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INTEGRAL REPRESENTATION OF EXCESSIVE
FUNCTIONS OF A MARKOV PROCESS

RICHARD DUNCAN

Let X; be a standard Markov process on a locally compact
separable metric space £ having a Radon reference measure.
Let &7 denote the set of locally integrable excessive functions
of X; and ex.5” the set of elements lying on the extremal rays
of &“. Then if u € ex.5” is not harmonic, it is shown that there
is an z € E such that Py« = u for all neighborhoods V of © where
Py is the hitting operator of V. A regularity condition is
introduced which guarantees that two functions in .5 having
the above property at x are proportional. A subset EcE
and a metric topology on E are defined which allows one to re-
present each potential p€.S” in the form p(x) = \u(x, y)v(dy)
for some finite Borel measure » = 0 on £. Here the function
u: E X E—[0, ] is measurable with respect to the product
Borel field and has the property that for each y € E the function
x — u(x,y) is an extremal excessive function. In the course
of this study a dual potential operator is introduced and some
of its properties are investigated.

In §2 we introduce the notation and assumptions which will be
assumed to hold throughout the paper. Section 3 begins our study of
exs” and using a result of Meyer [7] we show that to each function
% € ex.s” which is not harmonic we can associate a point x ¢ E such
that P,u = w for all open neighborhoods V of x. Here P, is the hitting
operator associated with V. We then say that w has support at « in
analogy to the property introduced in axiomatic potential theory by
Hervé [4]. We then discuss the axiom of proportionality, i.e., when
is it true that if u,, u, € ex.&” have support at z, it follows that u, =
au, for some a = 0. Some conditions are given which guarantee this
property.

In §4 we begin the discussion of representation of elements of .&7.
A uniform integrability condition on .&” is imposed and we define a
suitable compact, convex set .2 in &“. Using the Choquet theorem
and the characterization of ex.&” established in § 8, we define a subset
EcE and a metric topology on £ which allows us to represent each

potential pe .2 in the form p(x) = \u(z, y)v(dy) for some Borel meas-

ure v=0 on K. Here u: E x £ — [0, ] is a function measurable
with respect to the product Borel field on E x E and having the
property that the function x — u(x, y) is an extremal excessive funec-
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tion for each y e E. ~
In §5 the dual operator U is introduced, defined for a continious

function on E with compact support by ﬁf(y) = Sf (x)u(z, y)dz. Some

properties of U are investigated, and the integral representation is
then extended to all potentials pe.&”.

2. Preliminaries and notation. The primary reference for the
material in this paper will be Blumenthal and Getoor [2], and most
of the notation will be taken from that book. Let therefore E be a
locally compact separable metric space, and write E, = E U {4} where
4 is the point at infinity if E is not compact and an isolated point
otherwise. We denote by <Z(E) and <#(E,) the Borel sets of £ and
E, respectively. Let X = (2, &, ., X, 0,, P®) be a standard process
with state space (E, <Z(E)). Thus X,: Q2 — E, foreacht, 0 <t < oo,
such that X,(w) = 4 for all s =t if X,(w) = 4. The path functions ¢
— X, (w), we 2, are right continuous on [0, ) and have left-hand
limits on [0, ) almost surely. Here { = inf {t: X, = 4} is the lifetime
of X. The shift operators 6,: 2 — 2 are defined by X,-6, = X,,,. For
each x ¢ E,, P® is a probability measure on the g-algebra & such that
x — P*(4) is <#(E,) measurable for each 4e & and P*(X,=x) = 1.
The reader is referred to [2] for the definitions of {<;} and & .
Finally, X is assumed to be strong Markov and quasi-left continuous
on [0, 0).

If F is any topological space, we write B(F') for the real-valued
Borel measurable functions on F, and bB(F') for the bounded elements
of B(F'). If F is locally compact Hausdorff, Cx(F) will denote the
real-valued continuous functions on F with compact support. If L is
any space of functions, L* will denote the nonnegative elements of
L. If feB(E) we extend f to E, by setting f(4) = 0.

We denote by Pg, @« = 0, the a-transition operator so that P7f(x)
= ¢ E*[f(X,)] for febB(E). Set P, = P?. Our notation for the re-
solvent of the semi-group is U=f(x) = rPt“f(x)dt=E"‘re'“‘f(Xt)dt,
and we put U = U°, the potential operatco)r. Recall that‘? for a >0,
U*: bB(E) — bB(FK) is a bounded linear operator on the Banach space
bB(E) with the supremum norm, and |[|[U*|| < a'. If B is Borel,
then Pj;f(x) = E°[e*"2f(X,,); Ts <(] defines the a-hitting operators.
Here T; = inf {t > 0; X, € B} is the hitting time of B. Recall that if
Be & (E), then B = {x: P*[T,; = 0] = 1} is the set of regular points
for B, and BUB" is the closure of B in the fine topology. Also if
De #(E) and D = D" then for each x ¢ E there is a decreasing se-
quence {G,} of open sets containing D such that T; 1T, a.s., P* on
{Tp, < }. A Borel set D for which D = D" is called finely perfect.

We let &“* denote the a-excessive functions of X and set .&¥ =
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&”°. Thus a nonnegative Borel function f is in .&7¢ if P2f < f for all
t=0 and Pf(x) 1 f(®) as t] 0 for all xe E. Recall that the fine to-
pology is the coarsest topology on E relative to which each fe.o”¢ is
continuous, &« > 0. Let we.s”. Unless otherwise qualified, the state-
ment % = 0 will mean that « is the zero function. Similarly, u = 0
will mean that « is not identically zero.

One basic assumption which will be assumed to hold throughout
is the existence of a (Radon) reference measure. This is a Radon
measure dx having the property that a set Be <#(FE) is of potential
zero, i.e., U(x, B) = 0 for all xe E, if and only if S dx = 0. This con-
dition is satisfied if the elements in .&”* are lower gemi-continuous for
some a > 0. If f,ge.&*and f = g a.e., dz, then f and g are iden-
tical. Also, under this assumption each f e.&”* is Borel measurable.
An important situation where a reference measure exists is when
there is a dual Markov process X, as in Chapter VI of [2]. Here the

resolvent kernel is of the form U“f(x) = \u*(z, y)f(y)é(dy) where u*: E

x E— Rt is ¢#(E) x <7 (FE) measurable, &(dy) is a Radon measure on
E, and the function x — u*(x, y) is a-excessive for each ye E, a = 0.
Moreover, the resolvent of the dual process X, is given by U“f(y) =

Su"(x, y) f(x)é(dx), and for each x e E, the function y — u*(x, y) is a-

excessive for X,. One can then define, analogous to X,, a cofine to-
pology for X,, and it turns out that the notion of semi-polar is equi-
valent in these two topologies. If D is Borel, then "D\D" is semi-polar,
where "D denotes the set of points cofinely regular for D.

