is

Sy
7=1 ple,N(pd,L’)>0 10””’“

We remark that »(p, L) # 0, for ple and §,(F) = 1. Otherwise,
if »(p, L)=0, I;=0 (mod p) (¢=1, ---, m). But as §,(&) =1 then for
x € K the system [;+z + u; = 0 (mod p) (¢ = 1, ---, m) is solvable con-
tradicting G.C.D. (%, ++-, U, ¢) = 1.

6. Some special cases. We note a number of interesting cases
of our results.

COROLLARY 4. If G.C.D. (d,e) = 1 then the number N of solu-
tions of (1.1) modulo M¢ s

: . 1
%d = N(d, L) p[e,N(];;!:,L’)>0p (1 - pr(p,L)> ¢

Proof. By Theorem 4 it suffices to show that if G.C.D. (d,e) =
1, ple, N(pd, L’) > 0 then for all x € .57 we have §,(E) = 1, that is the
system l;+z 4+ u; =0 (mod p) is solvable. Let w be a solution of
lisw + 1, = 0 (mod pd), say l;,w + I, = pdv;, (1 =1, ---,m). Aspfdwe
can define z = d™(w — x), where dd™* =1 (mod p) so that for 7 =
1, .-+, m we have
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iz +u, =d(ow— U-x) + u,
= d ' (pdv; — I; — du; + 1)) + u,
= dd~(pv; — u;) + u;
=0 (mod p),

as required.

COROLLARY 5. If N(d, L) = 1 then the number N, of solutions
of (1.1) modulo M5 is

6.1) W= I v (l—i>.

ple,N(pd,L’)>0 pre, D

In particular N(d, L') = 1 when L is invertible (mod d), and so
g is given by (6.1). Moreover if L is invertible modulo d [],,. p or
¢, then (1.1) is solvable and % = [],,.(p" — 1).

Proof. This is immediate from Theorem 4 since by Lemma 2(ii),
0,(E) =1 for all ple, N(pd, L’) > 0. Also (1.1) is solvable when L is
invertible modulo d [, » as

G.CD. (I, -+, 1y d) = GCD. (I, +++, U, ¢) = 1.

COROLLARY 6. If L 4s imvertible modulo 11 p then the
le,N(pd,L’)>0
number of solutious of (1.1) modulo Mg is nen

Ne=Nd, L) T (p—1).

ple,N(pd,L’) >0

Proof. Let p be any prime such that ple and N(pd, L’) > 0.
Then L is invertible modulo » and so for any x e.55° the system

liez+u;=0 (modp) 1 =1, -+, n)

is solvable and so 0,(E¥) =1, j=1, ---, N(d, L'). Moreover as L is
invertible modulo » we have r(p, L) = n and the result follows from
Theorem 4.

COROLLARY 7. If
(6.2) G.C.D. (a, *++,a,d) =1
the equation
(6.3) G.C.D. (a@, + +++ + a2, + byc) =d
is solvable if and only if

(6.4) d|e¢ G.CD. (a,+++,a,bec)=1.
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The minimum modulus of (6.3) is

all’»

ple/d

and the number of solutions x modulo this minimum modulus is

1 (0* = 7

ple/d
where the dash (') means that the product is taken over those primes
ple/d such that G.C.D. (a,, «++, a,, p) = 1.

Proof. According to Smith [4] or Lehmer [3] the number of
solutions x taken modulo d of

X, + 0 + a,%, + b= 0 (mod d)

is & G.C.D. (a,, ---,a,, d) if G.C.D. (a, +++,,, d) divides b and 0
otherwise. Thus as G.C.D. (a,, ++*, a,, d) = 1, we have N(d, L) = d**
and so by Theorem 1 (6.3) is solvable if and only if

dle, G.C.D. (a,, *++,a,, b,¢c) =1.
Now if (6.3) is solvable and p|c/d then
G.C.D. (a,, *+-,a,, pd)|b
if and only if
G.C.D. (@, *++ a,p) =1,
in view of (6.2) and (6.4). Thus by Theorem 2 the minimum modulus is

all’'»
ple/d
Finally for p|¢/d, G.C.D. (a,, +++,a, ») =1 we have »(p, L) =1 and
moreover the congruence ax, + +++ + a,%, + v = 0 (mod p) is always
solvable so that 6,(EY) =1,7=1,---,d"'. Hence by Theorem 4 the
number of solutions is

n—1 ’ Y3 —_— _.].'_
¢ pgd p <1 p) )

We remark that in particular ([5])
G.C.D. (ax + b,c) =1

is solvable if and only if G.C.D. (a, b,¢) = 1, has minimum modulus
Msieote » and has [1,.,.. (» — 1) solutions ¢ modulo the minimum
modulus.
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COROLLARY 8. There is a unique solution of (1.1) modulo M5 if and

only if
(i) N(d, L) =1 and there is mo prime p such that

ple, N(pd, L') > 0,
or

(it) N(d, L") =1 and the only prime p such that p|e, N(pd, L') >
0, is p=2, and (2, L) =1, n = 1.

