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ON REPRESENTING F*-ALGEBRAS

R. M. BROOKS

The purpose of this paper is to obtain a concrete repre-
sentation for .F*-algebras with identity: a Frechet algebra
with involution for which there exists a determining sequence
of i?*-seminorms. The main result is Theorem 3.4 which is
described here. Let A be an i^*-algebra with identity. Let
{(τrλ, Hλ): λeA} be a complete family of irreducible Hubert
space representations of A. Let ^ = ^ 0 H\, define EQ A to
be equicontinuous provided sup λe E 11 π\(a) II < °° (a e A), and let
X = {xe H: Supp(αs) is equicontinuous}. The linear space X
is given the final topology τf determined by the family {HE =
[xeH:Supp(x)QE]: E equicontinuous} of subspaces of X.
Let Xf be (X,τf) and let jSf*CX» be all operators on X
which have an adjoint relative to the inner product inherited
from H such that both the operator and its adjoint are
τ/-continuous. This algebra will be endowed with the topo-
logy J?Ί> of bounded convergence. Let J?f+(X) be all oper-
ators which have ad joints. It has a natural topology ^ ΐ
described in § 2. Define π: A -»^fa(X) by π(a){xλ} = {πλ(a)x\}
for aeA and x = {xλ}eX. Then π(A) £ βSf+(X) = &\Xf\
and (1) π: A -> (eS

ί?*(-X», ^l) is a topological ^-isomorphism
(into) and (2) π: A -»( c^

7 +(X), ^ΐ) is a topological *-isomor-
phism (into).

In § 1 we recall some results about Frechet *-algebras with
identity, their positive functionals and Hubert space representations,
and set the notation for the remainder of the paper.

In § 2 we obtain the results about algebras of operators on
certain inner product spaces necessary to prove the main represen-
tation theorem.

In §4 we define the concept of an enveloping algebra E(A) for
a Frechet *-algebra with identity, A, and show that E(A) can be
realized either as the inverse limit of the enveloping algebras of the
Banach *-algebras in an inverse limit decomposition of A or as an
algebra of operators naturally constructed from the irreducible Hubert
space representations of A. Also we show that E(A) has the pro-
perty that every Hubert space representation of A factors through
E(A), but that there are representations of A in algebras ^+(X)
which fail to factor through E(A).

l Preliminaries* A Frechet algebra is a complete metrizable
topological algebra whose topology is determined by a (countable)
family of seminorms (submultiplicative, convex, symmetric function-
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als). We may assume that such a family {|| |LKΓ=i for A is ascend-
ing: \\a\\n<^\\a\\u+ί(aeA,neN), and t h a t \\e\\n = l(neN) if A has

an identity e. A Frechet *-algebra is a Frechet algebra with a con-

tinuous involution. If A is a Frechet *-alebra with identity we can

choose a sequence {|| |UKΓ=i of seminorms for A such t h a t (1) {|| | IJ

determines the topology of A, (2) {|| ||w} is ascending, (3) | | e | | w =

l(neN), and (4) | | α * | | Λ = \\a\\n(ae A, neN). Such a sequence we

shall call a *-sequence of seminorms for A. An F*-algebra is a
Frechet *-algebra, for which there is an ascending determining
sequence {|| ||w} of seminorms for A each of which has the ί?*-pro-
perty: ||α*α[|Λ = \\a\\l(ae A, ne N). Such a sequence we shall call
an F*-sequence of seminorms. The usual constructions (see [5]) show
that every Frechet *-algebra (resp., F*algebra) is an inverse limit
of Banach *-algebra (resp., I?*-algebras).

Let (A, {|| |ln}) be a Frechet *-algebra with identity e. We de-
note by P(A) the set of all positive functionals on A and by K{A)
those fe P(A) for which f(e) — 1. For each ne N we let Pn(A) (resp.,
Kn{A)) be the set of all feP(A) (resp., K{A)) such that \f(a)\ ^
f(e)\\a\\n(ae A). If {An,p

n,N} is the inverse system generated by
{|| | |J with pn:A —> An natural map of A onto the nth. member An1

then for each n the dense homomorphism pn induces a one-to-one map
pi of P(An) onto Pn(A). (K(An)) onto Kn(A)). Moreover, pi preserves
indecomposability. A theorem of Do-Shing [2] states every positive
functional on A is continuous so we have P(A) = U?=Λ(A) and
K{A) = \Jn=iKn(A). Also, K{A) is a weak*-closed, convex subset of
A* and is the closed convex hull of its extreme points ext (K(A))
which is exactly \j~=1ext(Kn(A)).

A Hilbert space representation of a Frechet *-algebra A with
identity is a ^-homomorphism μ: A—>$8(H) for a Hilbert space H. A
consequence of Do-Shing's theorem (see Lemma 3.1 below) is that
every such representation is continuous. Moreover, there is a one-
to-one correspondence between the members of K(A) and the equiva-
lence classes of cyclic Hilbert space representations of A (with unit
cyclic vectors). This correspondence matches elements of Kn(A) with
those representations which can be factored through An. Also, the
indecomposable positive functionals on A correspond to classes of
irreducible Hilbert space representations of A.

The "-radical, R*(A), of A is the set {a e A:f(a*a) = 0 (fe P(A))} =
{a e A:f(a*a) = 0 (fe ext (K(A))} = ΓΊ {ker π: π is an irreducible Hilbert
space representation of A}. If A is an ί^-algebra with identity,
then R*(A) = (0). Hence, if we let A be all equivalence classes of
irreducible Hilbert space representations of A and for each Xe Λ we
choose πλ e λ with representation space Hλ, then {(πλ, Hλ): λe Λ) is a
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complete family of irreducible Hubert space representations of A. A
family constructed in this manner for a Frechet *-algebra A will be
called a standard family of irreducible Hilbert space representations
of A. If {πλ, Hλ): λe Λ) is a standard family for A and we let En =
{λ: πλ factors through An}, then for each XeEn there exists a unique
irreducible representation σλ of An on Hλ so that oλopn = πλ. The family
{σ̂ : λ e En) is a complete family of irreducible representations for An

(in case A is F*) and the direct s u m Σ k £ / i on ^xeEn® Hλ is an
isometry and ^isomorphism of An into S5(Σ;e^Λ Θ -Hi)-

We have included no proofs of the facts quoted above since those
concerning Frechet *-algebras are proved for the more general class
of locally m-convex *-algebras in [1], and those relating to Banach
*-algebras can be found in [6].