We make finally the following assumption on U: If f is a bounded
Borel measurable function on E with compact support, then the funec-
tion « — Uf(x) is finite. This condition is always satisfied by the
operator U for o > 0 and in fact the assumption is mainly a con-
venience that simplifies the notation. The reader can easily convince
himself that all of the following results are true when stated in terms
of a-potentials for @ > 0. TUnder this assumption each excessive func-
tion is the limit of an increasing sequence {Uf,} of finite potentials
where each f, = 0 is in B(E).

We fix once and for all a reference measure dx and, changing
our notation slightly, we agree to denote by .o the set of all exces-
sive functions of X which are locally integrable with respect to dw.
Now .&¥ is a convex, proper, pointed cone of functions on E and we
denote by ex.S” the set of extreme rays of &: weex.s” if and only
if for any representation of % in the form u = u, + u, with u,, w,e
&7 it follows that u, = au, for some a = 0. We will draw heavily
upon the following result found in Meyer [7, p. 59]:

THEOREM 2.1. Let {u,} be a sequence of excessive functions. Then
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there is a subsequence {u,} and an excessive function u such that u,.
—u a.e., dx.

From now on all “‘almost everywhere (a.e.)”’ statements will be
in reference to the measure dx.

3. Characterization of ex.s”. We now want to give a charac-
terization of the extremal rays of <. For this we make the

DEFINITION 3.1. An excessive function we.&” is said to have
support at ¢ E if for any open neighborhood V of z, P,u = w. Also,
% is said to be harmonic if Pgeu = u for all compact subsets K C E.

REMARK 3.2. If we.” has a support at x, then « is harmonic
in E\{z}. In this connection, see Bauer [1, Chap. V].
We now prove

THEOREM 3.3. Let wecexs”. Then if u ts mot harmonic, u has
support at some x € K.

For the proof, we will need a series of lemmas.

LEMMA 3.4. Let {ur} and {u?} be sequences of excessive functions
i &7 such that w* + u? — w for some u€.S”. Then if u*— u, a.e., and
UL — Uy A.€., fOr U, U, €., we have U — u, and U — u, on {u < co}.

Proof. Of course u = u, + u, since they agree almost everywhere,
hence everywhere. The important fact here is that if »,, ve.&” and
v, — v a.e., then v < liminf v, [Proof: We have by Fatou’s lemma
aU%x, liminf »,) < lim inf «U%(x, v,) < lim inf v,(x) for any a > 0, so
liminf v, is super-median. If 7 is the excessive regularization of
lim inf v,, then ¥ < liminfv,. But 7 = liminf v, a.e., and therefore
7 =v a.e., hence ¥ = v everywhere so that » < liminfv,]. Now if
ul +uy — u = u, + U, then on {u < =}, A = {limsup u! > u,} C {liminf u}
< u,} since xe A and wu(x) < o implies there is a subsequence {n’}
such that !’ (x) —» @ >u,(x) and hence u?'(x) — B < u(x). Therefore
lim inf u}(x) < lim inf u}'(x) < uy(x). But {liminfu? < u,} = ¢ by the
above remark. Thus A = ¢ and for any x ¢ E with u(x) < o we have
lim sup u(2) < u,(®) < lim inf u?(x); therefore u” — u, and hence u? — u,
on {u < oo},

LEmMmA 3.5. Suppose {u,} . and u,— Bu on {u < o} with B
>0 and w, £ ue.s” for all n. Let B be Borel. Then if Pzu, = u,
for all m, we have Pyu = u.
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Proof. Since u €. we always have P,u < u. To show Pyu = u,
consider a point xc E where u#(x) < . Then the measure Py(x,.)
puts no mass on {# = «}. Since u, < u for all n, the dominated con-
vergence theorem implies Py(w, u,) — Py(x, fu) = BPzu(x). But Pz, u,)
= u,(¥) — pu(x) and since B> 0, Pyu(x) = u(x). Hence Pyu = u on
{u < =} and since {4 = oo} has dx-measure zero, P,u = u everywhere.

LEMMA 3.6. Suppose ucex.S” is not harmonic. Then there is a
compact K C E and a sequence {f,} C B*(E) of Borel functions vanish-
ing outside of K such that Uf, < u for all n and Uf,— % as n— <o
on {u < oo},

Proof. Since uecexs”, there is a sequence {g,} of nonnegative
Borel functions with Uy, ] u. Assume the conclusion is not true, and
let KC E be an arbitrary compact. Then 1 = I, 4 Ix. and hence
Ug, = Ulxg,+ Ulkg, T u. Here I denotes the indicator function of
B, for any Be < (E). By Theorem (2.1) and Lemma (3.4) and the
fact that Ug, <  for all #, we can find a subsequence {n'} and exces-
sive functions u,, u,€.5” such that Ulgg, — %, and Ulkeg, — U, on
{u < o} with v = w, + u,. Since ueexs”, u, = Bu for some g = 0.
Now gB+0 since otherwise Ulxg,, —u and I.g, = 0 on K° for all n'.
Thus Ulgeg, — Bu on {u < =} and £>0. But for any zec E,

oo

PreULiegu (o) = B*|” Le(X)g, (Xt = B T X)g, (Xt
K 0
- UIch,,L,(x) .

Hence Lemma (3.5) implies that Preu = u. But K was an arbitrary
compact and u is therefore harmonie, giving a contradiction.

