A DUALITY BETWEEN TRANSPOTENCE ELEMENTS AND MASSEY PRODUCTS

Byron Drachman and David Kraines

Abstract

The purpose of this note is to show that if v is an element whose suspension is nonzero, and if u is dual to v, then the transpotence $\varphi_{k}(v)$ is defined and nonzero if and only if the k-Massey product $\langle u\rangle^{k}$ is defined and nonzero.

We wish to thank Dr. Samuel Gitler for a helpful conversation on this material.

1. Preliminaries.
1.1. The Cobar Construction: (Adams [1]). Let C be a simply connected $D G A$ coalgebra over K with co-associative diagonal map where K is a commutative ring with unit. The Cobar Construction $\bar{F}(C)$ is the direct sum of the n-fold tensor products of the desuspension of $\bar{C}=\operatorname{Ker}(\varepsilon)$ where $\varepsilon: C \rightarrow K$ is the augmentation. Suppose C has a differential $\left\{d_{n}: C_{n} \rightarrow C_{n-1}\right\}$. A typical element is a linear combination of elements of the form

$$
x=s^{-1}\left(c_{1}\right) \otimes \cdots \otimes s^{-1}\left(c_{n}\right)=\left[c_{1}|\cdots| c_{n}\right]
$$

where x has bidegree $(-n, m)$ and $m=\sum_{i=1}^{n}$ degree $\left(c_{i}\right)$. The differential in $\bar{F}(C)$ is defined on elements of bidegree ($-1,{ }^{*}$) by

$$
d[c]=[-d c]+\sum_{i}(-1)^{\operatorname{deg} c_{i}^{\prime}}\left[c_{i}^{\prime} \mid c_{i}^{\prime \prime}\right]
$$

where

$$
\Delta(c)=c \otimes 1+1 \otimes c+\sum_{i} c_{i}^{\prime} \otimes c_{i}^{\prime \prime}
$$

$\Delta: C \rightarrow C \otimes C$ being the diagonal mapping of C. The differential is extended to all of $\bar{F}(C)$ by the requirement that $\bar{F}(C)$ be a $D G A$ algebra.

If C has a differential of degree +1 instead of -1 , we no longer ask that C be a simply connected but only connected, and the element [$c_{1}|\cdots| c_{n}$] is assigned bidegree (n, m).
1.2. The Bar Construction. Let A be a connected associative $D G A$ algebra over K. Let $\varepsilon: A \rightarrow K$ be the augmentation. Let $\bar{A}=$ ker ε. Then the Bar Construction $\bar{B}(A)$ is the direct sum of the n-fold tensor products of the suspension of \bar{A}. Let

$$
\left\{d_{n}: A_{n} \rightarrow A_{n-1}\right\}
$$

be the differential in $A . \bar{B}(A)$ is bigraded by assigning the element $\left[a_{1}|\cdots| a_{n}\right.$] degree (n, m) where $m=\sum_{i=1}^{n} \operatorname{deg} a_{i} . \quad \bar{B}(A)$ has a differential $d=d_{E}+d_{I}$ where

$$
\begin{aligned}
& d_{E}\left(\left[a_{1}|\cdots| a_{n}\right]\right)=\sum_{i=1}^{n-1}(-1)^{u(i)}\left[a_{1}|\cdots| a_{i} a_{i+1}|\cdots| a_{n}\right] \\
& d_{I}\left(\left[a_{1}|\cdots| a_{n}\right]\right)=\sum_{i=1}^{n}(-1)^{u(i-1)}\left[a_{1}|\cdots| \partial a_{i}|\cdots| a_{n}\right]
\end{aligned}
$$

where

$$
u(i)=i+\sum_{k=1}^{i} \operatorname{deg} a_{k}
$$

We also mention that $[a|\cdots(k) \cdots| a]$ is $\gamma_{k}[a]$, the k th divided power of [α].

