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SEMI-GROUPS OF LOCAL LIPSCHITZIANS
IN A BANACH SPACE

J. T. CHAMBERS AND S. OHARU

The purpose of this paper is to construct a nonlinear
semi-group determined by a given (multi-valued) nonlinear
operator A in a Banach space X, and to investigate the dif-
ferentiability of this semi-group. The semi-group treated in
this paper is the semigroup {7'(f); ¢t =0} of nonlinear
operators in X such that for each =z > 0, {T(f); 0=t} is
equi-Lipschitz continuous on bounded sets. In order that an
operator A in X determine such a semi-group {7'(¢); ¢t = 0}
on D(A) with (d/dt)T (t)xc AT (t)x for almost all £ =0 and
x€D(A), it is required that X have a uniformly convex
dual, A be dissipative in a local sense, I-1A, 2 positive and
small, satisfy a range condition and an injectiveness condi-
tion, and finally the family of operators (I—1A)™, n =
1, 2, 3, -+ be locally equi-bounded.

Let X be a Banach space and S a subset of X, and let {T(¢);
t =0} be a family of nonlinear operators from S into itself satisfying
the following conditions:

(i) T() = I (the identity) and T(t+s) = T(t)T(s) on S for ¢,
s =i0.

(ii) For xe S, T(t)x is strongly continuous in ¢ = 0.
Then the family {T(t); t = 0} is called a semi-group on S. The
infinitesimal generator A, of the semi-group {T'(¢);¢ = 0} is defined
by A = lim,_, A"{T(h)x — x} and the weak infinitesimal generator
A" by Az = w-lim,, ., {T(h)x — x}, if the right sides exist, the
notation “w-lim” means the weak limit in X.

An operator A in X is called a D-operator if for every bounded
set B in X there exists a number w, = 0 such that

re <o —y,f>=wgl|e—yl for x,ye BN D(A), 2" e Az, y' € Ay

and some fe F(x — y), where F' denotes the duality mapping of X.

Our discussion requires that X have a wuniformly convex dual.
Then, if A is a D-operator satisfying some additional conditions, we
obtain a semi-group {T'(t); t = 0} on D(A) such that

(A) T@)x = lim (I — MNA) iy, xe D(A)
140
and the convergence is uniform with respect to ¢ in every finite

interval;
(B) for every bounded set B in D(A) and 7> 0, there exists a number
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@5, =0 such that || T()x — T@)y|| < e“s<||x — y|| for z,ye B and
te|o, ].

The additional conditions on A are stated roughly as follows:

(1) The operator (I — MA)™* must exist as a single-valued oper-
ator with domain R (I — MA), the range of I — MA, for A small; this
is condition (I) of the paper.

(2) In order that the iterations of (I — AA)™ be meaningful on
D(A), it is required that the range of I — AMA contain D(A); this is
condition (R).

(3) The operators (I — NA)™*, k=1,2,3, --- must map bounded
sets into bounded sets; this is the idea behind condition (X).

We note that if A is a dissipative operator, i.e., w, = 0 for
every bounded set B in X, then (1) and (3) are satisfied.

Concerning the differentiability of the semi-group constructed we
obtain, among other results, the following. If A is a D-operator
satisfying (I), (R) and (E) and is maximal on D(A) in the sense
explained in § 1, then there exists a uniquely determined semi-group
{T(t); t = 0} on D(A) such that for each ze D(A) (d/dt)T t)xec AT (t)x
at almost all ¢ = 0.

Finally, we remark that for the Cauchy problem

(d/dtyu(t) € Au(t), w(0) =z,

where A is a D-operator in X satisfying (I), (R) and (E), we can
construct the semi-group solution using the convergence (4). And
conversely, in a reflexive Banach space, if A, is the infinitesimal
generator of a semi-group {7T'(f); t = 0} satisfying (B), then A4, is a
D-operator in X and for xe D(A4,), T(¢t)x is a solution of the Cauchy
problem formulated for the operator A,.

Section 1 deals with the notion of a D-operator and some of its
properties. Section 2 concerns the abstract Cauchy problem. Section 3
contains the construction of the semi-group determined by the
D-operator A. Finally, in Section 4, the question of the differentia-
bility of the constructed semi-group is discussed.

The authors want to express their deep gratitude to Professor I.
Miyadera for his many valuable suggestions.

0. Preliminaries. In this section we introduce some of the basic
notions which are used in this paper.

Throughout this paper X denotes a Banach space. Let A be a
multi-valued operator in X, that is, A assigns to each z € X a subset
Ax of X. Ax may be empty for some € X. The domain of A,
D(4), is the set of all x e X such that Az = @; the range of A, R(A),
is the set U..r Ax. We write AS (or A(S)) for U..s Az, S c X.
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Note that a single-valued operator is a special case of a multi-valued
operator in which Ax, x € D(A), denotes the value of 4 at x or the
singleton set consisting of this element, and Ax is the empty set if
x ¢ D(A).

For subsets S,, S.C X, S, + S, denotes the set {x+y; xe S, ye Sy}
where S, + S, =@ if S,= @ or S, = @. For ascalar » and Sc X,
AS denotes the set {A\x; xS}, and we write y + S for {y} + S.

Accordingly, for two operators A and B in X, we define the sum
A+ Bin X by (A+ B)x = Ax + Bx, D(A+ B) = D(A) N D(B); the
scalar multiplication A4 in X by (WA)x = NAx, DAMA) = D(A); and
the product AB in X by (AB)x = A(Bx), D(AB)c D(B). We
write v+AA for the operator vI-+NA, where I denotes the identity
operator in X. For any positive integer %k, we define the iteration
A*¥ in X by A*x = A(A*'z), where A’ = I and D(A4*) C D(A).

Let A, A be two operators in X. A is an extension of A, and
A is a restriction of A (denoted A DA, AcC A), if Axc Ax for each
ze X, thus D(A)CD(A). If Sc X, then by a restriction of A to S,
A |, we mean the operator such that D(A|s) = D(A) NS and Algax=
Az if xe S.

If Sc X, we denote the closure of S in X by S. Let A be an
operator in X, then B is called the closure of A, if G(B) = G(4),
where G( -) denotes the graph of the operator. We write B = A.