2* Certain operator algebras* In this section we obtain the
results about special algebras of operators on direct sums and induc-
tive limits of Hilbert spaces which we need in the proof of the main
representation theorem in § 3. The concepts considered in the first
part of this section are discussed in detail in G. Lassner's work [4].

We first establish our notation. If X is a complex vector space
we denote by J5fa(X) the algebra of all linear transformations on X.
If X has a locally convex topology τ we denote by £?(X), or by
=S (̂XT) if there are several topologies on X in the discussion, the
subalgebra of ^fa(X) consisting of all r-continuous operators. For a
locally convex TVS (X, τ) we denote by £/* the family of all r-bounded
subsets of X (with an appropriate subscript on S? if there are
several topologies on X). The topology of bounded convergence J7\
is the topology on £f(X) with base at 0 {Nbd(M, U): Me Sζ U aτ-
neighborhood of 0 in X}, where Nbd(M, U) = {Te £?(X): T(M) S U}.

DEFINITION. Let X be an inner product space with inner product
( , •)> a n d let H be the completion of X. £f+(X) is the subset of

which consists of all Te^fa{X) which have an adjoint in
): there exists Se£?a(X) such that (Tx,y) = (x, Sy)(x, ye X).

LEMMA 2.1. (Lassner) £f+(X) is a *-algebra with involution T—>
T*. Also, (1) each Te ^+(X) is closed, (2) if X = H, then j^+(X) =
S5(iϊ), and (3) if there is a closed operator in ^+(X), then X = H.

Proof. This is merely a compilation of Lemmas 2.1 and 2.2 of

14].

DEFINITION. An Op*-algebra on X is a *-subalgebra 31 with
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identity I of ^f+(X), (i.e., the identify of 21 is the identity operator
on X).

DEFINITION. Let 2ί be an Op*-algebra on X. We define a locally
convex topology τn by taking as a sub-basic family of seminorms
{|| ||Γ: ΓGSI}, where | |a?| |Γ= \\Tx\\(xeX). This is the coarsest top-
ology on X with respect to which each operator in SI is a continuous
map into H.

Lassner shows [Lemma 3.1,4] that each Te3ί is a continuous
linear transformation on (X, τa) Since JeSI it follows that τ% is
finer than the norm topology of H restricted to X.

DEFINITION. Let 31 be an Op*-algebra on X. We define two
topologies ^l and ^ 3 l on 21 by:

(1) ^~% is defined the family {|| \\u\ Me Sζ\ of seminorms
where, (a) Si is the family of ^-bounded subset, of Xand (b) || ΓH* =
snp{\(Tx,y)\:x,yeM}.

(2) ι^"3 ί is the restriction to 91 of the topology ^ on J*f(X, τ a).

LEMMA 2.2. (Lassner) If 31 is an Op*-algebra on X, then,
(1) (2ί, t^

r"2t) is a locally convex algebra (separate continuity of
multiplication), but the involution is not in general continuous.

(2) (3Ϊ, ̂ l) is a locally convex algebra with continuous invo-
lution.

(3) ^l <; ̂ " 2 ί , and ^ = ^~% if, and only if, the multipli-
cation in (21, ̂ ) is (jointly) continuous.

Proof. This is a compilation of Theorems 4.1 and 4.2 and Ex-
ample 5.1 of [4]

NOTATION. For the maximal Op*-algebra ^+{X) on X we shall
let τ+ and ^\ replace the clumsier notation (τ^+(X), ^r^+iX)) of the
definitions above.

We now specialize to a particular class of inner product spaces.
Let {Hp:βeB} be a family of Hubert spaces, let H = Σβ φ Hβ and
let X= ΣβHβ (the algebraic direct sum). For βeB we let pβ: X—>
Hβ be the natural projection and let qβ: Hβ—*X be the natural in-
jection. For x e X we define Supp (x) = {β: pβ(x) Φ 0}.

The locally convex direct sum topology,τf, on X is the final top-
ology determined by the family {qβ:βeB}. We shall abbreviate (X,
τf) by Xf.

LEMMA 2.3. If X— ΣβHr, then C2f+(X) is isomorphic to the algebra
of all B2-matrices (Taβ)aJeB such that
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(1) Taβe£?(Hβ,Ha)(a,βeB),
(2) for each aeB the set Ba = {β: Taβ Φ 0} is finite, and
(3) for each βeB the set Bβ = {a: Taβ Φ 0} is finite.

Proof. If (Taβ) is a matrix satisfying (1)—(3) we define T: X-*
X by {T{Xβ})a = Σ/> Taβxβ for each a. Since Supp (a?) is finite, Σ*β Taβxβ

converges in Ha for each aeB and it is easily seen that the set of
a for which ΣβTaβxβ is nonzero is contained in U {Bβ: βe Supp (#)}, a
finite set. Thus, Te£?a{X) and by considering the matrix (T*β)(Tίβ:
Ha-+Hβ) we obtain an adjoint for T in £fa(X); hence, Te J 2 ^ + ( X ) .

Fix Te £f+(X). For a,βeB define Tα/3 = ̂ T V Hβ-+Ha. Clearly,
Taβ is a linear transformation. We show that it has an everywhere
defined adjoint, hence is bounded. Set Sβa — pβT*qa: Ha-+ Hβ. Fix
xa e Ha, xβ e Hβ1 then;

(TaβXβ, xa) = (paTqβxβ, xa)

= (PaTqβxβ, paqaxa)

= Σr(prTqβxβ1 prqaxa)

= (%β> Sβaxa) (by reversing the steps above) .

Fix βeB. If Bβ is not finite, then there exists a sequence {a3)
it B so that Ta.β Φ 0 (j = 1,2, •••)• For each xβeHβ there exists
n{xβ) so that Ta.β{xβ) = 0 for j > n(xβ). We choose sequences {%} in
N and {x3} in f̂ s by the following procedure. Let nγ = 1 and choose
xγeHβ so that |(x 1((<2~ 1 and Γ ^ ^ 0 (hereafter Γy will be used
for Ta.β). There exists n2 > nλ such that Γy^ = 0 for j ^ τ&2. Choose
x2 e ίf/such that Γnaα>2 ̂  0 and 11 x2 | | < min (2~2, 2~211 Γ , ^ 11/| | T%1 \ |). Con-
tinuing inductively we obtain sequences {%} and {x3) so that:

( 1 ) 1 = nx < n2 < .