Proof of Theorem (3.3). Suppose % € ex.5” is not harmonic. Then
by Lemma (3.6) we can find a compact KC E and a sequence {f.} C
B*(E) with each f, vanishing outside of K and Uf,— % on {u < oo},
Uf, < u for all n. We define recursively a decreasing sequence {B;}
of nonempty Borel sets such that diameter (B;) | 0 and such that for
each j > 0 there is an a; > 0 and subsequence {n'} C {n} with UI;.f,
— a;u on {u < }. Set B, = K and assume B; has been defined with
a corresponding «; > 0 and subsequence {n’} < {n}. Since B;C K is
compact, we can find a finite Borel partition {C;} of B; such that
diameter (C;) < 1/j diameter (B;) for each 4. Then I, = >,;I,, and
hence Uly,f, = 3.;Ul;,f, — a;u. By Theorem (2.1) and Lemma (3.4),
there is an 4, a subsequence {n’’} C {n'}, and excessive functions u,, u,
e .&” with u,#0 such that UIC,;Of,L,,—>u1 and 3;.; Ul fo — 4. On {u
< «}. Since au = u, + U, € exS, u, = pBayu for some 8 > 0. Let Bj;,,
=C;, and a;;; = Ba; > 0. Then diameter (B;,,) <1/j diameter (B;)
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and Ul f. — @4 on {u < oo}, thus completing the definition of
the sequence {Bj}.

Consider now the decreasing sequence {B,;} of nonempty compact
subsets of E, and let xc();B;. Let V be any neighborhood of x.
Since diameter (B;) | 0, there is some j, with V O B; D B, and hence
Ty < T;;, a.s. Now there is a subsequence {n'} C{n} and an a; >0
such that Ulz;, f. — a;u on {u < o}, UIBJ.Ofn, <« for all #’. But
for each xc K

UL, fu@) = B*|" L, (X)f.(X)dt = UL, £, (@)

since T, < TB].0 a.s., Lemma (3.5) implies that P,u = « and the proof
is complete.
We list here a property of ex.o”.

ProrosiTION 8.7. (i) If weS has support at x, there is a Se-
quence {x,} with x,— x and u{z,} 1 |ju]|| = {sup u(y): y € E}.

(ii) If w is harmonic and E is not compact, there is a sequence
{x,} such that x,— 4 and w(x,) 1]|/%||.

Proof. (i) Suppose not. Then there is a neighborhood V of x
and a constant M < ||u|| such that u(z) < M for all xe V. Let G be
a neighborhood of & with G < V. Then (X)) < M a.s., on {T; < oo}
since X,,eGCG cGCV as., on {T;< «}. But u(y) = Pau(y) =
E'[u(X;,); Tg < o] and hence u(y) < M for all y € E, a contradiction.

(ii) Same proof as in (i) using neighborhoods of infinity.

Recall that a point x e E is polar if PY[T, < -] =0 for all ye F
where . T, is the hitting time of {x}. It follows from (3.5) of [2, Chap.
II] that if w e &7, then {u = <o} is polar. As a converse to this result,
we prove

ProprosITION 3.8. Assume U< Cx(E)— C(E) for some a=0.
Then if x is polar and 0 # ucex.S” has support at x, ||u|| = oo.

Proof. Suppose x is polar and let 0 = u cex.” have support at
x with |[Ju]| = M < . Let {G,} be a decreasing sequence of open sets
containing ¢ with .G, = {¢}. Let yc E be distinet from z. Then
Te, T o a.s., P¥ and u(y) = Py, u(y) = E'[w(Xy, )] = MP*[T,, < eo]. By
(4.24) of [2, Chap. IT|, X;, — 4 a.s., P¥ as m— . Since Xy, €G,
on {T; < oo} a.s., it follows that T;; = <o a.s. P for large n. Hence
PY[T; < «]] 0 as m— o and therefore u(y) = 0. Since y # x was
arbitrary, u(y) =0 for all y ==« and hence # = 0 as dz does not
charge the polar set {x}. This contradicts the fact that w s 0, thus
completing the proof.
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We now investigate the following uniqueness problem: When is
it true that if w,, u, € ex.” have support at z, then %, = au, for some
«a = 0?7 For this we make the following

DEFINITION 3.9. (i) If w has support at xec E, then w is said
to be regular at x if P,u = u for all finely perfect sets D = D" con-
taining « of the form D = G" where G is finely open.

(i) A family % Cexs” of excessive functions is said to be re-
gular if any €% which has support at 2 is regular at «.

ProrosiTION 3.10. Suppose uc.%” has support at xe E and has
the following property:. For every decreasing sequence {G,} of open
sets containing x with lim,T, = T a.s., we have P, w— Pu. Then
u 1s regular at wx.

Proof. Let D be a finely perfect set containing z, and let ye E
be arbitrary. Then there is a decreasing sequence {G,} of open sets
containing D such that T; 1 Tp a.s. PYon {T, < <}; hence P; u(y) —
P,u(y). But each G, is a neighborhood of x, therefore P, u(y) = u(y)
for all n, and it follows that u(y) = P,u(y). Since y was arbitrary,
Pyu = u.

REMARK 3.11. If we.5” has support at z and is regular at =z,
then P,u = u for all finely open V containing z.

We now prove the main result concerning regularity.

THEOREM 3.12. Suppose 7z Cex.S” is regular, and let x € E. Then
up to a nonnegative multiplicative constant, there is at most one u €
Z having support at x. Moreover, if uwe€.S” has support at x and is
regular at x, then ucexS”.

Proof. We first show that if w, u,e.9” have support at x and
are regular at «, then u, < u, or u, < u,. Indeed, set D, = {u, < uy}"
and D, = D C {u, < w}. Now D, and D, are finely perfect and since
E = D, U D,, x must be regular for one of these sets. Assume that
x e {u, < u}” = D, (the other case is treated similarly). Since u, and
u, are finely continuous, %, = P, u, < Ppuy = s, 1.€., %, < %, Let now
B =supf{a=0:au < u}=1. We claim that if 8 = c then u, = 0.
For in this case u, = < on {u, >0}. But u,€.5” and hence S(u >0)dm =0,
for otherwise there would exist a compact K C {u, > 0} such that
S dx > 0 which would imply that gKuzdx = oo. Thusu, = 0 a.e., hence
ulf: 0 everywhere. Assume therefore that g8 <c . Then gu, < u,.
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On the other hand, if ¢ > 0, there is an x € E such that u.(x) < (8 +
&u,(x). But (8 + €)u, and u, also have support at = and are regular
at z, implying that u, < (8 + ¢)u,. Since ¢ > 0 was arbitrary, u, <
Bu, and therefore gu, = u,, proving the first part of the theorem.