Let X* be the dual space of X. We denote by <{x, f) the
pairing between ze€ X and fe X*. The duality mapping F of X is
the mapping from X into X* defined by

F(@) ={feX* rea, f) === IS

for e X. If X* is uniformly convex, then F' is single-valued and
uniformly continuous on bounded sets [4; Lemma 1.2].

We now state some standard definitions and collect some well-
known results.

DEFINITION 1. An operator A in X is said to be dissipative if
for each =, ye D(A) and 2’ € Az, ¥’ € Ay, there exists an fe F'(x — y)
such that rele’ — ¢/, f> < 0. A is said to be an m-dissipative oper-
ator in X, if it is a dissipative operator in X and R(I — »A4) = X
for some 3, > 0. Let SC X and A be a dissipative operator in X,
if every dissipative extension of A coincides on S with A4, then A4 is
said to be a maximal dissipative operator on S.

An m-dissipative operator A is maximal dissipative on D(4). If
X* ig strictly convex and A is a maximal dissipative opetator on S,
then Az is closed and convex for xeS. If A is an m-dissipative
operator, then R(I — A4) = X for all A > 0 ([9; Lemma, 4]).
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DEFINITION 2. An operator A in X is said to be demi-closed if
the following condition holds: if {x,} c D(4), x,— xe X (strong con-
vergence) and if y,€ Ax,, such that y, —y< X (weak convergence)
implies that x € D(4) and y < Ax.

A demi-closed operator is closed. If X* is uniformly convex and
A is maximal dissipative on D(A4), then A is demi-closed ([5; Lemma
3.7)).

DEFINITION 3. Let A be an operator in X. The operator A°
defined by A% = {yeAx; ||y]|| = inf[||u]; we Az]} is called the
canonical restriction of A.

If X* is uniformly convex and A is an m-dissipative operator,
then D(A% = D(A) and A% is a non-empty closed convex set for
xe D(A4). If X and X* are uniformly convex and Az is closed and
convex for ze X, then A° is single-valued and D(A°) = D(4) ([5;
Lemma 3.10]).

Finally, we list some notations which are used in this paper.

(1) Let {x,} be a sequence in X, then “x,— 2", means that z,
converges to « in the norm topology, whereas, “x, — x”, means that
x, converges to x in the weak topology.

(2) Let G be a single-valued operator in X and BC X, then by
l| G ||Lip 3y We mean the smallest Lipschitz constant for G on BN D(G).

(8) We write J; for the resolvent (I —XA)~' if it is well-defined
and R; for the range R(I — NA) = {& — \y; 2 € D(4), y € Ax}.

(4) Let Kc X. Then coK denotes the convex hull of K and
¢coK, the convex closure of K.

(6) For any nonempty set SC X, we write
WSl =inf{||z]|; 2eS}.
Thus for any operator A, ||| Az ||| is defined for xe D(A)
1. D-operators. In this section we introduce the notion of a D-
operator and establish some of its properties.

Let X be a Banach space and A an operator in X. If for every
bounded set B < X there exists a nonnegative number ®, such that

re<a —y,f> =0l —ylf
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for 2, ye BN D(A), o' € Az, y' ¢ Ay and for some fe F(x — y), then
A is called a D-operator.

Put B,={xeX; ||zl <n}, n=1,2,3, --- If there exists a se-
guence {®,} of nonnegative numbers such that

rele’ — v, o= o, lle —y|f

for z, ye B,N D(A), 2’ e Az, ' € Ay and for some feF(x — 9), n =
1,2,3, .-+, then A is a D-operator. If such a sequence is identically
zero, then A is a dissipative operator. Note that if A is a D-opera-
tor, then (A — w,) |, is a dissipative operator on B,.

The next lemma by Kato [4; Lemma 1.1] gives a basic property
of dissipative operators.

ProposiTioN 1.1. (Kato) Let x,ye X. Then there is a X > 0
such that ||z || < [|x — My || for Me (0, N) if and only if there is an
f e F(x) such that rely, f> < 0.

Let A be a D-operator in X, then for every bounded set B C D(A),
we have that (I —xd)e N (I — MA)y = @ for =,yeB, if v+ y and
re(0,l/wz). In fact, for 2’ e Az, ¥’ € Ay, and some feF(x—y) we
have that

@ =) — (= M) e —yll = redl@ — M) — (y — M), [

=1 -y e —ylP.

Hence, we have |[[(z — ') —(y — M)l = A — )|z —yll, so,
(I — 2A)|, has a Lipschitz continuous inverse and

NI — N D) Ypirnsn < 1 — Awg)™ for »e (0, 1/wy) .

However, in general, (I — AA4)™" is not a single-valued operator. For
example, take X to be the real line and Az, the function z sin x. A
is a D-operator, in fact, for the bounded set [— M, M] we may take
Wy, to be 1 + M. And

(T = XA a0 7 Neipr-zart—srn = (1 — M1+ M)~ for re (0, 1/(1 + M)).

But R(I —»A) = X for » > 0, and (I — NA4)™" can not defined as a
single-valued operator on X, no matter how small we restrict » > 0.
Hence, we make an additional assumption on the operator A:

O d-—2A)znT—-NA)y = @ for x, ye X if =y and Are (0, ) .

Condition (I) guarantees the existence of the resolvent J;,= (I—\4)™
for v e (0, \,) as a single-valued operator with D(J)) = R — 24). (D)
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corresponds to the assumption that I — \A is injective, if we are
considering single-valued operators.

DEFINITION 1.1. Let G be an operator in X. G is said to be
locally bounded if G maps bounded sets into bounded sets.

DEFINITION 1.2. Let {G,}, veI', be a family of operators in X.
{G,}, veI', is said to be locally equi-bounded, if for every bounded
set B, UJ,./G,(B) is a bounded set.

PROPOSITION 1.2. Let A be a D-operator in X satisfying (I).
If {Ji; ne (0, N)} s locally equibounded, then for every bounded set
B C X there exists a number @, = 0 such that

1 s < (L — N@p)~  for xe<0, min{xo, (; })

Proof. Let B be any bounded set in X, then B, = U 1)Jx(B)
is a bounded set and B, < D(A). Hence, there exists a number @;=0
such that 1 — M@y ||z —y]|| Z || — M2') — (y — N')|| for =z,ye B,
x' e Az, ¥’ € Ay and )€ (0, min {\,, 1/@z}). Thus, if w, ve BN R;, then
Ju, Jve B, and

1

A = n@)|| Jau — Jw|| < ||uw — v|| for ne (0, min{xc, (a_}> .