( 3 ) T^ΦO
(4) Tnix3 = 0 (i>j).
We let x = Σi7=ι^j^Hβ. We claim that TWfc£ ^ 0 (fe ̂  1). Fix

fc G N, then ΓΛJfca? = Σ*=ί Tnjtxs + Tn]xk + Σ7=*+i T%kx, . For j ^ k - 1
we have Γ âjy = 0 and for j > k + 1 we have || T , Λ i| ^ || TnJ\ \\xd\\ <
2-3' || T%kxh\\. If T%Λx = 0, then, || Tnjcxk\\ - ||Σr=*+i Tnkxs\\ ^ Σr=*fi2~ i

1 1 ^ % 11 < \\Tnjxk\\, a contradiction.
That 5 α is finite for each aeB follows by applying the same

argument to T*.

LEMMA 2.4. Let {Xβ} be a family of Banach spaces and let X =
Σ ^ l ^ . For ceR% define pc:X-+R+ by pc(x) = Σ/J cβ \\xβ\\ Then
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{pc:ceR+} defines the locally convex direct sum topology τf on X.

Proof. Clearly, {pc} defines a separated locally convex topology τf

on X. Since τf is the final topology generated by the injections qβ:
Xβ —> X(βeB), it suffices to show (1) if p is a τycontinuous seminorm
on Z, then there exists ceRl so that p S Pc (hence, τf^τ9), and
(2), for each βeB the map qβ: Xβ —• (X, τ') is continuous.

(1) Fix a Γy-continuous seminorm p on X. For each βeB the
map p°qβ: Xβ —> R is a continuous seminorm on Xβ. Hence, there
exists cβeR+ so t h a t p°qβ(xβ) ^ cβ \\xβ\\ (xβe Xβ). This defines t h e

function ce R+. If x = {xβ} e X, then,

(2) Fix /3 e S, c e RB

+. Then j>β(?^) = cβ \\ xβ \\ and qβ: Xβ -> (X,
τ') is continuous.

LEMMA 2.5. Let X = Σ ^ ^or eαcΛ ceRl we define \\ \\c: X-+
R by \\x\\o — [Σ/3 ^ ll^ | | 2 ] 1 / 2 /or a? = {xβ} e X. If B is countable then τf

is defined by the seminorms {|| | | C : C G J 2 + } .

Proof. Suppose B = N. We have for each ceRl that || ||β ̂  pe,
so r{|,.llc} ^ r/β We fix c e R^.

For xe X we have:

PcO) = ΈunCn\\xn\\ = Σ,nn-1(ncn\\xn\\)

^(Σ.nn-r9iΣ«(ncny\\xn\\r*
= ( c o n s t a n t ) . | | a ? | | { Λ β Λ } .

THEOREM 2.6. If X=ΣβHβ, then ^f+(X)S^f(Xf); hence,
^f+(X) = J*f*{Xf), the algebra of continuous operators on Xf with
continuous adjoints.

Proof. It suffices to show that for each Te^f+(X) and βeB
the operator Toqβ; Hβ —> Xf is continuous (see [Prop. 6.1, p. 54,7]).
Fix Te£?+{X), βeB and a seminorm pe, ceRl, for τf. The set
Bβ = {a: Taβ Φ 0} is finite, so for xβ e Hβ we have:

pc{Toqβ{χβ)) - Σaca\\(Toqβ(χβ))a\\

Hence, Toqβ is continuous.
We now turn from direct sums to inductive limits. Let {Hλ:

XeΛ} be a family of Hubert spaces. Let H= ΣAXΘHX. We fix a
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family g7 of subsets of A which satisfies (α)if is closed under finite
unions, and (b) all subsets of a member of £? belong to S? (i.e., g7

is an ideal in the lattice 2Λ). We let X = {xe H: Supp (x) e if}, and
for Ee& we let HE — {xe H: Supp (x) £ £/}, α Hubert space, and
let ^ be the identity injection of HE into X. Finally, let τf be the
final topology on X determined by the family {iE: Ee g7} of injections.

Since X has an inner product the Op*-algebra ^f+(X) is defined.
A subalgebra of £f+(X) of importance here is £?r(X) = {Tej£f+(X):
for each Ee g% T(HE) s fl* and Γ*(ft) £ HE}; i.e., j^ r(X) consists
of all elements of £f+{X) which are reduced by each HE{EeW).

We denote the topologies on X determined by =Sf+(X) and J*fr{X)
by r+ and r r (respectively) and the corresponding families of bounded
sets by £f+ and £fr.

ASSUMPTION. Throughout the remainder of this section we assume
the existence of an ascending countable cofinal (with respect to the
partial order £ on g7) subfamily g^ = {2?»}?=i. We let the corre-
sponding Hubert spaces HEn and injections iE% be denoted £Γn and
iu(neN).

LEMMA 2.7. T/̂ e final topology on X generated by the family
{in}n=i is τ/ Hence, (X, zf) is a strict inductive limit of the sequence
of Hilbert spaces {Hn} and;

(1) τf\Hn is the norm topology on Hn.
(2) M £ X is τrbounded if, and only if, there exists ne N such

that M is a (norm) bounded subset of Hn.

Proof. That the final topologies are the same can either be
easily proved directly or deduced from Proposition 3, p. 159 of
[3]. That we have a strict inductive limit and (1) follow from the
fact that τn+1 \ Hn — τn (trivial if one writes out the norm of an ele-
ment of Hn considered as an element of Hn+1) and a theorem of
Dieudonne-Schwartz (see [pp. 159-160, 3]). Claim (2) is another theo-
rem of Dieudonne-Schwartz (see [p. 161, 3]).

THEOREM 2.8. Si - £$

Proof. We show first that £fr(X) is a subalgebra of £f(Xf).
Fix Te ^fr(X), neN. We must show that T<>ίn = T\Hn: Hn->Xf is
continuous. But T(Hn) £ Hn and τf\Tn = τn. Thus, we must show
that T\Hn:Hn-+Hn is continuous. Since Te£?r(X) we have that
T*(Hn)^Hn, so {T\HnY = T*\Hn and T\Hn has an everywhere
defined adjoint on Hn, hence is continuous.

Let Me S^ Then M i s a bounded subset of Hn for some neN.
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For each Te£fr{X), T(M) is a bounded subset of Hn since T\Hn is
continuous on Hn. Hence, T{M) is bounded in H. Since T was arbi-
trary, Me £ζ.