To prove the second part, assume that u € .S has support at «
and is regular at x. Then if w = u, + u, with u,, u,€.%”, we have
= Pyu = Pyu, + Pou, = u, + u, for all finely perfect D containing z.
But Pyu; < w; (¢ =1,2) and hence P,u; = u;. Thus u, and u, have
support at x and are regular at x. The preceding proof implies that
%, = au, for some a = 0 and therefore u € ex.S”.

Suppose ex.S” has the following property: If ucex.” has support
at «, then « is locally bounded and continuous on E. Using Proposition
(8.10), it is easy to see that ex.&” is regular. We show that in certain
cases a form of continuity is actually necessary for regularity to hold.

ProroOSITION 3.13. Assume X 1s a Hunt process. Let x, be re-
gular for {x} and suppose ucex.s” has support at x, and u(x,) # 0.
Then w ts the unique (up to a nonnegative multiplicative constant)
element in ex.s” having support at x, if and only if u(x) < u(x,) < =
Jor all xe E.

Proof. Since xz, is not polar and u(x,) # 0, it follows that the
excessive function P, u(x) = E*[u(z,)] < w(x) is not identically zero,
has support at xz, and is regular there, and is therefore in ex.&” from
Theorem (3.12). If wu(x,) = o, then E[u(xr,)] could only take the
values 0 and « since XT% = &, a.8., on {T, < co}. But then P,u =
0 a.e. since P, uc.””, and hence P,u = 0, a contradiction. Now the
uniqueness assumption on w implies that u = aP,u for some a = 0
and since 0 < P, u(x,) = u(x,) < o= it follows that @ = 1 and therefore
u(@) = P, u(r) = E’x[u(XTzO)] < u(x,) < o for all xe E.

Conversely, assume u(x) < u(x,) < - for all xe E. Let {G,} be
a decreasing sequence of open sets containing x, such that N.G, =
{x;}. Then T,, 1 T,, a.s. Since X is a Hunt process, Xran—’Xuo = x,
and lim,,u(XTG”) = u(XT%) = u(x) on {T, < e}. But u(x) < u(w,) for
all e E and hence lim,u(Xy, ) = u(w) on {T, < <}. The bounded
convergence theorem now implies that u(z) = P, u(x) = E”’[u(XTGn)]
——»E’”[u(XT%)] = P, u(z) for each xe¢ E and the proof is complete.

The property of regularity is not shared by all standard processes
(consider translation to the right on the line), and we now seek other
conditions which guarantee the uniqueness property announced in
Theorem (3.12). First let us state this property explicitly.

(A) Let xe E be arbitrary. If u,, u,cex.s” have support at x, then
%, = au, for some a = 0.
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This property was first studied by Hervé [4] in axiomatic potential
and is known as the axiom of proportionality. We introduce now a
property that will guarantee (A) in a large number of cases.
(B) Suppose u € ex.s” has support at x, and let D be finely perfect
set containing %. Then P,u has support at .

Note that the property includes the case P,u = 0. We will state
explicitly when (B) is assumed to hold.

Let T = inf {t: X, = X\}. A point x e F is called an instantaneous
point if P°[T = 0] = 1. It is easy to see that if dz does not charge
singletons, then the points of E are instantaneous.

THEOREM 3.14. Assume (B) and that dx does not charge singletons.
Let weexS” have support at x, and suppose that either x, is polar or
u(x,) = 0. Then 1f D = D" contains x,, we have Pyu = u or Pyu = 0.

Proof. Let v =u — Pyu=0. Then (B) implies P,v = v for all
open neighborhoods V of x,. It follows that if B C E is any Borel set
such that =, is in the interior of B°, then Pyv = v. Let E’ = E\{x,}
and consider the standard process X, defined by X, = X, if t< T, and
X, =4if t = T,. Then X, has state space E’ and transition func-
tion P,f(x) = E°[f(X.]; ¢t < T,]. Let d be a metric on E compatible
with the topology and suppose xc E’. Then there is a closed ball
Bc E’ with center x such that x, is in the interior of B°. Thus if
ye E', Pyev(y) = E'[v(X;,0); Ty < T, ] = E¥[v(Xy,.)] = v(y). Since v is
nonnegative and finely continuous, it follows from [2, Chap. II, (5.9)]
that v is excessive for X,. Therefore if we denote by {U*} the re-
solvent operators for X,, we have

all“v(z) = aExS:""e—%(Xt)dt < ()
for all xe E’. Now if x # x,,

aUv(x) = aU*v(x) + aE””r e f(X,)dt
Ty
< v(x) + E’”[e““”oaU"v(XTzo)].

If z, is polar, the third term in the inequality is zero. If u(x,) = 0,
then P,u(x,) = 0 and aU*u(x,) < u(x,) = 0; similarly aU*Pyu(x,) = 0.
It follows that aU*vw(x,) = 0 and therefore Erle*"»aUv(X,,)] = 0
since X,, = &, a.s., on {T, < c}. Thus in both cases aU*v(z) = v(v)
for all © # x,. We now define a function ¥ by #(z) = v(x) if x +# x,
P(x,) = . Sin e 2, has dx-measure zero, {x,} has zero measure with
respect to the measures aU%(x,.), xc E. It follows that aU*v(x) =
aU*¥(x) < ¥(x) for all xe E and therefore lim, .aU*¥(x) = v(x) is in
. Thus we have a decomposition of % in the form w = v + Pyu
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where v and P,u are in .&”. Since u cex.s”, P,u = u for some o = 0.
If « =0 or P,u =0, then w = 0. We claim that if P,u # 0, then DN
{0 <u < o} ¢. For if otherwise, D = DN{u =0lUDN{u = o}, a
disjoint union. But {u = «} is polar, hence T, = Tpnu=y a.S., and
therefore X,, € {u = 0} a.s., on T, <e. Hence P,u(r) = E°[u(X;,)]
= 0 for all x ¢ E, a contradiction. Thusif « > 0 and P,u # 0, there
is a point z€ D with 0 < u(x) < « and hence aP,u(x) = au(x) = w(x)
implying that a = 1, or Pou = u.