In the next proposition we impose two additional conditions on
the operator A, which are essential to the construction of the semi-
group in this paper.

PRroOPOSITION 1.3. Let A be a D-operator in X satisfying (I). Iy

(R) R(I — \NA) D D(A) for e (0, )) ,
and
(E) (J75 N e (0, )\), nne 0, 7]}

is locally equi-bounded for any T > 0, them for every bounded set
BC X and © > 0, there exists a number wgy. = 0 such that

7 eipmy = (1 — Aw@p,)™"

Sor ne (0, min {\,, 1/w;.}) and nxe]0, 7].

Proof. Let B be any bounded set in X and 7> 0. Set B, =
Uicwap/7(B), then B, UB is a bounded set and so there exists a

nie[0,7]
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number @, .= 0 such that

13 mom < (1 — Mp,)~  for ne (o, min{xo, wl }) )
B,r

Thus, if u, ve BN R;, then J?*u,J?*ve B,U B, provided nxe[0,7]. So
that |[Jiu — Jiv || < (1 —Mop, )7 [T 7w — I || = (1 — AM0p,) " [Jlu— v
for x e (0, min {\,, 1/w; }).

The next proposition gives some sufficient conditions for ().

ProposITION 1.4. Let A be a D-operator satisfying (I).
(a) If there exist monnegative numbers M and N such that

T ll< @+ AM)||z] + AN for ne(0,N) and xe R, ,

then (E) holds.
by If A is single-valued and sup {||Ax|; x € D(A)} < + o, then
(E) holds.

Proof. (a) Let B be any bounded set in X and xe BN R,
re (0, ). Then, it is easy to see that

[[Jre|l= L+ MN"(|z]]+nAN) < e"(sup ||z || + nAN) ,

which is bounded for A e (0, \,) and nxe€ ][0, ].
(b) Take xe R;, then ||Jx| < ||| + M| AJ||. Put

N =sup [[Ax ],
zeD(A4)

then |[[Jx| = |lz| + AN. Now apply (a), note that in this case
M= 0.

We now wish to introduce a notion of maximal D-operator. Given
a sequence of nondecreasing nonnegative numbers {®,}, we consider
the family of D-operators, .# {w,}, consisting of all D- operators A
in X such that there exist numbers w, (4) <w, n=123, .-
with

rele’ —y', fr S w5, (A) le —ylf

for x, ye D(A)NB,, v’ € Az, y' € Ay and some feF(x —y), n =1, 2,
3, +++. Recall that B, denotes the open ball with radius % and center
0 in X. Note that if A is a D-operator, then there exists a sequence
{w,} such that Ae & {w,}.

DErFINITION 1.3. If Ae &# {w,}, then A is called a (D, {®,})-oper-
ator. Let SC X and A be a (D, {w,})-operator in X. If every
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(D, {w,})-extension of A coincides on S with A, then A is said to be
a maximal (D, {w,})-operator on S.

ProrosITION 1.5. If A is a (D, {w,})-operator in X and ScC X,
tNhen there exists a mawimal (D, {,)-operator A on S such that
AlsDAls.

Proof. Apply Zorn’s Lemma.

We now show that if A is a maximal (D, {®,})-operator on D(A)
and furthermore if X* is uniformly convex, then A is demi-closed
and Az is closed and convex. The uniform convexity of X* gives
the above properties which are essential in establishing the facts
concerning the differentiability of the semi-groups constructed in this
paper.

ProOPOSITION 1.6. Let X* be uniformly convex. If A is a
maximal (D, (,)}-operator on D(A), then

(a) A s demi-closed,

(b) Ax is closed convex.

Proof. (a) Let {x,} be a sequence such that {x,}c D(A4),z,—x,e X
and Ax,3y,—y. We must show that x,eD(A) and ye Ax,.
Define Aw = Aw if w = », and Aw U {y} if w = 2,. Then AD> A and
D(A) c D(A). It is easy to see that A is a (D, {w,})-operator, Hence,
by the maximality of 4, A = A and so x,€ D(A) with ye Ax,.

(b) The same type of argument as in (a) easily establishes (b).

The next proposition states some basic properties of a demi-closed
operator.

PROPOSITION 1.7. Let X be a reflexive Banach space and A be a
demi-closed operator in X. Let {x,} C D(A), z,— 2,€ X, and let {y,}
be a sequence in X such that vy, e Ax, for each n. Then:

(@) if {y.} is bounded and V is the set of all weak cluster points
of {¥.}, then x,e D(A), V +# @&, and VC Ax,; if in particular, A 1is
single-valued, then y, — Ax,;

(b) if furthermore, X and X* are uniformly convex, the canoni-
cal restriction A° is single-valued and if limsup ||y, || = ||| Az |||, then
x,€ D(AY and y, — A,.

Proof. (a) First, the reflexivity of X and the boundedness
of {y,} imply that V =+ @. Let Y be the closed linear manifold
determined by {y.}. Then Y is a reflexive Banach space and Y* is
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separable. Hence, for each yc V a subsequence {y,} can be found
such that y,,—v in Y. Now, any 2*e X* determines a y*e Y*
such that {z, «*> = (=, y*)> for xe Y; thus, since y,c Y, {y,, *>—
{y, «*) for a* e X*, and y,,—~y in X. Since @,, — ¥, Yn; € Au;y Y, — Y
and since A is demi-closed, we have that x,e D(4) and y e Ax,. This
means that V< Ax,. If in particular, A is single-valued, then y =
Ax,; hence all weak limits of subsequences of {y,} are same and equal
to Ax,. Therefore, it follows that y, — Ax,.

(b) Since {y.} is bounded and A is demi-closed, there is a sub-
sequence {y,} and a ye Aw, such that y,,—y. Thus, by assumption,
we have

Il Ao lll = [y || = lim inf ||y, || < lim sup || y,, || = ||} A, ]| -

Since A° is single-valued, y = A%, and lim||y,, || = || A%,|/. But, X
is uniformly convex; thus y,, — A°,. Therefore, all strong limits of
subsequences are same and equal to A%, and it follows that
Y, — A',.