Suppose MίS^f. Case (a). There exist sequences {%} in iVand
{Xj} in M so that:

( 1 ) 1 = nx < n2 <
( 2 ) xjeHnj+1\Hn.(j = 1,2, . . . . ) .

Choose a?, e Λf YH^όij. = 1) let n2 be sufficiently large that Supp (â ) £
^ 2 , choose x2eM\Hn2, etc. Let D y = E^E^n, = 0, Eo = 0 ) , and
set C, = (Σ êjDy l l^ l l ) 1 ' 2 . Define T: X-+ X by (Tx)λ = jCj'xλ if λ e Dd.
It is easily verified that Te Sfa{X), Γ* = Γ, and Supp (Γa?) S Supp(a )
force 6 X. Hence, T e ^ . ( X ) . Also,

1 ^ . 2 I I 2

Hence, s u p ^ ^ II TO;|| — <*>, and M i ̂ J . Case (b). M ξΞ= Hn, for some
w, but is unbounded. Easy to show that Mi S^r.

THEOREM 2.9. ^ r = ^ 7 | ^ ( X ) , where ^l is the topology of
bounded convergence on the algebra Jίf(Xf).

Proof. ( 1 ) j r ; ^ ^ 7 on £fr(X): Fix a ^-neighborhood of 0 in
(X), Nbd (ikf, ε) = {T: \\ T \\M < ε}, where MeSζ,ε> 0. Since Sζ=

£ff there exists neN so that M^Hn and | |M] | = supβ6if INII <°°
Let Z7 be a r/-neighborhood of 0 in X so that UnHnS SΛ(0,
(2||ΛΓ||)-1e), the (2| |ilf | |)-1 ε-ball about 0 in H%. If Γ G ^ r ( X ) n
iVbd(M, C7) - {Sfe ̂ r ( X ) : S(M) £ U], then Γ(M) ^UnHn and || Γίc|| <
(2||Jlf||)-1e for xeM. Now

^ sup {sup I (Tec, 7/) |}
M l | l | ^ | | i l f | |

^ ε/2

This shows that r ^ 7
( 2 ) y ^ ^ y on ^ ( X ) : Fix a J^-neighborhood of 0 in

iVbd (M, [7) where Me ^}, U is a ^-neighborhood of 0 in X. There
exists n e N so that ikί is a bounded subset of Hn. Let ilίi. =
MU Sn(Q, 1), bounded subset of iΓTC; hence, a rebounded subset of X.
Choose ε > 0 so that SΛ(0, ε) s [7 Π fl«. Suppose T e ΛΓbd (MΊ, ε). If
x e M, then

T&H =sup,,^ 1 | (Ta?, i/) | ^ sup {] (Tz, y)\:z, ye MJ -

So Γ(Λf) SSJO, ε) £ Z7, and Γ e iNΓbd (Λf, C/). Hence
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We now show that £?+(X) is a subalgebra of £f(Xf). The
problem here is that we do not have an obvious charactrization of
elements of £?+(X). We have a fixed cofinal sequence {En} in S?.
We let D ^ JEί and for n > 1 we set Dn=En\En^. Let Kn = Σirez>nθ Hi
and let Y = Σu K%.

LEMMA 2.10. The map u: X-+ Y defined by u({xλ}λeΛ) = {{xλ}λeDn}n=i
has the following properties:

( 1 ) u is a linear isomorphism (onto)
(2) u is unitary: (u(x), u{x')) — (x, x') for x, xf e X.
( 3 ) u: (X, τf) —* (Y, τf) is topologίcal.

Proof. It is easily verified that u is a linear isomorphism (into).
If yeY, then there exists n e N so that yά — 0 for j > n. Then
yjλ = 0 if λ G 2 ) y , i > π. Set α? = {?/H λ e Z?Λ, A = 1, 2, •}. Then xeH
and Supp (x) gΞ U y=i-Di = -27*. Clearly %(a?) = ?/, and (1) is proved.
That u is unitary depends only on the fact that the series obtained
by taking inner products is absolutely convergent so can be rear-
ranged at will.

(3) We show first that u is continuous. We recall Lemma 2.5
and fix a seminorm || ||β, ce R+. If xe Hn, then:

)) \\x\\2 .

Thus, ||w(aj)||β ^ C(n) \\x\\ for xeHn and uoin:Hn—> Yf is continuous
for arbitrary neN. Hence, u is continuous (X/—• Yf)

Since Xf and Yf are (LF) spaces (each is a strict inductive limit
of Hubert spaces) and u is a continuous surjection of Xf to Y/ it
follows that u is an open map (see [Prop 2.2, p. 78, 7]).

THEOREM 2.11. £f+(X) s £f(Xf)\ hence, jSf+(X) = £f*(Xf), the
subalgebra of L(Xf) which consists of all operators Te£f(Xf) whose
adjoint Γ* exists and belongs to J*f(Xf).

Proof. Let u and Y be as in Lemma 2.10. Since u is a unitary
linear isomorphism the induced map u*: Jtfa(X) —>J?fa(Y) defined by
u*(T) = uoTour1, which maps J*fa(X) isomorphically onto ^fa(Y),
maps ^f+(X) onto ^f+(Y). Also, since u: Xf—> Yf is topological the
same map u* maps £f{Xf) onto £f{Yf). Since
(Theorem 2.6) we must have that J5?+{X) £
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THEOREM 2.12. &

Proof. We show first that τ+ ̂  τf. It suffices to show that for
each ne N the injection in: Hn —• (X, τ+) is continuous. Fix a semi-
norm || ||Γ for τ+, where Te^f+(X). Since Te£f(Xf) we have
that Toin = T\Hn: Hn-^Xf is continuous; hence, T\Hn:Hn-+H is
continuous (rnorm <̂  τ>). But then there exists Cτ > 0 so that
| |Γ |f l .(α?)| |^CΓ | |a? | | for xeHn; i.e., | | s | | Γ ^ Cτ \\x\\ (xe Hn).

We have S% = &f £ &+(?+ ^ τ». But since JS^(X) £
we also have S^ S ^ . Hence, ^< = ̂  and ^ 7 = ̂  on
But Theorem 2.9 says that ^ = ̂  on

THEOREM 2.13. ( ^ ( X ) , ^7) is complete.