If instead of the above the differential of A has degree +1 , we put the bidegree of $\left[\alpha_{1}|\cdots| a_{n}\right]$ to be $(-n, m)$. In this case we will always assume A is simply connected.
1.3. The Suspension Map. In the case of the Bar Construction the suspension map $\sigma: H_{*}(A) \rightarrow H_{*}(\bar{B}(A))$ is represented by $a \rightarrow[a]$. In the case of the Cobar Construction, $\sigma: H_{*}(P A) \rightarrow H_{*}(\bar{F}(A))$ is represented by $a \rightarrow[a]$ where $P A$ is the subcomplex of primitive chains.

Definition 1. The Massey Product $\langle u\rangle^{k}$. (Kraines [6]).
Let A be a $D G A$ algebra over K. Suppose a_{1}, \cdots, a_{k-1} are given in A such that a_{1} is a cycle (or cocycle) and that

$$
\partial a_{n}=\sum_{r=1}^{n-1}(-1)^{\operatorname{deg} a_{r}} a_{r} a_{n-r} \text { for } n=2, \cdots, k-1 .
$$

Suppose u is represented by a_{1}. Then the Massey Product $\langle u\rangle^{k}$ is represented by the cycle

$$
\sum_{r=1}^{k-1}(-1)^{\operatorname{deg} a_{r}} a_{r} \cdot a_{k-r}
$$

Theorem 1. (Kraines, [6]). The operation $\langle u\rangle^{k}$ depends only on the class $\left\{a_{1}\right\} \in H(A)$.

Definition 2. (Gitler, [5]). Suppose that A is an associative $D G A$ algebra. Suppose $x \in H(A)$ is such that $v^{k}=0$. The transpotence $\varphi_{k}(v) \in H(\bar{B}(A))_{I \text { Im }}$ is defined as follows: If $b \in A$ represents v then there exists $M \in A$ such that $\partial M=-b^{k} . \varphi_{k}(v)$ is represented by

$$
(-1)^{w}\left[b^{k-1} \mid b\right]+[M] \text { where } w=(1)^{\operatorname{deg} b^{k-1}}+1
$$

2. Main Theorem.

Theorem 2. Let C be a co-associative $D G A$ coalgebra over K and let A be the dual associative $D G A$ algebra over K. Suppose $H(A ; K)$ and $H(\bar{B}(A) ; K)$ are free and of finite type over K. Let v in $H(A)$ and v in $H(\bar{F}(C) ; K)$ be such that the Kronecker index $\langle\sigma(v), u\rangle$ is 1. Then $\varphi_{k}(v)$ is defined and is not zero in $H(\bar{B}(A) ; K)$ if and only if $\langle u\rangle^{k}$ is defined and not zero in $H(\bar{F}(C) ; K)$. In this case

$$
\left\langle\varphi_{k}(v),\langle u\rangle^{k}\right\rangle=1 .
$$

In order to prove this theorem we shall consider the EilenbergMoore Spectral Sequences with
$E^{2}=\operatorname{Cotor}^{H(\bar{B}(A) ; K)}(K, K)$
$E^{r} \Rightarrow E^{\circ} H(\bar{F}(\bar{B}(A)) ; K) \approx H(A ; K)$ as algebras, and dually,
$\left(E^{\prime}\right)^{2}=\operatorname{Tor}^{H(\bar{F}(C) ; K)}(K, K)$
$\left(E^{\prime}\right)^{r} \Rightarrow E^{\circ} H(B(\bar{F}(\bar{C}) ; K) \approx H(C ; K)$ as coalgebras.
We also note that the Kronecker Index $\langle\rangle:, C \otimes A \rightarrow K$ induces a pairing

$$
\langle,\rangle: \bar{F}(C) \otimes \bar{B}(A) \rightarrow K
$$

Lemma 1. Let $b \in A$ represent $v \in H(A)$. Suppose $v^{k}=0$. Then

$$
d_{k}\left[\varphi_{k}(v)\right]=[\sigma b]^{k} \text { in } E^{k} .
$$

Proof. Let

$$
V=\sum_{i=1}^{k-1} P(i)\left[\left[b^{i} \mid b\right]\right]([[b]])^{k-i-1} \text { where } P(i)=(-1)^{\operatorname{deg} b^{i}+1}
$$

and the outside bars refer to the Cobar Construction and the inside bars refer to the Bar Construction.

