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EXTENSIONS OF TOPOLOGICAL GROUPS

LAWRENCE G. BROWN

In this paper, we will be concerned with topological
group extensions of a polonais group A by a polonais group
G. When A is abelian, we will consider two cohomology
groups: H2(G, A) and H£(G, A), H2(G, A) is based on Borel
cochains and was studied by Moore. Hy(G, A) is obtained by
identifying cochains which differ only on a first category
set, an idea suggested to us by D. Wigner. We will show
that each of the groups classifies the extensions and that
the hypothesis that A be abelian can be eliminated.

By a polonais group, we mean a separable metrizable topological
group which is complete in its two-sided uniformity. The complete-
ness requirement is equivalent to topological completeness (see [2],
Exercise Q(d), p. 212). If E is a topological group having a polonais
normal subgroup A such that E/A is polonais, then it is elementary
to prove that E must be polonais also.

If A is abelian, then the cohomology groups are defined in terms
of an a priori action of G on A. If A is non-abelian, then we will
define sets (not groups) H2{G, A) without given action of G on A.
For brevity, we proceed directly to the general case.

Let Sf be the group of topological automorphisms of A. We
will write θa for the action of θ e sf on a e A and Ia for the inner
automorphism 6—>αδα~1. Let e denote the identity of any group.
Then H2(G, A) is defined by means of cocycles (σ, p) where:

(1) σ:G x G->A, ρ:G-+JZf,

σ is a Borel function on G x G and (x, a) —> p{x)a is a Borel function
on G x A.

σ(x, y)-σ(xy, z) = p{x)σ(y, z) σ(x, yz) ,

ιΦ) -p{v) = iσtx,V)p(χ, v),

σ(x, e) — σ(e, y) = e, and

p(e) = e .

(σ, p) and (σ', p') are identified in H2(G, A) if there is a Borel function
λ: G —»A such that:

σ'(x, y) - \(x)

P\χ) = h^

H£(G, A) can be defined by simply stipulating that (2) and (3)
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hold only on the complement of a first category set. However, for
purposes of motivation, we prefer a slightly different description.

If X is a complete metric space and Y a metric space, then
(following Wigner) by a virus from X to Y, we mean an equivalence
class of continuous functions /: R—+Y where R is a dense Gδ set
in X. f and / ' are equivalent if they agree on R Π Rr. (We could
eliminate the equivalence relation by using maximal continuous ex-
tensions.) It is clear that if Y is separable, the viruses amount to
Borel functions modulo first category sets. The concept of virus will
be used later. In the abelian case, it could be incorporated directly
into the definition of H£(G, A).

H£(G, A) is defined by means of cocycles (σ, p) where:
(1') σ: R1 —• A, p: R2 —> J^ where R^ and R2 are dense G/s in

G x G and G. σ is continuous on Rlf and (x, a) —• pix)a is continuous
on R2 x A.

(2') σ(x, y)σ(xy, z) = pix)σ(y, z)σ(x, yz) and ρ(x)p(y) = Iσ{*,y)p{xy)
whenever everything is defined, (σ, p) and (σr, pf) are identified in
Hv(G, A) if there is a continuous function λ: R —• A (R a dense Gδ in
G) such that:

(3') (3) holds whenever everything is defined. (In particular,
(σ, p) is identified with (σ', pf) if they agree off a first category set.)

We need two technical results:

LEMMA 1 (Dixmier [1]). If E is a polonais group, A a closed
normal subgroup, and p: E-+EJA the projection, then there is a Borel
function f: E/A —»E such that p(f(x)) = x for all x e E/A.

LEMMA 2 (Wigner). If E is a metrizable group complete in its
two-sided uniformity, A a closed normal subgroup, and p: E—> E/A
the projection, then there is a dense Gδ, RdE/A and a continuous
function f: R-+ E such that p(f(x)) = x for all xe R.

Proof. (One may note first that Lemma 2 follows from Lemma
1 in the polonais case.) Let UΊ, U2 be a fundamental system of
symmetric neighborhoods of e in G. Define recursively subsets On of
G such that On is maximal with respect to:

(4) On is open; O . c O ^ ; and if x,yeθn and p(x) = p(y), then
χ-ιy,yχ-ιeUn-(O« - E.)
It is not hard to see that p(On) is dense in E/A:

If F c O ^ is open, VV'1 and F ' Ψ c Uu, and p(V) is disjoint
from p(On), then OnU V satisfies (4). If R = Π p(On), then it is not
hard to prove that R is dense (i.e., that E/A is second category in
itself. Actually, E/A is even complete in its two-sided uniformity.)
For xeR, let yne0n be such that p(yn) = x. Then (yn) is Cauchy
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and hence yn —• y, for some yeG. y can easily be seen to be inde-
pendent of the choices of ynf and if we define f(x) = y, it is straight-
forward to prove / is continuous.