Proof. Let {Tα} be a ^7-Cauchy set in £?r(X). For each
we let JI4 be the unit ball in HE. Then, {ME} £ ^ and if we fix

, then {Ta \ HE) is a Cauchy net in

N T 7 77" T7 I TT II — α π n / N T 7 T7 W II 'v c: £7" 11 Ύ» 11 <C 11

\\ 1 a ±1E — 1 β I -Πt^ 11 — o t i p \| | -£ α — -i β)JU 11 . J> fc ̂ ΓZ ,̂ 11 4> 11 ^ JL/

= sup {| ((Γ β - Tf)x, y)\:x,ye ME)

= \\Ta- Tβ\\ME.

Note also || T* \ HE - Tf \ HE\\ - | |Ta - Tβ\\ME. Thus, Ta | HE —

Γ£ 6 a5(iΓs) and Γα* | fẐ  — SE e ®(HE). We define T and S on X by
Ta; = TEx if xe fẐ  and Sx = SEx iί xe HE. If E Ξ F, then 2V | fZ"s =
2^ (Sj? I HE = S^). Hence, T and S are well-defined linear transfor-
mations on X. Clearly, both T and S leave each HE invariant and
S= T*. Thus, TejS?r(X). That ^- l im α Γα = Γ is easily checked.

THEOREM 2.14. (Jt?r(X), J7\) is an F""-algebra with identity. In
fact, (J^r(X),J7~r) ~\imJnvί&(Hn).

Proof. For each ne N we let Mn be the unit ball in Hn. Then
^ and is "essentially" cofinal: if Me £Sr, then Mis a bounded

subset of some Hn, hence there exists ke R+ so that M £ άikf̂ . But
then \\T\\M^k2\\T\\Mn{Te£?*{X)). Thus, the topology ^ is de-
termined by th ascending family {|| |UJ °f (linear) seminorms, and
(J*fr(X), ^r) is a complete metrizable algebla. As we saw in Theo-
rem 2.13 for Te^r{X) and ne N we have || T\\Mn = \\ T*\\Mn = \\ T\Hn\\.
Thus, each || ||ifn ίs a ^^-seminorm, and {£fr(X), ^~r) is an i^*-algebra
with identity. The last part of the conclusion was essentially proved
in Theorem 2.13. The map pn: £fr(X) —* ^8(Hn) is just the restriction
map; as is the bonding map pn: ̂ 8(Hn) —•33(-Hft_1)(τ&e N).
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3* A representation theorem for ί7*-algebras* In this section
we give three concrete faithful (topologically and algebraically) re-
presentations for an abstract F*-algebra with identity as an algebra
of operators on a vector space formed from the irreducible Hilber
space representations of the algebra.

We let A be an .F*-algebra with identity and let {(πλHλ): Xe A}
be a standard family of irreducible Hubert space representations of
A. Since A is an F*-algebra the family is complete.

If A is a i?*-algebra and {(πλ, Hλ) is a standard family for A,
then π: A —• 33(Σ* Θ Hx) defined by π(ά){xλ} = {πλ(ά)xλ) is an isometry
and *-isomorphism. It is easily seen that for non-J3*-algebras (but
still F*-) this is impossible. In fact, one cannot even define π(a) on
Σ * 0 Hλ for all ae A, unless every a e A has bounded norm:
s u p Λ | | α | | n < oo for some determining family of seminorms. If one
moves to the other extreme and defines π(a) by the same formula
on X=ΣχHχ (algebraic sum), then π(a) makes sense and π:A—*
(J*f(Xf), J7l) is a continuous ^isomorphism but fails to be topological.
This is the case because the final topology on X, hence the topology
^ 7 on ^f(Xf), depends on finite subsets of A whereas that of A
depends on much larger subsets of A. Thus, we must seek a middle
ground in order to achieve a faithful representation of A in this
manner. Before we introduce the basic concept we first prove a
crucial fact about Hubert space representations of Frechet *-algebras.

LEMMA 3.1. Let A he a Frechet *-algebra with identity, and let
μ: A —* 23(ίΓ) be a representation of A on the Hilbert space H. Then
μ is continuous.

Proof. Fix ε > 0. Let V = {ae A: \\μ(a)\\ ^ ε} = f] {Vx y: \\x\\,
\\y\\ ̂  1}, where Vxy = {xe A:\ (μ(a)x, y) \ ̂  ε}. For each pair x,yeH
such that | |# | | , \\y\\ ̂  1 the set Vx, y is convex and balanced. Since
for each z e H the map a —»(μ(a)z, z) is continuous (Do-Shing's Theo-
rem [2]), we have that a —> (μ(a)x, y) is continuous (polarization formu-
la). Thus, each Vxy is closed. So V is closed, convex, and balanced.
It is easily verified that V is absorbing; hence is a neighborhood of
0 in A.

DEFINITION. Let A be a Frechet *-algebra with identity and let
{(πλ, Hλ): Xe A] be a stadard family of irreducible Hilbert space repre-
sentations of A. A subset E of A will be called equicontinuous if,
and only if s u p ^ | |^(α) | | < oo for each aeA. The family of all
equicontinuous subsets of A will be denoted &{A).

LEMMA 3.2. If A is a Frechet *-algebra with identity and {(πλ,
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Hλ): Xe A} is a standard family for A, then E ϋ A is equicontinuous
if, and only if, ^XBE^X defines a continuous representation of A on

Proof. Suppose EξΞ=A is equicontinuous. For aeA we let Ca =
sup;^ | |π(α)| | and define π: A —>33(Σ;ui?0 Hλ) by π(a){xλ} = {πλ(a)xλ}.
Now ||{πλ(a)xλ}||2 - Σ * II ̂ ( α ) ^ ||2 ^ Cl \\(x)\\\ So ττ(α) maps Σ,e* Θ Hλ

into itself, and π is a representation of A on Σ i e * 0 £ίί.
Conversely, suppose we can define a representation of A on

Σ^eίj®Hλ by the direct sum formula. It is clear that ||πλ(a) || <̂  ||π(a) \\
for each XeE and aeA.

LEMMA 3.3. Let A, {(πλ, Hλ): Xe A) be as above. Let {|| |U1 be a

*-sequence of seminorms for A. For n e N we set En = {X e A: \\ τcλ(a) || ^
| | α | | w (ae A)}. Then E s A is equicontinuous if, and only if, E is
contained in some En. In particular, the increasing sequence {En} is
cofinal in &(A).