ProposITION 1.8. Let X and X* be uniformly convex. Let A be
a closed D-operator in X satisfying (I), (3.9) (stated in Remark 3.1)
and (E). If A is a maximal (D, {w,})-extension of A on D(A) such that

D(A)c {ze D(A); || Jz — || = O(\) as A ] 0},
then A° = A°.

Proof. First, note that A is demi-closed, Az is closed and con-
vex, and so, A° is single-valued with D(A°) = D(4). Take a sequence
7.1 0 and set J,=J,, and 4, =7;'[J,— I]. Let x e D(A), then, since
D(A,) DD(4), we see that || A |l = 7" || Jiw — Jul@ — ) || < [l Aee I/
1 — wy,) for ye A%, where w; is a constant associated with the
closure B of {&x — 7y; yeAuw, ||y]| =|]|Ax|||, k sufficiently large}
through the D-operator A. Since Axe AJ,x for K, A — A% as
k — 4o by Proposition 1.7 (b), for each x e D(A). Now take z e D(A).
Since R(I — NA)>D(A) for re(0,)) by assumption and since
D(A) > D(A), we see that ze R(I — 7,4) for k sufficiently large.
Hence, there exist z,e D(A) and y,e Az, such that

2 =0 — MYy »

But, 2, = Ji;#z — 2z as k — + c; hence, by the closedness of A, ze D(A)
and A% c Az. But AzC Az, so that A% e A%. Also, ||| A%]||| < || A%||.
Therefore, ve A% Az implies that v = A% because A° is single-
valued. So, A° is also single-valued.
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REMARK 1.1. Brezis and Pazy [1; Theorem 2.1] give the follow-
ing result. Let X be a Hilbert space and A be a closed dissipative
operator such that R, >co D(A) for all » >0, then A has a unique
extension to a maximal dissipative operator A satisfying D(A)c D(A),
and, in fact, D(A) = D(4A) and A° = A"

2. Abstract Caucy problem. In this section we discuss the
relationship between the abstract Cauchy problem formulated for a
D-operator and the semi-group generated by such an operator.

The abstract Cauchy problem may be stated as follows:

Given an operator A in X and an element z ¢ X, find a X-valued
function (f; ) on [0, «) such that

(i) wu(t; x) is strongly absolutely continuous on every finite
interval;

(ii) w(0; ) = 2 and (d/dt)u(t;x) € Au(t; ) for almost all t.

We call this the abstract Cauchy problem, ACP, formulated to A.

ProrosiTiON 2.1. Let A be a D-operator im X. Then there 1is
at most one solution of the ACP formulated to A with the initial
value x € D(A).

Proof. For xe D(A), suppose that u(¢; ) and v(¢; ) are solutions
of the ACP formulated to A. By Kato’s lemma [4; Lemma 1.3] we
have that

lults @) — ot @)l = 2 | e (- Juls; @) — (%)ms; 2), £(6))ds
< 2(08 | u(s; @) — v(s; )| ds

where @, . is a constant associated with the bounded set
B = {u(t; z), v(t; x); te |0, 7]}

through the D-operator A and f(s)e F(u(s; ) — v(s; x)), and also,
note that (d/ds)u(s; x) € Au(s; ) and (d/ds)v(s; x) € Av(s; #) for almost
all s. Hence, u(t; ®) = v(t; ) for te[0,7]. Since = is arbitrary,
u(t; x) = v(t; ) for all ¢ = 0.

ProrosiTION 2.2. If A s a D-operator in X such that for each
x € D(A), there is a solution u(t; x) to the ACP formulated to A satis-
fying the condition that for any sequentially compact set K < D(A)
and T >0, {ult; x); te[0, 7], xc K} is bounded, then there is a semi-
group {T(t); t=0} defined on D(A) and such that T (t)x = u(t; x), x ¢ D(A)
and te [0, z]. Conversely, if X is reflexive and A, is the infinitesimal
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generator of a semi- group {T(t); t = 0} satisfying the condition that
for every T > 0 and bounded set B there is a constant wz. =0 such
that || T @) || vipm = exp (wz.t), te[0, 7], then A, is a D-operator in
X and for each xe D(A,), T(t)x is a solution of the ACP formulated
to A,.

Proof. Take xze¢D(A) and >0, and put T()x = u(t; x),
te]0,7]. Since u(t; x) e D(A) for almost all te[0,z] and (¢ z) is
strongly continuous, u(¢; 2) € D(A), i.e., T(t)x e D(A) for all te]0, z].
Hence, T'(t) maps D(A) into D(A). By Kato’s lemma, for z, ye K,
a compact set, we have that

170z~ 7@yl =z -yl =2 re ((-2)T@2 ~ (-1 )T @, 76))ds

= 205 | I TG — Ty} ds

where wg . is a number associated with the bounded set
{T (t)x; t €0, ], x e K}

and f(s)e F(T(s)x — T(s)y), and also, note that (d/ds)T (s)ze AT (s)x
and (d/ds)T (s)y € AT (s)y for almost all s. Therefore,

Tt — Tyl Sexp(wx.t) |l —vyl, =, yekK, tel0,7].

Now, take ze D(A), then there exists a sequence {x,} — D(A) such
that »,—z, and so, || T(t)», — T, || < exp (Wg..t) || 2, — 2, || where
K = {x,}. Hence, define T(t)z = lim,_. T(t)x,, thus T(¢t) maps D(4)
into itself. The semi-group property follows from the uniqueness of
the solution of the ACP. Conversely, take any bounded set B in
D(A,), then for x, ye B

re (W (T(We—2) — (T (Ry—y), [) = k7 (exp (@5,h)—1) e —y |}
where he|0, 7] and fe F(x—y). Letting h— +0, we have that
reAx — Ay, [) = wp. e —ylf,
so A, is a D-operator. Let xe D(A4,), then
sup (b [ T(h)e —2|[; 0 <h <1} =M< +oo

and || T(t+h)x — Ttz || < Mexp (wy . t)h for te[0,7], he(0,1] and
B = {T(h)x; he(0,1]}. Thus, T(t)x is strongly absolutely continuous
on every finite interval. Since z is reflexive, T(t)x is strongly dif-
ferentiable for almost all ¢ [0, 7] and (d/d¢)T(t) = A,T(t)x for almost
all te[0,7]. Therefore, T(t)x is a solution of the ACP formulated
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to A,.
Combining the properties mentioned above we have the following:

PROPOSITION 2.3. Let A be a D-operator in x. Then there is at
most one semi-group {T(t); t = 0} on D(A) such that for each <€ D(A),
T(t)x is a solution of the ACP formulated to A.