Proof. If (1.1) possesses a unique solution modulo M3, Theorem
4 shows that S can consist only of a single congruence class modulo
d. Hence N(d, L') = 1. Also by Theorem 4 if there is no prime p
such that ple and N(pd, L') > 0 then N; = 1. Suppose however that
there is such a prime p. Then by Corollary 5 we have
=TI (p"—p""™").

ple,N(pd,L’)>0

This occurs if and only if
(6.5) pn . pn—r(p,L) — 1 s

for all ple with N(pd, L') > 0. But the left-hand side of (6.5) is
divisible by » unless r(p, L) = n. Then p” = 2 and we have p = 2,
n =1, r(p, L) = @2, L) = 1, which proves the theorem.

7. Another method. Although the formula of Theorem 4
applies to some important cases in § 6, this formula seems difficult to
evaluate even for example in the diagonal case

G.C.D. (alxl + bly ey Ay, =+ bn? C) =d.

The inherent difficulty is in determining for a given prime p which
solutions of this equation have the property that the system az; +
#; =0 (mod p) (¢ =1,---,n) is solvable. We now present another
method which in conjunction with previous results yields the diagonal
case.

We consider the set 1 of ue Z™ with G.C.D. (u, ¢) = 1 for which
the system

(7.1) liox +1;,=du; (mode) (1 =1,--+,m) is solvable .

It is clear that if uell and u = v’ (mod ¢) then u’cll. We denote
by K% the number of distinct classes modulo e contained in U. Let
N denote the number of solutions x of (1.1) modulo ¢. We prove

THEOREM 5. N = K{N,(L*) where L* is the m X (n + 1) matric
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[L:0].

Proof. If xe.54° then there exists ue Z" such that L,-x + [, =
du; (1 =1, --+,m) and G.C.D. (u,e) =1. If x,x'€.%4° are such that
x = x’ (mod e) then du; = du; (mod ¢), that is u;=wu} (mod ¢).

Conversely if G.C.D. (u,¢) =1 and x satisfies I;-x + I; = du,; (mod
¢) (i =1,+--,m) then l;-x + I; = d(u; + \e) and x¢.94° as G.C.D. (u+
re,e) = G.C.D. (u,¢) = 1.

Thus x e .94 if and only if x is a solution of I;-x + I; = du; (mod
¢), where G.C.D. (u,¢) = 1. Now there are K incongruent classes of
u modulo e, with G.C.D. (u,¢) = 1, for which (7.1) is solvable. For
each one of these, (7.1) has N,(L:0) incongruent solutions modulo c.
Hence we have

N = KiN(L*)

as required.
We now obtain the following interesting result.

COROLLARY 9. If he Z"ande,---,e, are divisors of e then the system
(7.2) ui = h/,,; (mod e;) (?: = 1’ .o ., n)

has a solution u = (U, <<+, U,) such that G.C.D. (u, ¢) = 1 if and only
if G.C.D. (e, ++ey€4 by <<y hyye) =1. When this holds (7.2) has

I e) I (1 —

ple
distinct solutions u modulo e, for which G.C.D. (u, e) = 1, where r(p) =
number of e; (1 =1, -+, n) not divisible by p, and the dash (') means
that the product 1is taken over those primes ple such that ple; or
»|G.C.D. (e;, ;) (=1, <=+, m).