Proof. If E s En for some n, then clearly Ee^(A). Conversely,
if Eeϊ?(A) then π: A—>^8(ΣAXSE θ Hλ) defined as in Lemma 3.2 is a
continuous representation of A. Hence, there exists C > 0, ne N so
that | |π(α) | | <; C\\a\\n(ae A). It is easily verified that we can take
C = 1, and the condition is satisfied.

We set H = Σ^e, θ Hx and let X = {x e H: Supp (x) e &(Λ)}. We
are now in the situation of the second part of § 2 with HE = {x:
Supp (x) £ E), iE:HE-+X the natural injection, τf the final topology
determined by the family {iE: Ee &(A)}. If {|| | | J is any .P*sequence
of seminorms for our i^-algebra A with identity, then we let Hn =
HEn and πn: A —-> ^&(Hn) the induced representation of A on Hn.

LEMMA 3.4. With the definitions given immediately above for
each neN and aeA it is the case that \\a\\n = |]π%(α)||.

Proof. In § 1 we indicated that {πλ: X e En} induces a complete
standard family {σλ:XeEn} of irreducible Hubert space represen-
tations of the I?*-algebra An, the completion of A/{α: | | α | | n = 0} with
respect to the induced norm, and if pn is the natural projection of A
into An we have σλopn = πλ(X e En). If we let σn = Σ ^ e ^ ^ An —> 58(Hn),
then 11 σn{an) \ \ = \ \ a n\ \ f or each ane An. But 11 σn{an) \ \ = supA eEJ\ σλ(an) \ \.
Thus, if ae A, then | | α | | Λ = HiθΛα|| = s u p ^ ^ l l ^ ί ^ α ) ! ! = sup^e^ ||τrΛ(α)|| =

From the above construction we can infer more. For each aeA
there exists XoeEn such that | | α | | Λ = | |τr;(α)| |. This can be proved
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for An by reducing the problem to that for a hermitian elements,
then showing that it holds on the algebra generated by the element
and extending to the full algebra.

THEOREM 3.5. Let A be an F*-algebra with identity, {(πλJ Hλ):
λ e Λ} a standard family of irreducible Hilbert representations of A,
H = ΣλeΛ 0 Hλ1 and X = {xe H: Supp (x) is equicontinuous}. Let π:
A —> ^fa(X) be defined by π(a){xλ] = {7ϋλ(ά)xx}(a e A, x = {xλ} e X). Then

( 1 ) For each ae A the function π(a) defined above is indeed in

)\ in fact, π(a) e Sfr(X).
( 2 ) π: A—> (J*f*(Xf), ^~h) is a topological *-isomorphism (into).
( 3 ) π: A—> (^f+(X), <^~+) is a topological ^-isomorphism (into).
( 4 ) π: A—* (π(A), J7lU)) ^s a topological *-isomorphism.

Proof. ( 1 ) Fix aeA,xeX. Then

^ sup {|Iπλ{a) \|2: λ e Supp (x)}.\\x\|2 .

Thus, π(a)xeH and Supp (π(a)x) <Ξ Supp (x) e &(Λ), so π(a) maps X
i n t o i t s e l f . M o r e o v e r , i f ae A a n d x,yeX w e h a v e (π(a)x, y) —
(x, π(a*)y); so π(a) e S^+{X). It is clear that π(a) e ^r(X).

(2) and (3) It is clear that π is a ^-isomorphism. Since ^+1 £fr(X) =
^TI =^.(X) = ^ 7 (Theorem 2.12) and π(A) S Sfr{X) it is necessary
and suflBcient that we show π: A —> (J*fr(X), ^ 7 ) is topological. We
fix an ί7*-sequence {|| ||w} of seminorms for A, let {En}, {Hn}, and {πn}
be the corresponding cofinal sequence in &(A), Hilbert space sequence
in X, and sequence of representations of A (respectively). We note
that πn(a) = π(a)\Hn for ne N,ae A. We recall from Theorem 2.14
that (£?r{X),^l) is an F-*algebra with identity and that {|| \\MJ is
an i^*-sequence of seminorms for £fr(X), where Mn is the closed unit
ball in Hn(neN). Moreover, for each neN and Te^fr(X) we have
\\T\\Mn = IIΓIfl^H, the norm of the (bounded) restriction of T to Hn.
If ae A, then ]|a|\n = \\πn(a)\\ (Lemma 3.4) and the latter is 11π(a)\Hn\\ =

We again fix an i^-sequence {|| |IJ of seminorms for A. Let
{En}, etc. be as in "(2) and (3)" above. We let 21 - π(A), an Op*-
algebra on X with corresponding family &ί of bounded subsets of X.
The topology S~* on 2ί is defined by the seminorms {\\ -\\M: Me £^},
where M g l belongs to S^ if, and only if, sup^^ || Tx\\ < oo for
each Te%. Lassner's Lemma 5.2 [4] says that π: A-+ (Sί, ^ i ) is
continuous. Fix neN and let Mn be the closed unit ball in Hn as
above. Since SI £ ^+(X), S^+ S ^ ? and {Mn} Q £*+; so {Mn} ££ζ.
We know from above t h a t | | α | | Λ = | | ^ (^)IU U ( α e A, ^ e N). This es-
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tablishes the openness of π: A—• (31, ^l).

REMARKS. (1) Do-Shing [2] obtains a representation theorem
for LMC*-algebras (the same as jP*-algebra without the metrizability
restriction) which uses essentially the same Hubert space, but he
maps A onto an algebra of unbounded operators with special proper-
ties. Also, he does not consider topological properties of the map.

(2) The main problem in studying non-commutative Frechet
*-algebras is the lack of models against which to compare the abstract
algebras. A corollary to Do-Shing's theorem on positive functionals
on Frechet *-algebras is that every one induces a cyclic Hubert
space representation, but as we have seen we cannot represent these
algebras faithfully on Hubert spaces. The examples discussed above,
the algebras ^fr(X), are quite similar to those considered by E. A.
Michael in Appendix A of his memoir [5], where in our case the
underlying locally convex space is an inductive limit of Banach
(Hubert) spaces. It seems that the class he defined in [5] might
include most examples of noncommutative F-algebras, except those
built from a commutative F-algebra and a noncommutative Banach
algebra by tensor products, e.g., C(X, B) where X is an appropriate
topological space and B is a Banach algebra.