3. Construction of the semi-groups. In this section, we con-
struct the semigroup determined by a D-operator A which satisfies
conditions (I), (R) and (E).

Throughout, it is assumed that X has a uniformly convex dual.

LEMMA 3.1. Let A be a D-operator in X satisfying (I), (R) and
(E). If xeD(A) and > 0, then

(3.1) y(t; x) = }im (I — NA)~Rg
—+0
exists uniformly for tel0, z].

Proof. Set J, = (I — NA)™ and A; = NJ; — I), »e (0, ;). Let
xe D(A) and 7 > 0. Set

B.. = {Ji'w; he (0, \), mh e [0, 7]} U {z—hy; he (0, N), y € Az, [[y||
= [[[A=[l] + 1},

then B,.is a bounded set by (E). Let w,, be a number associated

with this bounded set in the sense of Proposition 1.3. Then we have
that

| A7 el = k7 [ Jite — Jir~te ]l = b7 [ ie — Jite — hy) ||
=1 = hog, )" |lyll

for ye Az with ||y|| < ||| Az]||| + 1. Hence, a positive number C,.
can be found such that

(3.2) AWl = (1 — hwg, )™ || Az || < C-
for & sufficiently small and mhe[0,7]. Now, assume that M < h

and hm < 7, where he(0,\,) and m, » are integers. And let k < m.
Since

n—1
Tk — Jpoog = NS AJPJ3e g,
=0

we have
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(it — J1%0%) — (Jiw — J i)
= ?\.nil {A ey — A e} + (nh — h) AT .
2=0

Thus, we can write
dJI*Fe — Jp*0e) — (Jie — Ji), F(JMhe — Jie)
=X\ g(AlJ{"‘“”“’x — A Ji e, F(Jp 0oty — Jhe))
+ xi‘, CATPEvrg — A JEg, F(Jpks — Jiw)
— Pt — i)
+(n — B (AT, F(Ipbe — Jia)> =1+ L+ I, .

We now estimate each term. Since A is a D-operator and B,. is a
bounded set, I, = ) 335 @5, || J7*7V Py — Jiw [’ Since

” . .
H Jf”‘““*”lx _ J;"‘x H é Z ” ijx — )J+1x “
j=n(k—1)+p+1

nk—1 3
=» > ([AJix]| = M1 — Mg, )0 ||| Ax ]
j=n(k—1)+1 ’
< C,.mn < C..h,
we have
I £ wg, k|| Ji*x — Jfz | + const (x, T)h ,

by using (3.2). Also, we have
L< 20,03 || FJpte — Jio) — F(Jpe—neeoig — Jha) || .
p=0

Employing the uniform continuity of F on bounded sets, we can find
a function % (h) = &£ (h; x,7) such that &(h)—0 as h—0+ and
such that

sup || F(JPe — Jfx) — F(JpE0ety — R || < &(h) .

nishihkse
Note that || Jp*—1+r+iy — Jrke|| < C,.h.  Also,
L=< |nn —h| | A2 || T2 — Jiw]] .
Consequently,
1757 — Trall = 3y{11Jr — Tl — (| T34 s — Tt |}
< ﬁ‘,l 2rel(JFx — JEx) — (Jp¢ Ve — Ji ), F(Jra — Jre))

< 20, h é | Tk — JEo | + p(\, )
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where (N, h) = const (%, 7) (b + & (h) + m|n — k|) and note_ that
2rely —y, Fx)y = 2(| x| — 2[lz |||yl
=llelf —llylF+(all—lyl)zlle=1ylF.

Hence, for each t¢]0, 7], we can write
t
([ JPU My — JiMg |F < 205, So ([ T3ty — JiMa |fds + (N, B) -

This is a Gronwall type inequality, and so, we have that
[ J20Me — JEMg [P < (N, B) exp (205, 1) .
Therefore, we have

15 — it |

(3.3) S
< |[JHHe — Jpmg || 4 Vg (N, h)exp (@5, 7).

First, take A =¢, =27 h=¢ =27, m=[t/e] and n =2 1In
this case w(e, &) = const (2, 7) (s, + £(c,)) =0 as y-—co, and
[[t/e.] — 2°7 [t/e,] | < 2#7*. So, we see that (by (3.2))

[ JE ey — Jrtisdg | = 0(e,)
and hence
[Tl — JEsle || < 0(e) + V(e &) exp(@s, 7).«
This means that {J[/+)x} is a Cauchy sequence. We then set

(3.4) y(t; @) = lim Jis0 telo, 7],
Finally, we show that the existence of the limit is independent of
the sequence chosen. Let 0 <t <7, and 0 <X = A < min {\, 7—t}.
Taking, this time m = [¢t/k] + 1 and n = [[¢/\]/[¢t/h] + 1] we observe
that

{mhg t+h, o Ry [t — nvm| < 20 + TR,

3.
(8.5) ITE/A] — mam | N < 3N + oAk, m|mn — h| < 2k + 2% + TNk

Similarly, as above, taking A = ¢, then letting v — o, we see using
(3.4) and (3.5) that

[yt ®) — J¥ ™Mz || < const (x, 7) V3h + e(h) .

LEMMA 3.2. Let A be a D-operator in X satisfying (I), (R) and
(E).

(a) For every bounded set B in D(A) and = > 0, there exists a
number wgz. = 0 such that
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oyt @) — y(& @) || = exp(@g,8) || 2, — @]

for te]0, 7] and x, x,€ B.
(b) For every xe D(A) and 7,> 0, there exists a number w,. =0
such that

[yt o) — y(t'; 2)|| < |t — '] exp(@,,.7) ||| Az ]|
for t, t' €0, 7].

Proof. (a) Let B be a bounded set in D(4) and 7, > 0. Take
x,, ;€ B, then by Proposition 1.3 we have that

NJi M, — it || = (1 — hwp, )M || @y — @, |

for some w,. =0 and h sufficiently small. Now letting »— +0, we
obtain (a).