Now we can define a map π: Ext (G, A) —> H2(G, A). (Ext (G, A)
is the set of equivalence classes of topological group extensions of A
by G.) If E is a given extension, let / be as in Lemma 1 such
that f(e) = e.

Define (σ, />) by:

( 5 ) f(x) -f(y) = σ(x, y)f(xy); pMa = f(x) α./(a;)-1 .

It is easy to see that π(E) = [(σ, ^)] gives a well defined function π
where [(σ, p)] denotes the class of (σ, p).

There is a natural map j : H2(G, A) -> H£(G, A). If (σ, p) satisfies
(1) and (2), then there are dense G/s R1dG x G and R3c:G x A
such that the restriction of σ to u?x and the restriction of (x, a) —*
p{x)a to i23 are continuous.

LEMMA 3. // R2 = {xe G: {a: (x, a) e R3} is a dense Gδ in A}, then
R2 is a dense Gδ in G and (x, a) —> p{x)a is continuous on R2 x A.

Proof. That R2 is a dense Gδ is clear. Now suppose x% —> x and
an—>a(xn, xe R2). We can find be A such that:

(xn, b) e R31 (x, b) e Rs, (xn, δ " 1 ^ ) e i?3, (a?, 6 - 1a) e i?3 .

Then ^ " ' α * = p{Xn)b-p{Xn)b-ιan—>p{x)b-p{x)b-ιa = ^ ( a ? )α.

Now let σ and ô be the restrictions of σ and <o to J?x and R2,
and define i[(σ, p)] — [(σ,p)]. It should be clear that j is a well-
defined map on H2(G,A).

The map JTΓ: Ext (G, A) -^ Jϊ^(G, A) can be described a little more
simply. If / and R satisfy the conclusion of Lemma 2, then we can
use (5) to define σ, p, Rx and R2. Note that R2 = R and Rλ = R =
{(xy y)eG x G: x, y, xy e R}.

We can now state:

THEOREM. // G and A are polonais groups, then π and jπ are
bisections.

Proof. The main part of the proof is that jπ is surjective, and
we prove that first. Let σ, p, Rx and R2 be given. We first reduce
to the case where Rγ and R2 are as in the previous paragraph. Let
R = {x e R2: {y: (x, y) e JBJ is a dense Gδ in G}. Then for (x,y)eR,
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define:
( 6 ) Σ(x9 y)(z) = pix)σ(y, z) σ(x, yz) σ{xy, z)~ι for all z such that

this makes sense.
Then Σ induces a function from R into the set of viruses from

G to A. For (x, y) eR Π i?t, it is easy to see from (2') that Σ(x, y) is
the constant virus σ(x, y). Since R Π i?i is dense in R and J is
continuous, it is now clear that Σ{x, y) is a constant virus, σ(x, y),
for all (x, y) e -B, and σ is continuous. We now replace σ by σ (and
iϋ2 by ϋ!) to obtain the desired situation. We will also assume that
e$R.

We next extend (σ, p) to a cocycle defined everywhere, following
Moore [7]. To this end, let V be the group of all viruses from G
to A. For xeR.aeA, define θ{x): V-> V and Ja: F—• F by:

[#0%]0/) (̂2/» »)̂ (2/») and
j (Jag)(x) = ^ a . g ( x ) t o r geV.

It is a straightforward computation to verify:

θ(x) θ(y) = Jσ ( a ; y) - ^ 7 / ) , (α?, 2/, xyeR), Jab = Ja-Jb, and

^(α?)"1 exists and θ(x)Jaθ(x)~ι — JP{x)a .

Now let J5" be the group generated by J(A) and #(iϋ). We can see
that if A is identified with J(A), then A is normal in Er, and each
element of E' induces a continuous automorphism of A. Let p: £" —>
2£'/A be the projection. Clearly, for (x,y)eR, pθ(xy) = pθ(x) pθ(y).
It is now easy to see that pθ extends to a homomorphism Θ:G-+
E'jA. Let f:G-+ Er be an extension of θ such that f(e) = e and
p/ = θ. Then we can extend (σ, p) by:

9 /(») -f(v) - Λ(,») -/(αi/), and

It is clear that the extended (σ, p) satisfies the cocycle relations (2)
(though not (1)).