Taking ∂V gives a telescoping series and so

$$
\partial V=[\sigma b]^{k}+(-1)^{w}\left[\sigma\left(b^{k}\right)\right] . \quad \text { Here }(-1)^{w}=P(k-1) .
$$

In E^{1}, V represents the class $(-1)^{w}\left[\left[b^{k-1} \mid b\right]\right]+[[M]]=\left[\varphi_{k}(v)\right]$.
The Lemma follows from the definition of a spectral sequence of a bi complex.

Lemma 2. Let $a \in \bar{F}(C)$ represent u. Then, by definition,

$$
\gamma_{k}[a]=[a|\cdots(k) \cdots| a] \in \bar{B}(\bar{F}(C)) .
$$

If $\gamma_{k}[a]$ lives to E^{k-1} then $\langle u\rangle^{k}$ is defined and

$$
d_{k}\left(\gamma_{k}[a]\right)=\langle u\rangle^{k} \text { in }\left(E^{\prime}\right)^{k} .
$$

Proof. We first make an observation: Suppose $\langle u\rangle^{t}$ is defined. Let $\left(a_{i}\right)$ be a defining system for $\langle u\rangle^{t}$. Let

$$
W=\sum_{r=2}^{t} \sum_{i_{1}+\cdots+i_{r}=t}\left[a_{i_{1}}|\cdots| a_{i_{r}}\right] \in \bar{B}(\bar{F}(C)) .
$$

Then

$$
\partial W=\sum_{i=1}^{t-1}(-1)^{\operatorname{deg} a_{i}+1}\left[a_{i} a_{t-i}\right]
$$

Now to prove Lemma 2, we use induction on k. Suppose the lemma is true for $k-1$. Suppose $\gamma_{k}[a]$ lives to E_{k-1}. Since E is a spectral sequence of $D G A$ coalgebras, and $d_{k-1}\left(\gamma_{k}[a]\right)=0$, we have

$$
\Delta d_{k-1} \gamma_{k}[\alpha]=d_{k-1}^{\otimes} \Delta \gamma_{k}[\alpha]=d_{k-1}^{\otimes} \sum_{i=0}^{k} \gamma_{i}[\alpha] \otimes \gamma_{k-i}[\alpha]=0
$$

where d^{\otimes} is the differential in $E^{\prime} \otimes E^{\prime}$. That is, in particular when $i=k-1$ in the above, we see

$$
d_{k-1} \gamma_{k-1}[a] \otimes[a]=0 \text { so } d_{k-1} \gamma_{k-1}[a]=0
$$

Now by inductive hypothesis, $\langle u\rangle^{k-1}$ is defined so there is a defining system (a_{1}, \cdots, a_{k-1}) for $\langle u\rangle^{k-1}$ and a cochain a_{k} such that

$$
\delta a_{k}=\sum_{i=2}^{k-2}(-1)^{\operatorname{deg} a_{i-1}} a_{i-1} a_{k-i}
$$

since $\langle u\rangle^{k-1}=d_{k-1} \gamma_{k-1}[\alpha]=0$.
The observation at the beginning of this lemma shows that

$$
d_{k} \gamma_{k}[a]=\langle u\rangle^{k} .
$$

We now give the proof of Theorem 2:
Assume $\varphi_{k}(v)$ is defined and nonzero. We are assuming $=1=\langle\sigma v, u\rangle$. Hence

$$
\begin{aligned}
1 & =\langle\sigma v, u\rangle=\langle\sigma b, a\rangle=\left\langle[\sigma b]^{k}, \gamma_{k}[a]\right\rangle=\left\langle d_{k} \varphi_{k}(v), \gamma_{k}[a]\right\rangle \\
& =\left\langle\varphi_{k}(v), d_{k} \gamma_{k}[a]\right\rangle=\left\langle\varphi_{k}(v),\langle u\rangle^{k}\right\rangle
\end{aligned}
$$