(b) Let xe D(A), = > 0 and set

B,.. = {Jrrx; he (0, ), mhe [0, 7]}
Ufe — hy; he (0, M), ye Az, ||y ]| < ||| Az ||| + 1} .

Then, B,. is a bounded set by (E). Now, let ®,. be a constant
associated with this bounded set in the sense of Proposition 1.3 and
let 0 <t <t¢t=<7. Then, by (3.2),

[¢/h]—1 . ) [t/k]—1 )
[[J5My — JE M| éjZ . [[Jitte — Jiw| < hjZ.mH ApJia||

=['/ =[t’

= [[t/h] = [E'[R] 1 (1 — ko, )~ ]| Az ]]]

Letting A — +0, we have (b).
Consequently, we have the following main theorem:

THEOREM 3.1 If A is a D-operator in X satisfying (I), (R) and
(E). Then there exists a semi-group {T'(t)} on D(A) such that

(3.7) T(t)w = lim (I — MA)™ for ¢ = 0 and ve D(4)
-0

and the convergence is uniform with respect to t in every finite in-
terval.

Proof. In view of Lemma 3.1, set T(¢t)x = y(¢t; «) for ¢ = 0 and
x e D(A). First, by using Lemma 3.2 (a), we can obtain a unique
extension of 7'(t) to D(A) by continuity, we denote this extension by
the same symbol T'(¢). Then each T(t) maps D(A) into itself, and
also for every bounded set B in D(A) and 7 >0 there exists a
number @, . = 0 such that
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(3.8) | T®) | Lipmy = €XD (@5,:1) » tel0, 7] .

To establish the semi-group property, first take x e D(A) and ¢, s =0
with ¢ + s £ 7. Let B,,. be the bounded set defined in the proof of
Lemma 3.1 and N(T'(s)x) be a bounded neighborhood of T'(s)x (small),
and then consider the bounded set B,.UN(T(s)x). Now using
Proposition 1.3 and (3.8), it is seen that || T'(t 4+ s)x — T'(t)T'(s)x || can
be made arbitrarily small. (3.7) was established in Lemma 3.1.

REMARK 3.1. In Theorem 3.1, (3.7) holds for xe D(A), if either
of the following conditions is satisfied:

(3.9) R(I — MA) D D(A) for ne(0,n), or
(3.10) A is closed.

In fact, if (3.9) holds, then by Proposition 1.3 {J{¥*} is equi-Lipschitz
continuous on bounded sets in D(4). Hence, Lemma 3.1 implies the
convergence (3.7) for all xe D(A). Next, assume that A is closed.
Let xe¢ D(A4), te[0, 7], and then choose a sequence {x,} C D(4) with
%, —«. Let B = {z,}, then by Proposition 1.2, we see that there is
a number ) such that if Me(0,)p), then y,\) =J2,—v,eX.
Hence, Ay,(\) 32 '(y,(\) — 2,) — A7*(v; — x). This means that

A, — x) e Ay, 1.e., xe (Il — NA)v, C R(I — NA) .

Therefore, Proposition 1.3 implies that {J{¥Y} is equi-Lipschitz con-
tinuous on B, and so, Lemma 3.1 implies the convergence (8.7) for
the z.

4. Differentiability of the Constructed Semi-Groups. The dif-
ferentiability of the semi-group obtained by Theorem 3.1 is investi-
gated in this section. The central part of the arguments is based
on the results of Kato [4] and [5]. Throughout this section X is
assumed to have a uniformly convex dual.

Let A be a D-operator in X satisfying (I), (R) and (E). Set
g, =2 and I, =[0,7] for r=1,2, 8, .-+ and define J,=(I—¢,A)™"
and A, = ¢,;'[J, — I] for n with ¢, e (0, \,).

In view of (3.2), we note that for each r,

| AuJi 2 || < (1 — €,0p, )77 ||| Az ]|,
n sufficiently large and ¢ [0, 7], for the bounded set

B,,, = {JL!*x; t € [0, 7], n sufficiently large}
Uiz — &5 n large, ye Az, ||yl < [[| Az|l| + 1} .
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Since
(1 - eanx,r)_l = 1 + G)Bz,reﬁ(l - 8”0)34717')_1

é exp (wﬂx,reoL(l - 61&0)39;,,-)—1)
for » sufficiently large and te[0, ]. Hence,
| A3z || < exp(@s, ,(r + €)1 — 6,05, ,)7) || Az ]|

for n sufficiently large and ¢e[0,r]. Therefore, if we set f.(¢; ®) =
A, Jedy for £ = 0 and x € D(A), then f,(t; x) ¢ AJ[H1x, and

(4.1) for every 7, || fu(t; 2)|| is uniformly bounded with respect to
n sufficiently large and ¢e [0, 7].

Also, since

[tle,]

SIHEMMA%J}LS/W]% ds = ¢, ?_“ A JE g
0 =1
= [JItal — I T2 + e, {40 — A, JJL ),
we have
(4.2) | [Jren) — TN — S‘ Fu(s; w)ds|| = OG,) -
0

The main result of this section is the following:

THEOREM 4.1. Let A be a demi-closed D-operator satisfying (I),
(R) and (E), and {T(t)} be the semi-group on D(A) obtained by
Theorem 3.1. Then for xe D(A),

(i) T@®)xeD(A) for t =0,

(ii) there ewists a function f(-; x) on [0, ) such that

Ft; x) e AT

For almost all t = 0, where Az = {yecodux; ||yl < ||| Az ]|l}, and

(4.3) T(t)s — o = g f(s; w)ds £=0.