We will later have occasion to use a uniqueness result for the
extended (σ, p). Thus let (σ', pf) satisfy (2) everywhere, suppose σf

agrees with σ on a dense Gδ, RL, and p1 agrees with p on a dense
Gδ, R2- Define R' = {y e R f] R2: {x: (x, y) e R,} is a dense Gδ in G}.
We can see that for any veG, there is a dense G&, Rv, such that
σ'(u, v) is continuous in u on Rv. This follows from the following
consequence of (2):

(10) .σ'(u, yz) = p'^σf{yy z)-γ-σ'(u, y)-σ'{uy, z)

where we choose y, ze R' such that yz = v.
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Thus we can use (7) to define θr on all of G, agreeing with θ on
jβ', and θf will satisfy (8) (with {σf, p') instead of (σ, p)). If we
define λ by θ'(x) = λ($)/(α?), then we see that (3) is satisfied and λ
vanishes on R\ This is the desired uniqueness result.

Using the extended (σ, p), we can now construct a (non-topolo-
gical) extension E of A by G and a function f: G—>E such that if
p: E—*G is the projection, then pf(x) = »,/(e) = e, and (5) is satisfied.
We must topologize E, and we first define sequential convergence to
e. If an e E, we say that αH —> e if there exists β — b f(y)(y e R) such
that if βan = bn-f(yn), then yΛ e R, bn ~>&, and j/Λ->y. If an = an-f{xn),
then it is readily seen that this condition is equivalent to:

(11) yxn eR,xn~* e, and p{y)an-σ(y, xn) -> e .

The condition is thus independent of b, and we now show it is inde-
pendent of y (subject to y,yxneR). We need:

LEMMA 4. ( a ) For xeG, σ(x, y) is continuous in y on Rx =

{2/: y,xyeR}.
( b ) σ(a?, 2/) is continuous in x on Ry = {x: x, α j/ e JB}.

Proof, ( a ) Let yn-+y in i?^. Consider:

(12) α (α?, 2/w) = <7(v, w ) - 1 - ^ ' ^ ^ , yn)-σ{v, wyn)

where v — xw1 and w, xw~\ wyn, wy e R.
Then from the continuity of σ on R, we see that σ(x, yn) —* σ(x, y).

(b) is proved similarly.
Now if y = uyf where y, yxn, y', y'xn e R, we find:

(13) p{y)an-σ(y, xn) = σ(u, yTιp{u)lpίyΊ^σ(y\ xΛ)]-σ(u, y'xn) .

Using Lemma 4(a), we see that (11) is satisfied for y if it is for y\

LEMMA 5. If an —• β, then βanβrι —> e for any βeE.

Proof. First, let β = be A where an — anf(xn). If y, yxne R and

f{y)βanβ~ι = cn f(xn), then:

(14) c, = ' ( I ' )δ.[' ί ' ' )αn σ(if> α j ,)]-^^^- 1 .

Hence (11) is satisfied for βanβ~~ι if satisfied for αΛ. Now let β = /(«).
Then if T/, yzxnz~\ yz, yzxneR, and f(y)βanβ~1 = dnf{yzxnz~ι),

(15) dn - (7(2/, 2) [ρ{yz)an-σ(yz, xn)] -σ(yzxnz~\ z)~ι .

Hence (by Lemma 4 (b)), (11) is satisfied for βa^βr1 if satisfied for an.
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From this lemma, it is easy to see that the definition of an—>e
could equivalently have been given in terms of anβ instead of βan.
The criterion would then have been:

(11') If w, xnw e R, then an σ(xn, w)-*e and xn —> β (an = an-f(xn)).

LEMMA 6. If an—>e and βn—>e, then cxn βn—+e.

Proof. Let an = an f(xn), βn = bn f(yn). First, choose z such that
z, zxn, and zxnyn G R. Then choose w such that w, ynw, and zxnynw G R.
Then if f(z)-an-βn = cnf(zxnyn), we find:

(16) cn = [ ^ α ^ z , < * P ( ^ } [ & . 0 (^, w)].£7(«α?n> ynw) σ(zxn, yn, w)~ι .

Hence (11), for αw/5w follows from (11) for an and (11') for /9ft.

LEMMA 7. / / αΛ —>e, α"1 —> e.