Proof. The system (7.2) has a solution u such that G.C.D.
(u, ¢) = 1 if and only if

(7.3) G.C.D. (e, + hyy +vye,2, + hye) =1

is solvable, which by Lemma 1 is the case if and only if G.C.D. (e,
ceey @y By ooy by e) = 1. Applying Theorem 5 to (7.3) we have N =
K:N,(L*) and we note that K¢ is the number of distinct solutions u
modulo e of (7.2) for which G.C.D. (u,¢) = 1. However N,(Lx) is the
number of solutions x modulo e such that e;x; = 0 (mode) ¢t =1, «--,
n). Clearly N,(L*) = [I~,e;. By Corollary 2
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1
RN = o (1 _ _—>
p,e,N(l,_,I,L,»o preD )

e h,
e, N,

Now N(p, L') > 0 if and only if the system ew; + h; = 0 (mod p) ( =
1, ---,n) is solvable, that is, if and only if G.C.D. (p, e;)|h; or if and
only if pte; or p|G.C.D (¢;,h;) 2 =1, --+,n). Also r(p, L) is just
the number of the ¢; (¢t =1, - -+, n) not divisible by p. This completes
the proof.

We now obtain a generalization of Steven’s result [6] (see
Corollary 3).

where

COROLLARY 10. The equation
G.C.D. (@2, + b, +++,a,x, + b,,¢) = d,
where
G.CD. (a, +++,a,,d) =1,
18 solvable if and only if
die, G.C.D. (a;, d)|b; G =1, -+, m),
G.C.D. (ay, **y@py by +=+, b,,¢) = 1.

The number of solution modulo ¢ is given by

1 G.C.D. (a:, d)-(c/d)*- TI (1 _ v - vn(p))’
=t »icld P
where v(p) (L =1, «++, n) is the number of incongruent solutions modulo

a; b;
P of GCD. @nd" " GCD. @, d)

= 0 (mod p).

Proof. The necessary and sufficient conditions for solvability are
immediate from Theorem 1. When solvable we calculate the number
N of solutions modulo ¢ using Theorem 5. Thus we require the number
of distinct u modulo ¢ with G.C.D. (u,¢) = 1 such that

a;x; + bi = dui (mOd de) (’l, =1,---, /n/)

is solvable, that is,
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(a;/ds)x; + (b;/d:) = (d/d;)u; (mod d/d;-e)

where d; = G.C.D (a;,d) (t =1, +++, n).
This is solvable if and only if

G.C.D. ((ai/dy), (d/d)e) | (@dyu; — (bfd)(i =1, ++-, m) ,
that is, if and only if,
(d/d)u; = (b;/d;) (mod G.C.D. ((a;/d;),e) 1 =1, -, m).
This system is equivalent to
u; = h; (mod G.C.D. (a;/d;ye)) (1 =1, +++,m),

where h; = (d/d;)~'b;/d; and (d/d;,)~" is an inverse of d/d; modulo G.C.D.
(a;/d;, €) since G.C.D. (d/d;, a;/d;ye) = 1. Thus by Corollary 9 the
number of such u is

S L
EGCD(@M)@E(l_ﬂm%

where the dash () means that the product is taken over those ple
such that pla;/d; or p|G.C.D. (a;/d;, b;/d;), 7 =1, -+, m, as p|G.C.D.
(a;/d;, e, h;) if and only if »|G.C.D. (a;/d;, e, b;/d;) because (d/d)h; =
b;/d; (mod G.C.D. (a;/d;,e¢) and G.C.D. (d/d;, a;/d;) =1 (=1, -+, n).
Also 7(p) is the number of a;/d; (i = 1, ---, n) not divisible by p.
Next we need the number of incongruent x modulo de such that

a;x; =0 (modde) (i =1,-+,m).
This is just

3

H G.C.D. (a;, de)

I

d G.C.D. (ai/div (d/dw)e)

u{:{s n;'_‘[s i

d G.C.D. (a;/d;, e) .

Hence by Theorem 5 the required number of solutions is

T (d. (1 —
I @o. 111 Mﬁ,
where the dash (') means that the product is taken over those ple
such that p|a;/d; or p|G.C.D. (a;/d;, b;/d;), 1 = 1, +++, n. This number
is

ﬁdi'e”-g( %ﬂ)
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as

1: p*ai/diy
vi(p) = {0, plai/d;, p{ bi/d; ,
, pla;/d;, p|bi/d; .

Finally we state that all formulas are easily modified if we do
not assume g = G.C.D. (I, ---, 1,,d) = 1 (See introduction, Theorem 1).

For example we list

THEOREM 2'. If .&5° # @ the minitmum modulus M5 with respect
to (1.1) is given by

Mfi:dl H D .

ple,N(pdy,L’[g)>0

COROLLARY 4'. If G.C.D. (d,e) = 1 then the number N, of solu-
tions of (1.1) modulo Ms s

1
=N L) T (- ) -

ple,N(pdy,L’[g)>0 \
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