Proof. Take xeD(A) and p with 1 < p <+o. Set f,(t 2) =
AV, then by (4.1) {f.(-;)|;; n sufficiently large} forms a
bounded set of L?(I,; X) for integer . Thus by moving »r and using
the diagonal process, we find a subsequence {g} < {n} and a function
f(+; a) on [0, ) such that f,(-; )|, converges weakly to f(-; )|,
in L*(I,; X) for each integer r. Hence,

& S: £(s; @)ds — z* S F(s; w)ds

for all x*e X* and ¢ = 0. Thus (4.3) follows from (4.2). Write V'(¢)
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for the set of all weak cluster points of {f,(¢; x); n} for ¢ =0, then
Lemma 3.1 and Proposition 1.7 (a) imply that T'(¢)ze D(4), V(t) # @,
and V(t)c AT(t)x for ¢t = 0. Hence, by the same argument as in
Kato [5; Lemma 8.2] we see that f(¢; x)ecco AT (¢)x for almost all
t=0. And, in a similar way to Kato [5; Lemma 6.2], || f(¢ )| =
| AT (t)z ||| for almost all ¢=0. Thus, it follows that f(¢; ) e AT (¢)x
for almost all ¢ = 0.

REMARK 4.1. Let A be a demi-closed D-operator in X satisfying
(I), (R) and (E), and {T'(t)} be the semi-group obtained by Theorem
3.1, then {T(t)|pw; t = 0} forms a semi-group on D(A) by the above
theorem. By (4.3), we see that the infinitesimal generator A4, of
{T(t)| o} is densely defined in D(A).

In view of these results and Proposition 1.6, we have the fol-
lowing.

THEOREM 4.2. Let A be a maximal (D, {w,})-operator on D(A)
satisfying (I), (R) and (E). Then there is a uniquely determined
semi-group {T(t)} on D(A) such that for each xe D(A),

@/ dtyT (tyee AT (t)x  for almost all ¢t =0 .

THEOREM 4.3. If A is a single-valued, demi-closed D-operator in
X satisfying (I), (R) and (E). Then there is o uniquely determined
semi-group {T'(t)} on D(A) such that

(a) for xe D(A), AT (t)x is weakly continuous in t = 0 and

(4.4) T(t)ye — & = S AT (s)z ds for t=0,

(b) A is the weak infinitesimal generator and the infinitesimal
generator A, is densely defined in D(A).

Proof. Using the notation in the proof of Theorem 4.1, we have
that V(¢) is a singleton, since A is single-valued. And thus, by
Proposition 1.7, w-lim f.(¢; ) = AT(¢)x for ¢ = 0. The strong con-
tinuity of T(f)x and the boundedness of AT(t)x give that AT(t)w
is weakly continuous in ¢ = 0. Finally (4.4) follows directly from

(4.2).

COROLLARY 4.1. If A is a demi-closed D-operator in X satisfying
(I), (R) and (E), and A° is single-valued, then there exists a umique
semi-group {T(t)} on D(A) such that for xe D(A), (d/dt)T(t)x = AT (t)»
for almost all t = 0.
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Proof. In this case, note that we have that A = A°, where 4 is
defined in Theorem 4.1 by Az = {y ccodw; ||y || = ||| Az ||]}.

COROLLARY 4.2. If A is a demi-closed D-operator in X satisfy-
wng (I) and (R) and ||Jx|| < L+ MN)||z||+ NN for ve (0, N), x € R;,
where M and N are nmonnegative, then there is a semi-group {T(t)}
on D(A) such that (d/dt)T(t)x ccoAT (t)x for almost all t =0 and
I T@)| < e™(lw]l + Nt) for ¢ = 0.

Proof. By Proposition 1.4, A satisfies condition (E) and also we
have that ||J{Yz || < (1 + MN)Y4(||z]|| + Nt), hence using Theorem
4.1 we have the assertion.

COROLLARY 4.3. If A is a single-valued, demi-closed D-operator
wn X satisfying (I) and (R) and sup || Ax|| = N <+ oo, then A is the
weak infinitesimal generator of o semi-group {T(t)} on D(A) such
that || T()z|| < ||zl + Nt for t = 0 and x e D(A) and

sup {[| AT )zl t = 0, ve D(A)} = N .

Proof. Employ Proposition 1.4.
In the remainder of this section, we consider the case in which

X is uniformly convex.

LEMMA 4.1. Let A be a demi-closed D-operator in X satisfying
I, (R) and (E) such that A° 1is a single-valued operator with
D(A% = D(A). Then if {T(t)} is the semi-group on D(A) obtained by
Theorem 4.1, we have for «x<c D(A),

(@) |I|AT@®)x]|| ©s of bounded variation on every finite interval
and has no positive jumps,

(b) the right derivative D*T(t)x exists and is strongly right-
continuous 1 t, and DT (H)x = AT (t)x for t = 0,

(¢) A°T(t)x is strongly continuous except possibly at a ¢ count-
able number of points t.

Proof. (a) Take xe D(A). Then by the same argument as in
Kato [5; Lemma 6.6] we obtain that

e s ||| AT (W ||| = e s ||| AT (r)a |||

for all » and ¢t with 0 < »r < ¢ < 7. Thus, ||| AT @)z ||| is of bounded
variation.

(b) Take we D(A) and ¢t = 0. Choose a sequence ¢, | t. Then by
the proof of Kato [5; Theorem 7.5] we see that {A°T (¢,)x} contains a sub-
sequence which converges strongly to A°T(t)x. So, AT (t)x is strongly
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right-continuous in ¢  But, since T(t)x — x = StA"T(s)xds by
Theorem 4.1, it follows that D*T(t)e = A'T(t)x for each ¢.

(¢) By (a) ||AT@)x]|| = ||| AT (t)x||| is continuous except for a
countable number of points ¢. In order to show that A°T'(¢)x is con-
tinuous except for those points, it suffices to repeat the same argu-
ment as in (b) with ¢, 1 ¢. But the continuity at ¢ of || AT (¢)x|| as-
sures that lim, || AT (¢,)x || = || AT (¢)x||. Thus the uniform convexity
implies that A°T'(f)x is strongly continuous at the ¢.

Consequently, we have the following:

THEOREM 4.4. Let X be umniformly convex. If A is a demi-
closed D-operator in X satisfying (I), (R) and (E) such that A° is a
single-valued operator with D(A%) = D(A), then A° is the infinitesimal
generator of a unigue semi-group {T(t)} on D(A) such that for
xe D(A), D*T(t)x = AT )z for t =0, and DT (t) is strongly right-
continuous in t = 0.

The following results are the direct consequences of the above
theorem.