COROLLARY 3.15. Assume (B) and suppose points are polar and
that &“ has the following property: if ue€ex.s” has support at x and
u #= 0, then w(x) = 0. Then ex.s” is regular.

Proof. If points are polar, then dx certainly does not charge sin-
gletons. If 0 #= ucex.s” has support at © and D = D" contains x,
then P,u = w or Pyu = 0 by Theorem (3.14). But Pu(x) = u(x) = 0
and therefore P,u = u, proving that ex.$” is a regular.

According to Theorem (3.3), to each u € ex.&” which is not harmonic
we can associate a point xe E such that » has support at z. We
want to consider the case where to each %< ex.s” which is not har-
monic, there is a unique point # at which « has its support. In axio-
matic potential theory this property holds by virtue of the sheaf
properties of the harmonic functions in that theory. Here, however,
we do not have the property that if G, and G, are open and % is
harmonic in G, and G,, then % is harmonic in G,UG,. For a Hunt
process this property holds if « is locally bounded (cf. Meyer [7]).

For the moment we content ourselves with the following results.

ProposITION 3.18. Assume Z Cex.s” 1is regular. If weZ has
support at x, and x;, then u(x) = u(x,).

Proof. Suppose u(z,) < 6 < u(x;). Then V = {u < 6} is finely open
and contains x,. Now u(X,,) <6 a.s., on {T}, < o} since w is finely
continuous; hence u(x,) = Pyu(x,) = E=[u(X,,); Ty < ] < 0, a contra-
diction.

DEFINITION 3.19. % & ex.S” is separating if to each u € % there
is a unique xz € E such that « has support at x.

From Proposition (8.7), it follows that if Z < ex.$” contains no
harmonic functions and each wc % has the property that its sup-
remum is approached in any neighborhood of one and only one point
in E, then % is separating. The following proposition justifies the
terminology.
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PROPOSITION 3.20. Assume ZZ < ex.S” s regular and contains no
harmonic functions.

(i) Suppose Zz has the property that if weZ has support at
x, then 0 < u(x) < o=. Then Z 1is separating if & separates points.

(ii) Suppose Zr has the following property: If we Z has sup-
port at x and if y #* x, there is a function ve.S” and a Borel set D
= D" containing x such that v = u on D and v(y) < v(x). Then %
18 separating.

Proof. (i) It suffices to consider the case where u € 2 has sup-
port at two distinct points  and y. By Proposition (2.16), u(x) = u(y)
= g > 0. Letve.&” satisfy v(x) > v(y). Then there is an a > 0 such
that av(z) > g > av(y). Now V = {awv > w} is finely open and contains
x. Therefore av > Pyav = Pyu = u, i.e., u < av. But av(y) < u(y),
a contradiction.

(ii) Suppose u has support at « and y, x == y and let v and D be
as in the hypothesis. We have from Hunt’s theorem [2, p. 141], u
= Pyu = inf{se &:s=wu on D}. Thus, from » = u on D it follows
that 4 < v and hence u(x) < v(x) < v(y) = u(y). But u(x) = u(y) by
Proposition (2.16), a contradiction.

4. Representation of excessive functions. In this section we
prove a representation theorem, in integral form, for a certain class of
potentials of the standard process X. In the next section we extend
this representation to all potentials in .&”. Recall that .&” denotes
the set of all excessive functions that are locally integrable with re-
spect to the reference measure dx. We now topologize .&¥ as a sub-
set of M*(E), the nonnegative Radon measures on E: to each u¢.&”
we associate the measure u(x)de. This topology on .&” is locally con-
vex and it is given by the family of semi-norms {p;: f € Cx(F)} defined

byp(u) = S fudx. Thus a sequence {u,} < .&” converges to u € & if and

only if S fu,dx — g fudx for all feCx(E). Moreover, because of the

hypotheses on the state space E, .&” is metrizable (Cf. Choquet [3]).

A cap of &7 is a compact subset of .&” of the form {h < 1} where
h is a map of .&¥ into [0, -], linear in the sense that %(0) = 0, A(u +
v) = h(u) + h(v) for u, ve.&”, and h(au) = ak(u) for ue &¥, ac R* =
[0, ). In order to guarantee the existence of a sufficient number of
caps of &, we will make a special assumption. Recall that a sequence
{v.} of nonnegative Radon measures on E is bounded if the sequence
{v.(f)} is bounded for each fe CEi(E). Our special assumption, which
holds in the situation discussed in [7, Chap. II], is as follows:
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(4.1) Suppose {u,} ©.&” is a bounded sequence in M*(E) and u, — u
a.e., for some we.%”. Then there is a subsequence {u,}C {u,} such
that %, —w in 7.

It follows that &~ is a closed subset of M*(¥), for if {u,} is a
sequence of excessive functions in & and u,—v in M*(E) for some
ye M*+(E), then by Theorem (2.1) we can find a subsequence {u,}C
{u,} and an excessive function u such that u, — u a.e. But for each
f e Cx(E) we have by Fatou’s lemma S Sfudx = \fliminfu, dx < liminf
S fu,de = S fdy(x) so that we &¥. By (4.1) there is a subsequence
{u,}  {u,} such that «,.—u in & and therefore S Sudx = S Sdy(x)
for all f e Cx(E), implying that dv(z) = u(x)de. Note that (4.1) is
satisfied if & has the following property: If {u,}C % and uw,— u
a.e. for some u€.%”, then for each compact K C FE, there is a subse-
quence {u,}C {«,} which is uniformly integrable over K.