by the duality of the two spectral sequences and Lemma 2.
It remains to be shown that if $\langle u\rangle^{k}$ is defined and nonzero, then so is $\varphi_{k}(v)$. Consider the map
$A \rightarrow \bar{F}(\bar{B}(A))$ defined by
$b \rightarrow[[b]]$.
This map is homotopy multiplicative (in fact is a $S H M$ map) and is an equivalence. Hence $\left[\left[b^{k}\right]\right]$ differs from $[\sigma b]^{k}$ by a boundary. But $[\sigma b]^{k}=[\sigma b|\cdots(k) \cdots| \sigma b]$ is dual to $\gamma_{k}[a]=[a|\cdots(k) \cdots| a]$ in $\bar{B} \bar{F}(C)$, and so $d_{k} \gamma_{k}[\alpha]=\langle u\rangle^{k}$ is not zero in E^{k} (Lemma 2) and so does not
survive to E^{∞}, i.e., represents 0 in E^{∞}. The dual element $[\sigma b]^{k}$ represents 0 in E^{∞}, i.e., $\left[\left[b^{k}\right]\right] \sim[\sigma b]^{k} \sim 0$. Therefore $b^{k} \sim 0$ and so $\varphi_{k}(v)$ is defined.

We wish to mention two applications:
Al: Let $K=Z_{p}$ and let X be a $K(\pi, n)$ space (p an odd prime). Let $C=C^{*}\left(X ; Z_{p}\right)$ and $A=C_{*}\left(X ; Z_{p}\right)$ be cochain and chain complexes for X of finite type. In the notation of Cartain, $A=A_{*}\left(\pi, n ; Z_{p}\right)([2])$. Cartan proved that $\left\langle\varphi_{p}(v), \beta P^{m}(u)\right\rangle=\langle\sigma v, u\rangle$. Now by Theorem 2, if

$$
\langle\sigma v, u\rangle=1
$$

then $\left\langle\varphi_{p}(v),\langle u\rangle^{p}\right\rangle=1$. Hence $\left\langle\varphi_{p}(v), \beta P^{m} u+\langle u\rangle^{p}\right\rangle=0$. By Lemma 18 ([5]), $\langle u\rangle^{p}=c \beta P^{m} u$. This gives an easy proof of the fact that $c=-1$. (Compare Theorem 19 [5]).

A2: Now let $x=C P^{k-1}$. Then in $H^{*}\left(C P^{k-1} ; Z\right)=P(v)_{/\left(v^{k}\right)}$ we have $v^{k}=0$. Then $\varphi_{k}(v)$ is defined in $H^{*}\left(\Omega C P^{k-1} ; Z\right)$ and by the Theorem 2, so is $\langle u\rangle^{k}$ in $H_{3 k-2}\left(\Omega C P^{k-1} ; Z\right)$ where $u \in H_{2}\left(\Omega C P^{k-1}, Z\right)$ and $\left\langle\varphi(v),\langle u\rangle^{k}\right\rangle=1$. This gives another proof of the results of Stasheff ([7]).

References

1. J. F. Adams, On the Cobar Construction, Colloquie de Topologie Algébraique, Louvain 1955.
2. H. Cartan et al, Alqébres d'Eilenberq-MacLane et homotopie, Séminaire Henri Cartan, 1954-55. Secrétariat mathématique, Paris, 1956.
3. A. Clark, Homotopy commutativity and the Moore spectral Sequence, Pacific J. Math., 15 (1965), 65-74.
4. B. Drachman, A Diagonal Map for the Cobar Construction Boletín de la Sociedad Matemática Mexicana, 1967.
5. S. Gitler, Espacios Fibrados por H-Espacios. Boletin de la Sociedad Matemática Mexicana, 1963.
6. D. Kraines, Massey higher products. Trans. Amer. Math. Soc., 124 no. 3, (1966). 431-449.
7. J. Stasheff, Homotopy associativity of H-spaces II. Trans. Amer. Math. Soc., 108 no. 2. (1963). 293-312.

Received September 28, 1970.
Michigan State University
AND
Aarhus University