COROLLARY 4.4. Let X be uniformly convex. If A satisfies the
assumptions of Theorem 4.2, then A° is the infinitesimal generator
of a unique semi-group {T ()} on D(A) such that for x € D(A), T(t)x is
strongly right-continuously differentiable in t and D*T(t)x = AT (t)x
Jor t = 0.

COROLLARY 4.5. Let X be uniformly convex. If A is a single-
valued, demi-closed D-operator in X satisfying (I), (R) and (E), then
A is the infinitesimal generator of a unique semi-group {T(t)} on
D(A) such that for xe D(A), T(t)x is strongly right-differentiable
wn t and DT (t)x = AT (t)x for each t = 0.

REMARK 4.2. Let X be uniformly convex. If A is a closed dis-
sipative operator in X satisfying (R), then A° is the infinitesimal
generator of a unique semi-group {T(¢)} of contractions on D(A) such
that for xe D(A), T(t)x is strongly right-continuously differentiable
in ¢t and D*T(t)x = A°T(t)x for ¢ = 0. For details, see [10].

APPENDIX

A.1. After this paper was submitted for publication, Crandall
and Liggett gave (in “ Generation of semigroups of nonlinear trans-
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formations on general Banach spaces”, to appear) a new method for
constructing a semigroup of nonlinear contractions in a general
Banach space. The main results in their paper can be extended
straightforwardly to our case. As was stated in § 1, Propositions 1.2
and 1.8 are valid for general Banach spaces. Using these propositions
in a similar way to their proof, we can obtain the assertion of
Theorem 3.1, without assuming that X* is uniformly convex. Also,
we can obtain a similar result to theirs on the differentiability of
semigroups of nonlinear contractions. For details, we shall publish
elsewhere.

A.2. We did not give in the body of this paper any examples
of D-operator satisfying conditions (I), (R) and (E). We state here
a simple example of a D-operator which is not necessarily a dis-
sipative operator.

Let 2 be a bounded domain with smooth boundary in R?Y and let
us consider the Cauchy problem

6/otyu, = du, + Du, ,
(A.1)
0/0t)yu, = du,

with the initial condition
%0, 8) = u(s) ,
(0, 8) = uy(s) ,

over the Hilbert space H = L,(2) X L,(£2) with the inner product

2 Vs

Ctty vy = Cthyy 0, + Cthyy 0D, 4 = (Z) v = (”) .

It is well-known that the operator 4 with domain H*(2) N H}(2) is m-
dissipative. We then assume that the operator @ is locally bounded
on X and Lipschitz continuous on bounded sets.

Now, let us define an operator A in H by the relation

A — (Aul + Qu,

o ) for we D(A) = {u _ (Z) S, wy e HAQ) N I-IJ(Q)} .

2,

Then the problem (A.l) is understood as the ACP for A in the space
H.

In the following, we demonstrate that A so defined is a demi-
closed D-operator satisfying conditions (I), (R) and (E).

(a) Let B be any bounded set in H and %, ve BN D(A). Then
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{Au — Av, u — v)
= d(u, — v), u, — v + {Ou, — Ovy, U, — v,
+ d(uy — v,), Uy — v
= = lw — o — 4 — v + [ QU — Do || [[uy — 0, ]
= Vellue — vl {ln — 0[] S 75/2 + (| — 0| + |2 — 02 ()
= ogllu — ol
where 7, is the smallest Lipschitz constant of @ on the bounded set

B. Hence, A is a D-operator.
(b) Let veX, A >0 and let us consider the equation

(A.2) % — NAu =,

or equivalently,
(I — Xu, — NOu, = v, ,

(&-3) (I — ADuy, = v, ,

Since 4 is m-dissipative, we obtain a unique solution
(A.4) U, = (I — NA)™'v,

of the second equation of (A.3). Substituting this into the first equa-
tion and using the m-dissipativity of 4, we get

(A.5) wy = (I — ) [0, + A0 — Ad)~vy]

Therefore, u = (Zl> is the unique solution of (A.2) and since \ > 0

2
and ve X were arbitrary, we see that I — MA is injective and

R(I — MA) = H for all » > 0. Hence, A satisfies (I) and (R).
(¢) From (A.4) and (A.5) it follows that

Hwll* = lu P + [ e [
S ol + 20 o] | 0T — M) 7o || + M [ O — M) 70 | + [ 2|
sl + 2xllvll [0 — M) 7|l + M [| 0 — M)~ 0. [
= (vl + MO — ) 70e[))*
or
Nwll S Mol + MIOUT — )70l

where ©w = Jw, >0 and ve X. Now, let veH, >0, A, >0, and
let »a €0, 7], then

N Jrvll = [Tl + M QT — A) T[T 0] |l
= 1T ]l + MO = M) TP | + [| @ — M) [T 70l |1}

and inductively,
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<[]l + A3 | 0 — A ol |

where [Jjv], means the second component of Jiv. But, since [Jjv], =
(I - 7\'4)—";1727

1ol < o)l + 2 210 = vy |

= ||v| + T sup [| @I — M)~y ]| &
Let B be any bounded set in H. Since (I — xg)™* is a contraction on
H, the set {(I — Mg)"*ws; ve B, 0 <4\ < 7} is bounded in Ly(2). On
the other hand, @ maps bounded sets into bounded sets by assump-
tion, and hence

sup {|| (I — Mg)""v,|; veB, 0 S INS7T) = My, < +o0
Consequently,
l[Jrv|| = sup{||vl; ve B} + tMp,

for ve B, »> 0 and nxe[0, 7], which means that A satisfies condi-
tion (E).

(d) Finally, we show that A is demi-closed. Assume that
u™ e D(A), 4™ — u and that Au™ — v in H. Then, u{™ —u,;, 1 =1,
2, Oul™ — Ou,, and Adu{™ — v, in L,(2). Since the closed linear operator
4 is demi-closed, we have that v, = gu,. Also, gu!™ — v, — Qu,;
hence, v, — ®u, = Adu,. Consequently, v = Au. This means that A is
demi-closed.

From the above, it can be seen that other D-operators can be
exhibited by replacing the operator 4 by any m-dissipative operator
satisfying the assumption of Proposition 1.4 (a). Also, we can con-
sider unbounded operators @ by restricting the Hilbert space
H = H, x H, so that @ is a locally bounded, locally Lipschitz con-
tinuous operator on a Hilbert space H, into another Hilbert space H,.
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