Now (4.1) implies that . is well-capped, i.e., .&¥ is the union of
its caps (Meyer [6, Chap. XI]). Thus Choquet’s representation theorem
applies (cf. [3]). Let .’ denote the continuous linear forms on .&~.
Then if ve.s”, there is a nonnegative Radon measure v carried by

ex.s” such that for le &', l(v) = S l(w)v(duw).
exs”
Let now {K,} be an increasing sequence of compact subsets of F

with K, € K,., and F = |J,K,. Let {f,} be a sequence of nonnegative
continuous functions with compact support such that for each n, f,(x)

=1 for all xe K,. Choose numbers «, > 0 such that >, S fadx =
1, and denote by k: & — [0, o] the functional defined by i(u) = >,
faudx. It is clear that 2(0) = 0, A(u + v) = h(u) + A(v) for u,ve &,
and h(Bu) = Gh(u) for 8 = 0. If welet 2 = {uth(u) < 1} = {u: >,a,
foudx < 1}, then (4.1) implies that 22~ is a compact, convex set in
. Therefore, if § is the convex, proper cone generated by .25,
§ will have compact base .2 and will be o-compact. Note that &

= {ue .S h(u) < o} and that if v ¢ & is bounded, then v .&°. final-
ly, we denote by <# (%) the Borel sets of .o

LEMMA 4.2. Suppose {u;} is a sequence of excessive functions in
2 such that w;—u in 72" for some we %. Then for each integer

n>0 and >0 we have U*(x, uj/\n)——J—> U*(x, u A\ n) for all ze
E.

Proof. Consider an integer » > 0 and « > 0. We show first that

g u; A\ ndx — | w A\ ndx for all Borel sets B — E having compact clo-
B B

sure. Assume this is not the case so that there is an ¢ > 0 and a
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subsequence {5} < {5} with H u; N\ nde — S U A 'ndwl = ¢ for some
Borel set B with compact closﬁre and for aﬁ 7'« By Theorem (2.1)
and (4.1) we can find a subsequence {j”} < {j’} and an excessive func-
tion » such that ;. —u a.e. as 5’ — o and that \fu; de— Sfﬁdx
for all feCy(E). It follows that S fads = S fuds Tor all fe Cu(E)
and therefore w = % a.e., hence everywhere. Thus ;. — u a.e., and
S Ui N ndx——»S u A ndwx, giving the desired contradiction.

B Fix x€ E. BThen the Borel measure B— U=*(x, B) is absolutely
continuous with respect to dz, and U%(z, E) = U*l(z) < 1/a < . Since

u; A nde —— \ u N ndx for all Be <Z(E) with compact closure, it
fgllows that U “(o?, u; A n)— Uz, u \ n) as j— o and the proof is
complete.

THEOREM 4.3. The map @: E x 5 — R* = [0, o] defined by ®(x, u)
= u(x) 1s F(E) X F(5%") measurable.

Proof. It is sufficient to show that for each «a > 0, the map @<
E x .9 — R* defined by @*(z, u) = U*(x, u) = Uu(x) is Z (E) x & (%)
measurable since for each v ¢ E and we 227, ad*(x, w) = aU*u(x) | u(x)
= O(x,u) as &« — . Let a >0, and for each integer n > 0 define
the map 92: E x % — R* by ®x(x, w) = U*(x, w A n). For fixed ue &
the map x — @2(x, u) is <& (F) measurable, and Lemma (4.2) implies
that for fixed # € E the map u — @%(x, u) is continuous on .9%". Since
%" is a compact metric space, if follows that @2 is Z(H) x & (%)
measurable. But @%(x, u) = U*(x, u An) [ U*(x, u) as n— o and there-
fore 9% is <# (K) x <#(°#") measurable, completing the proof of Theorem
(4.3).

COROLLARY 4.4. Let Be <Z(E). Then the map Py E x 5 — R* de-
Sined by Py(e, u) = SPB(x, dy)u(y) = Pyu(z) is B () X F (%) measur-
able.

Proof. Let H={p e B(E X .5%): (@, u)— SPB(m, dy)P(y, w) is F(E)
X & (>¢") measurable}. Then H contains all functions of the form
?,(x)P.(u) where @, € B(E) and @,€ B(9¢"). Moreover, if {®,} is an in-
creasing sequence of functions in H with @ = lim ¢,, then the monotone
convergence theorem implies that ¢ is in H. Hence, by the monotone
class theorem, B(E x .2¢2") C H. Since the function (x, %) — u(x) is in
B(E x 2), the result follows.

COROLLARY 4.5. (i) Suppose v =0 1is a finite Borel measure
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on & carried by 2, and v(x) = \u(@)v(du). Then ve 2.

(ii) Suppose v =0 is a finite Borel measure on & carried by
2 and v 1S an excessive fumction such that 1(v) = gl(u)u(du) for all
le . Then ve .S and v(®) = Su(x)v(du) for all x ¢ K.

Proof. (i) Note first that the integral makes sense by the
joint measurability of the map (x, u) —»u(x). We have by Fubini’s theo-
rem aU*z,v) = \aU=(x, w)yv(du) < \u(x)v(du) = v(z) since aU*(x, w)
< u(x) for all we %", « = 0. Also, since aU*(z, u) | u(xr) as a— oo
for all w € .27, the monotone convergence theorem implies /t\hat aU%(x, v)
T v(x) as @ — oo so that v is excessive. To see that v € .57, use Fubini’s
theorem to write

W) = 3 anS fn(ac)gu(m)v(du)dx =3 aS(S f,,(x)u(oc)dm)v(du)
- S(z ang fn(x)u(x)dx>v(du) - Sh(u)v(du) < oo

since h(u) <1 for all we 22
(ii) Since p;e &’ for each fe Cx(E), we have

S F@)o@ds = S(g f(x)u(x)dx)u(du)

for all feCx(E). On the other hand, the function #(z) = gu(x)v(du)
is in ﬁ by (i), and for each f e Cx(F),

S F(@)()de = S f(x)gu(x)v(du)dx = S(S f(x)u(x)dx)v(du)
= Sf(x)v(x)dm

and therefore ¥ = v a.e., and hence everywhere since ¥ and v are
excessive.

Consider again our increasing sequence {K,} of compact subsets of
E with K,CK,; and E = ,K,. For each j, define ¥,: E x 5% — R+
by ¥ (x, u) = PK;.(x, u), 0.8 (B) X B (%) measurable function, and set
U(z, u) = lim; | Pee(v, w). From Fubini’s theorem, the map w—
T (., w) = D, a'%g [0 i(x, wydx is <#(2¢7) measurable, and therefore
BT (., w) = lim; | AT (., w) is <& (2¢") measurable. Therefore the set
P ={ue 2 hW(., u) = 0} is a Borel subset of 2#". It is clear that
we 2 if and only if we 2% and PKvulO a.e., as j— o for all in-
creasing sequences {K;} of compacts such that K c K;,, and E =
U;K;. Finally, we put P = en. ot N \{0} where ex.27" is the set
of extreme points of the compact, convex set .2#°. Then ﬁ c {ue
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P h(u) = 1}. /S\ee Meyer [6, Chap. 2(1]. We make the following
assumptlon on &, which is valid if &2 is regular and separating:
(4.6) .7 is separatlng and the proportionality axiom holds.