Proof. Let α n = an f(xn). Choose « such that ^ ^ e J ί . Then
choose w such that w,zw,xnweR. Then if f{z) oc? = cnf(zxzι), we
find

(17) c-1 = o{z*n\an-σ{xn, w)\ -σ(zx?> xnw)*σ{z, w)~ι .

Thus (11), for α"1 follows from (11') for αΛ.
We now must show that there is a metrizable group-topology

on E such that convergence as defined above is convergence in the
topology. To do this, it is sufficient to find a sequence Wm such that
e e Wm c E, and an —> e as defined above if and only if an is eventu-
ally in Wm, for each m. Let Um be a fundamental system of neigh-
borhoods of e in A and Vm a fundamental system of neighborhoods
relative to R of u0 e R. Then we define:

(18) Wm - [ Umf{ F m ) Γ f/m/( Fm) .

Suppose that an is eventually in each Wm. Then an = β~ιjn where
βn, 7n are eventually in each Umf(Vm). Hence f(uo)~^n—>e and
f(uQ)~17n-->e. Thus α:Λ = [/(^o)"1/?^]"1 [/W" 1^] —>β. Now assume α^ =
UnfM —• e Since F^ 1 F m is a neighborhood of e in G, we can find
yn,zneR such that yn—>uQ,zn—+u0 and y^ιzn — xn. Now define
β» = /(l/n) and 7» = cnf(zn) where cΛ is chosen such that β?Ίn = αΛ

Then calculation shows:

(19) cn - ^(VΛ)[αΛ (7(ajn, w)] σ ( ^ , xnw) -σ(zn, w)~ι

where we assume w chosen so that w, xnw, znw and uow e R. Then (11')
shows that cn—>e. Hence βn,yn are eventually in each Umf(Vm)9 as
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desired.
Now that we have a metrizable topology on E, it is easy to see

that the subspace topology on A is the correct one. It is also not
hard to see that the quotient topology on G is the correct one. Indeed,
all we must show is that if xn —> e in G, then we can find an —* e in E
such that p(an) = xn. To do this, choose yn and zn as in the preced-
ing paragraph. Then an = /(yj^fizj. From the fact that A and
G are complete and separable, it now follows easily that E is com-
plete and separable and hence polonais. It is clear that / is continu-
ous on R. Hence jπ(E) — [(σ, p)], and we have proved that jπ is
surjective.

To show that jπ is 1 — 1, assume jπ(E) = jπ(Ef). Then we can
find a dense GδRczG and continuous f:R-^E, f':R~+E' such that
pf(x) = x = p'f'{x), and (σ, p) = (σ', p') where σ, p, σr, and p' are
defined by (5). Then we can define a function <p: p~ι{R) —> vr~ι{R) by:

(20) <P(a f(x)) = a-f'{x) ,

and clearly φ{aβ) =φ{a) φ{β) for a, β, aβe p~ι{R). From this, it is
not hard to prove that φ can be extended to a homomorphism of E
onto Ef and that this homomorphism is a topological isomorphism.

It is now clear that π is 1 — 1. To show that π is surjective,
let (σ, p) satisfy (1) and (2). Let E be such that jπ{E) = j[(σ, p)].
Then we can find a Borel function f:G—>E such that pf(x) — x,
f{e) = e, and if (cr', pf) is defined by (5) (with (σ', pf) substituted for
(σ, p)), then (σ, p) agrees with (σ\ pf) except on a first category set.
Now the uniqueness result proved above shows that there is a function
λ: G —> A, which vanishes on a dense Gδ,R', such that (3) holds. We
must show that λ is Borel. (3) implies:

(21) X(xy) = σ'{x, yyi'X(x)'p{x)X(y)-σ(x1 y) - σ'(x, y)-ι-σ{x, y) ,

for (Xy y) e R! x Rr. Thus if m: Rf x R! —> G is the group operation,
then λom is Borel. Since m is surjective, it follows from well-known
results on Borel sets (see Kuratowski [3] or the first few pages of
Mackey [4]) that λ is Borel. The theorem is now proved.

We make two final remarks:

1. If A is abelian and we are given an action of G on A, then
it is easy to see that the bijections π, j, and jπ preserve the group
operations (where the group operation on Ext (G, A) is the usual
Baer product).

2. The hypothesis that A be separable can be dropped by con-
sidering A as a direct limit of closed separable subgroups (G-subgroups
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in the abelian case).
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