4* Enveloping algebras* In this section we define the enve-
loping algebra of a Frechet *-algebra with identity, relate it to
inverse limit decompositions of the algebra, and realize it as an
algebra of operators naturally constructed from A.

We fix a Frechet *-algebra with identity, A, and also fix a
standard family {(πλ, Hλ): λe Λ) of irreducible Hubert space represen-
tations of A. We recall that K{A) = {/:/ is a positive functional
on A, f(e) = 1}.

LEMMA 4.1. If E £ K(A) and {|| ||Λ} is a ^-sequence of semi-
norms for A, then the following statements are equivalent.

(1) E is equicontinuous.
(2 ) sup / 6 E f(a*a) < oo (α e A).
( 3 ) There neN such that E £ Kn{A).

Proof. (1) and (2) are clearly equivalent by the uniform bounded-
ness principle for Frechet spaces: if E <ΞΞ A* and E is pointwise
bounded (σ(A*, A)-bounded), then E is equicontinuous (see [Theorem
4.2, p. 83, 7]). It is also clear that (1) and (3) are equivalent, since
Kn(A) is the intersection with K{A) of the polar of the neighborhood
{aeA: \\a\\n^ 1}.
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DEFINITION- Let 8" (K) be all equicontinuous subsets of K(A).
For Ee^(K) we define

I«U = [sup{/(α*α):/e#}] 1 / 2 (ae A) .

THEOREM 4.2. If A is a Frechet *-algebra, {\ \E: Ee ί?(K)} is
the family of maps defined above, then

( 1 ) Each I \E is a linear seminorm on A.
( 2 ) B*(A) = {αe A: \a\E = 0 for each Eeϊf(K)}.
( 3 ) If {\\ \\n} is any ^-sequence of seminorms for A, then the

topology of (A/R*(A), {| \E}) is determined by the B*-seminorms {| |n},
where | |w = | \Kn(A). Hence,

( 4 ) The completion E(A) of (A/R*(A), {| \E)} is an F*-algebra
with identity.

Proof. (1) and (2) are trivial to verify and (4) follows from (3),
which we now prove. Fix a ^-sequence {|| ||»} of seminorms for A.
For each neN we set En — {XeΛ: ||τr^(α)|| ^ \\a\\n(ae A)} and define
πn:A->ϊδ(ΣiieEn®Hj) by π%(a)({ξ}x}λeEn) - {πx(a)ξx}λeEn for each aeA.
We shall show that for each neN and α e i w e have ||τr»(α)H = | a\n.
Fix neN. For XeΛ we choose a unit vector ζλ e Hλ, define fλ: A-+C
by fχ(a) = (πχ(a)ξi9ξλ), let iΓ; be the completion of A/{a:fλ(a*a) = 0}
with respect to the induced inner product ([a]λ, [b]λ) = fλ(b*a), where
[a]λ is the coset containing a. Finally, define ψλ: A—>^8(Kλ) by
ψλ(a)([b]λ) = [ab]λ on A/{a:fλ(a*a) = 0}, and extending these norm-con-
tinuous operators to Kλ. There exists an isomorphism U: Hλ Kλ so
t h a t Uπλ~ψλU. Hence, for aeA we have \\πλ(a)\\2 —

sup{Λ(6*α*αδ):/ι(6*6) = l} ^fλ(a*a). If/,(6*6) = 1, then A 6 : c
also belongs to iC(A) (that/* does is clear) and/^6(α*α) <^\a\n. Hence,
||τr;Xα)|| ^\a\n for each XeEn1 and | | ^ ( α ) | | = sup || πλ(a) | |: λG En} ^
| α | w . Then reverse inequality follows from the fact that \a\n =
sup {/(α*α):/G X»(A), / is extreme}.

DEFINITION. We shall call the algebra E(A) in Theorem 4.2 (4)
the enveloping algebra of A.

THEOREM 4.3. If (A, {|| | | J) is a Frechet *-algebra with identity
and if {An} is the corresponding inverse limit system of Banach
*-algebras with identity, then E(A) = limn inv {E(An)}.

Proof. We let pn be the natural map of A into An and pn: An —•
An^(n >̂ 2) the induced bonding map. For neN we let J5n be the
enveloping algebra of An and let Ψn be the natural map of An into
JS?Λ. Finally, we let φ be the map of A into
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For neN we have the diagram

Now ker (Wn) = R*(An) and ρn(R*(An)) £ i2*CAΛ-i). Thus, we have an
induced map σn: En —> En^. It is easily verified that {En,σ

n,N} is a
dense inverse limit system of i?*-algebras (i.e., the bonding maps
have dense range and are norm-decreasing). We let E = lim^inv {En,
σn, N} and consider E a subset of ΠnEn with the relative product
topology.

We define τ: E(A) -» E by first defining τ on A/iί*(A) by the
formula τ(φa) = {Ψnρna}. If aeA, then 9>(α) = 0 if, and only if,
a e R*{A) if, and only if, pn(a) e R*{An)(n e N) if, and only if, Ψnρn{A) =
0 (neN). Thus, τ is well-defined and one-to-one A/R*(A). Also,
since all the maps involved have dense range it follows that τ(A/R*(A))
is dense in E. Finally,

\τ(φa)\i = \Ψnσn(a)\l = \PM\1

{f(a*a):feKu(A)}
= |α|2TO(^eiV, α e A) .

Thus, τ is an isometry in each seminorm; hence, extends to a topological

map of E onto E(A). It is clear that the map is a ^-isomorphism.
We now realize E{A) as an algebra of operators on X =

{# £ Σ UΛ φ Hλ: Supp (#) is equicontinuous}. We use the same notation
as in § 3.

THEOREM 4.4. Let (A, {|| |IJ) be a Frechet *-algebra with identity

and let (E(A), {\ |Λ}) be its enveloping algebra, with natural map φ:

A~+E(A). For aeA we define π(a) on X by π(a){xλ} = {πλ(a)xλ}.

Then π: A —> £fr{X) induces a topological *-isomorphism σ of E(A)

onto π(A), where "topological" refers to any of the {equal on £fr{X))

topologies ^ 7 , ^+1 or ^~b on ^fr(X) and the closure of π(A) is with

respect to these topologies.

Proof. Since for each α e A and neN we have \a\n = | |πΛ(α)| |
we have that ker π = R*(A), so there is an induced map σ: A/R*(A) —>

so that the following diagram commutes:
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A-^

λ /
A/R*(A)

E{A).