Note that .9’ contains no harmonic elements for if u e ﬁ’ is har-
monic, then = P,eu | 0 a.e., for a sequence {K;} of compacts with
K; c K;,, and E = U,K, Thus # = 0 a.e., hence everywhere and 0
¢ ﬁ . Therefore, according to Theorem (3.3) and the assumption (4.6),
to each u € .?\9 we can associate a unique y € E, the point at which «
has its support. We indicate this relation by setting 4 = u,. Consider
now the map I &P —E deﬁned by I'(w,) =y. Define £ = F(j) c
E. Then I' is one-one onto K. Moreover, we can give E the topology
which makes " a homeomorphism between ﬂ and E. It is easily
seen that this topology is given by the metric d: E x E— R* defined
by d(z, v) = p(u., u,) where o is the metric on .2¢". In other words,
the topology on E is defined by the family of semi-norms {ps: feCr(E)}
given for ye E by p,(y) = Sfuydx.

Consider now the function u:E x E— R* defined by wu(z,y) =
u,(®). This function is Z(K) X %(E‘) measurable since it is the re-
StI‘lCthIl of the @ (E) x & (2¢)-measurable map (x, ) — u(x) to the
set K ><.9’fj and ._79 is Borel in .22, We come now to the main result
of this development. Recall that an excessive function pe.&” is
called a potential if Pg:p |0 a.e., for all increasing sequences {K,}

of compacts such that K, < K,., and E = U.K,

THEOREM 4.7. There is a subset E < E with a metric topology
and a function w: E x E— R* which is & (E) x & (E) measurable
and having the property that the function x— u(x,y) is an extremal
excessive function for each yeE’. FEach potential joeué> has a repre-
sentation of the form

pla) = ule, yw(ay)
for some finite Borel measure v = 0 on E.

Proof. The or}\ly statement to prove is the last sentence of the
theorem. If pe.$”, then by Choquet’s theorem there is a nonnegative

Radon measure p¢ carried by ex.22” such that I(p) = S l(u)p(du) for
le &”'; therefore p(x) = S 3 ‘u(w)(dw) by Corollary (3. 4) Since J -
2" is Borel, p(x) = S u(@);z(du) + S u(x)p(du) where F = ew‘%”\é’\.

Now | u@pi@n) = |, I=@)@p I @) = | ule, (@) where »
— po' T is a Borel measure on L.
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It remains to show that S u(x)p(du) = 0. Let {K,} be an in-

creasing sequence of compacts such that K, C K,., and E = U.K..
Then Fubini’s theorem yields

Prgp(@) = |, Peu@pdu) + | Peu@p(dn) .

Now Px:p|0 a.e.,, and hence S lim | Peou(x)p(du) = 0 a.e., or
S U(x, wypu(du) = 0 a.e.
&
Using Fubini’s theorem again, we can write

0= h(SyW(., u)y(du)) = L_h(lff(., w)du).

Thus plue 7 : W(T(., w) > 0;} = p{ex%\.?\} = 0 and therefore £ is
carried by .7/3, completing the proof of Theorem (4.7).

We are going to improve Theorem (4.7), but before this we con-
sider a related notion which is of independent interest.

5. Dual operator and the representation theorem. We intro-
duce now a dual operator associated with the potential operator U.

DEFINITION 5.1. The linear operator U: Cx(E)— C(E) is defined
for fe Cx(E) by Ur (y) = S f@)u(x, y)de and is called the dual opera-
tor of U.

The fact that Uf(y) is a continuous function on E follows from
the observation that ﬁf (y) = S f@)u(x, yydx = S f@)u,(x)de = ps(y)
where p; is a semi-norm defining the topology on E.

We want to investigate some of the properties of U. The results
obtained here are analogus to the case where a dual process exists as in
[2, Chap. VI] or [7, Chap. II]. Now Meyer [5] has shown that .&7,
and therefore L? , is a lattice in its own order, i.e., the order defined for
w,ve. S by w<wvif and only if there is an se & such that v = u + s.
The Choquet-Meyer Uniqueness Theorem [3] then implies that each u
e& is represented by a unique nonnegative Radon measure carried
by ex2o7".

If v is a signed Borel measure on £ having finite total variation,
we denote by Uy(x) the function x — Su(x, y)v(dy). If vy = 0 is finite,

then Uve § from Corollary (4.5).

PROPOSITION 5.2. (i) If v is a signed Borel measure on E of
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finite total variation, and if Uy = 0 a.e., then v = 0.
(ii) If KcC E is compact, then the restrictions of the functions
i tmage (U) to K is dense in C(K).

Proof. (i) If v is a such a measure, write v = vy, — v, where
y, and v, are finite and nonnegative. Then Su(x, Y, (dy) = Su(x, Y)V(dy)
a.e., or Uy, = Uy, a. e.. But each of these functions is in 9/> , hence
Uy, = Uy,. The Choquet-Meyer uniqueness theorem then implies v,
=y, and therefore v =y, — vy, = 0.

(ii) Let KcC E be compact. Let v be a Radon measure on K

and suppose that S Uf(y)v(dy) = 0 for all continuous functions f with
compact support. Then 0 = S Ur (»v(dy) = S( Su(oc wf (w)dx)v(dy)

S f(x)dacSu(w, w(dy) = S F(@)Uv(x)dz for all f € Cyx(E). But then Uy =
0 a.e., and hence by (ii), v = 0. The result now follows from the
Hahn-Banach Theorem.

We now make the following observations: The set £ = 9“@ c %
is a subset of the compact set .97, and therefore F = E°, the closure
of £ in .o , i1s a compact subset of .22°. Note that 0¢ F. We claim
that if fe Cy(E), then the function Uf extends uniquely to a con-
tinuous function on F which we continue to denote by (7f. This
follows from the previously mentioned fact that ﬁf(y) = ps(u,) and
p; is one of the semi-norms defining the topology on F. Note that
if we F\E, then Uf () = S f@)u(x)de. In the terminology of [7], F
is a “Martin Compactification’” of the space E. Finally, recall that
M*(F') denotes the nonnegative Radon measures on F, and that any
finite nonnegative Borel measure v on E can be regarded as an ele-
ment e M+(F) by the formula (B) = 5(B N E) for Be ZZ(F). We
now generalize Theorem (4.7).

THEOREM 5.3. There is a subset E C E, a metric topology on E
making E o dense subset of a compact metric space F, and a function
wEx E— [0, o] having the following properties: The function u 1is
FB(E) x Z# (E) measurable and for each y € E, the function x — u(x, Y)
1s an extremal excessive function. Fach potential pe .S’ has a repre-
sentation of the form

pa) = | u, v)¥idy)

for some uniquely determined finite Borel measure v =0 on E. For
any feCx(E), Uf has a unique continuous extension to F.

Proof. According to Theorem (4.7) and the preceding remarks,
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the only part of the theorem to prove is the representation for Roten-
tials pe.&”. We show that if pe.»” is potential, then pe.&” and
hence the representation holds from Theore% 4.7. But if pe.o”,
then p,(x) = (» A n)(x) is an element of & and therefore p,(x) =
w(z, Y)V,.(dy) for some finite Borel measure v, = 0 on E. Let fe

Ci(E). Then

[F@pde = (r@)([ue, v, o
= |([r@ne, wie).@ = [Or@w.a)
= | Uram.a 1 |f@p@ds < .

Since F' is compact and 0¢ F', we can find a finite number {f;} of func-
tion in C%(E) such that >; p;(u) >0 for all ueF. But p,(w) =

S foudx = ﬁfi(u) on F and therefore >, Uf, > 0 on F. But then

|, Oy = | s@p @i 1 [Sef@pedy <

as n— c. Hence J,(F) < M < < for some finite M >0, and {J,} is
bounded set in M*(F) and hence is pre-compact in the vague topology.
There exists therefore a finite Radon measure ve M*(F) and a sub-
sequence {r'} such that 9,.(g) — v(g) for all ge C(F'). Since Uf e C(F)
for f e Cz(F), we have

|Or@s.@n) = [F@p,@da 1| Of @i = [fepede.

Now U. f(u) = S f@)u(x)dx for we F and therefore

gf (@)pa)ds = S(S f(x)u(x)dx)u(du) - S f(x)(&u(x)v(du))dx .

Here we use the joint measurability of the function (x, u) — u(x) and
Fubini’s theorem. Sir}ce this equation holds for all fe C%(E),

it follows that »(x) = S u(x)v(du) a.e., and hence everywhere since
F

each function is excessive by Corollary (4.5). Since v(F') < « and F
c .2, the same Corollary implies that peé , thus completing the
proof of Theorem (5.3).

Recall that an excessive function ve.&” is said to be harmonic
if Pyv = v whenever B is the complement of a compact subset of E.
Now according to [2, p. 272], each u € .%” has a unique representation
of the form w = p + v where p is a potential and » is an harmonic
excessive function: The reader can easily convince himself that the
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proof given in the cited reference is equally valid under our assump-
tions. If we let &Z = {u€exS”: u is harmonic} and P = {u c ex.5”: u is
a potential}, then the following corollary is an immediate consequence
of the above fact

COROLLARY 5.4. (i) FEach uc.S” has a unique representation of
the form u(x) = Su(x, y)v(dy) + v(x) where v = 0 is a finite Borel mea-

sure on E and ve.&” is harmonic.
(ii) exs” = PUZ#. Of course, PN.# = {0}.

REMARK 5.5. In §3 we introduced the assumption (4.6) and we
now show how to obtain a representation as in Theorem (5.3) under
the single assumption that to each x € E there is at most one u € ex.s”
having support at x. Define E= {xe E: there is a ue.é’”\ having
support at 2} and write 2~y if and only if there is ue.é’\ having
support at « and y. It is easy to see that ~ is an equivalence relation
on £ and we put E = E/~ the set of equivalence classes of E. We
denote by # the equivalence class containing z. If we define I': £ —
Z by T'(%) = the unique w e .2 having support at «, then ' is one-
one onto 2%, and the metric d on E defined by d(F, 7) = o(T'®), (),
where o is the metric on ﬁ, endows £ with a topology that makes
' a homeomorphism between &7 and E. Imitating the proof of Theorem
(4.7) we obtain an analogous representation with the space E replaced
by E. Of course E is no longer a subset of E, but rather a set of
equivalence classes of points of K. Note that é/\’ is separating if and
only if x~y implies that z = y.

REMARK 5.6. Denote by E’ the subset £ E equipped with the
subspace topology, i.e., the topology induced by E. A natural ques-
tion to ask is if there is any relation between £’ and E = Q’A as topolo-
gical spaces. We show that is a dual process exists as in Chapter VI
of [2], then the map I™: & — B defined by I''(u,) = x is a homeomor-
phism so that E = FE as topological spaces. Now the dual process X,
has a potential operator [ of the form Uf(y) = gg(x, ) f(x)de, and it
follows from [7, Chap. III, T7 and T10] that g(z, ¥) = u(z, y) for ye
E = .é’\ . In other words, £ = {ye E: x — g(x, ¥) is an extremal poten-
tial} and t}/l\erefore ﬁf(y) = Uf(y) forall ye E and fe Cx(E). If u,,
—u,, in &, then Uf(y,) = Uf@.) — Uf(y) = Uf(y) for each fe
Cx(E). Now it is easy to see that the operator U: Cx(E)— C(E) has
an image which separates points of E so that y,— v, in E, hence E’.
Thus [” is continuous. On the other hand, if y,— ¥, in E’ then
Uf(y,) = Ufw,) — Uf(w) = Uf(y,) for all f e Cy(E) by the continuity
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of Uf. Thus u(x, y,) — u®, ¥, in .9/3 and /"' is continuous, proving
that I” is a homeomorphism.
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