We have shown in Theorem 2.13 that the topologies
on Jίfr{X) are defined by the sequence {|| \\MJ of seminorms and that
| |Γ |U W = \\T\Hn\\. Also, we know that πn(a) is π(a)\Hn. So from
Theorem 4.2 we have \a\n = | |π n (α) | | , and hence, \a\n = ||7r(α)||jfn. It
follows that GΓ: A/JB*(A) -> ̂ r ( X ) is topological, and since (£?r(X), ^~r)
is complete σ extends to a topological *-isomorphism of E(A) into

If A is a Banach *-algebra with identity and E(A) its enveloping
algebra, then every Hubert space representation of A factors through
E(A). We conclude our discussion of enveloping algebras by ex-
aming this problem for Frechet ^-algebras. We consider only repre-
sentations in J*f+(X), since this is enough to illustrate the problems
involved.

LEMMA 4.5. // {A, {|| ||Λ}) is a Frechet *-algebra with identity,
{| |»} the corresponding sequence of B*-seminorms on A used to define
the topology of E(A), and if μ: A~^ Jίf+(X) is an essential repre-
sentation of A on X (μ{e) — I) then, for each Me S*% there exists ne N
and C > 0 such that || μ{a) \\M ̂  C\a \n(a e A).

Proof. Fix i l ί e y + . We let | |Jlf| | = sup {|| x | |: xe M) (\\M\\ < o o ,
since M is bounded in t h e H u b e r t space completion of X ) . Since μ
is continuous there exist neN and C > 0 such t h a t \\μ(a)\\M^
C\\a\\n(aeA).

Fix xe M. Then /,.: a —* (μ(a)x, x) is a positive functional on A.
A l s o , | / . ( α ) I = I (μ(a)x, x ) \ £ \ \ μ(a) \\M ^ C\\ a \\n. Hence,_ / . e P n ( A ) f o r
each xe M. Therefore, if xe M and x Φ 0, the positive functional
fx(e)~ιf* belongs to Kn{A) and /a;(e)-1/I(α*α) ^ \a\l(aeA). So we have
fx{a*a) g fx(e) \ a \l(x eM,ae A). But fx(e) = (μ(e)x, x) = || x ||2 ^ || M\\\
Hence, /.(α*o) ^ || lί | | 21 a \l(x eM,aeA).

For x, y e M, a e A we have

\(μ(a)x,y)\ = \\ μ(a)x || || y II

^| |M| | .( | |M«)*II 2 ) 1 / 2

^ \\M\\'{μ{a*a)x,xγ>2
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Thus, || μ{a) \\M ̂  \\ M||21 a\n(ae A).

THEOREM 4.6. // (A, {|| ||»}) is a Frechet *-algebra with identity,
(E(A), (| |n}) its enveloping algebra, φ the natural map of A into
E(A), and if μ: A —> Jzf+(X) is an essential representation of A on
X, then there exists a continuous representation σ of A/R*(A) on X
so that σφ = μ. If π(A) is contained in a j7~+-complete subalgebra
of Jίf+(X), then σ extends to a representation of E(A) on X. In
particular, this is the case if X is Hilbert space. Hence, all Hilbert
space representations of A factor through E(A).

Proof. We need only show that σ can be defined on A/R*(A) so
that σφ = μ. The other claims follow from Lemma 4.5. It is sufficient
to show that ker<£>ckerμ. If aekerφ = R*(A) and if xeX, then
b —> (μ(b)x, x) is a positive functional on A; hence, (μ(a*a)x, x) =
|| μ(a)x ||2 = 0. Thus, μ(a) = 0 and a e ker μ.

EXAMPLE 4.7. We show here that some representations μ: A —•
^f+(X) fail to factor through E(A).

Let A = C°°(R) with the topology determined by the seminorms
l |α | | Λ = Σ^o(&D~Ί|α(fc)|Loo, where a{k) is the fcth derivative of a and
IHL.oα is the supremum on [ — n, n]. Then A is a commutative Frechet
*-algebra with identity (involution is conjugation), and

( 1 ) \a\n = \\a\\n>4aeA,neN)
( 2 ) R*(A) = 0, hence
(3 ) AjR* {A) = (A, {| | J) and E(A) is just C(R) with the compact-

open topology. We use hereafter | |Λ for || |L«»
Let X = C~(R), the compactly-supported C°° functions on R, con-

sidered as a dense subspace of U(R). We note that if aeC(R) and
feC~(R), then there exists neN such that || af\\ ^ | a\n \\ f \\ (n de-
pends on /, n is any positive integer so that Supp (/) £ [ — n, n]), and
|| || is the norm in L2(R).

Define μ: A —> ^fa(X) by μ(a)f = af. It is clear that this formula
actually does define a linear transformation on Xand that (1) μ(a)* =
μ(a), (2) μ is a representation of A in ^f+(X), hence, (3) μ; (A, {Hn})—>
,_ζf+(X) is continuous (by Theorem 4.6). We now show that μ cannot
be extended continuously to C(R). We prove (4): if μ is the ex-
tension to C(R) of μ and if / e l , then, we must have μ(a)f =
af (aeC(R)). We know that there exists neN and C > 0 so that
\\μ{a)f\\SC\a\n for each aeC(R). Fix aeC(R) and choose [a3] £
C°°(R) so that C{R) — limy aά = a. Choose C > 0 and n e N as above
(for feX) and such that Supp (/) £ [- n, n]. Then 11 μ(a)f - μ{a3)f \\ ^
C\ a — aό |n. Hence, {μ{a3)f} converges in L2(/2) to /Z(α)/. But μ{a3)f =
a5f and by our earlier estimate || aάf — af\\ ^ || / || | a5 — a \n. So
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μ(aί)f = asf converges to μ(a)f and to af. Thus β(a)f = af for each
feX. But C(R)-C?(R) g ^( iJ ) , so μ fails to extend to C(R).

REMARKS. In the last example we could have considered μ a
representation of C°°(R) in £f(C?(R),^l). It is not too difficult to
show that μ is continuous when thought of this way. It clearly still
fails to extend.

Fainally, we do not know whether representations of A in
(J*f*(X), ^l) where X is a locally convex TVS with a continuous
inner product are necessarily continuous, in contrast to representations
in J*f+(X). It probably is possible to find an example of a discon-
tinuous representation, since the topology ^ 7 need not be related to
the inner product.
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