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MEASURES ON SEMILATTICES

SOLOMON LEADER

New definitions are given for positivity and bounded
variation of functions on a semilattice S so that such func-
tions extend to measures (respectively, signed measures) on
the ^-algebra generated by some representation of S as a
semilattice of sets under intersection. All such representa-
tions lie in a Stone space determined by S. Functions on a
subsemilattice S of a distributive lattice L which extend to
isotone valuations on L are characterized in terms of a partial
ordering of finite sequences in S. Functions on a regulated
semilattice which correspond to regular Borel measures on
the associated locally compact space are characterized in terms
of inclusion-exclusion sums.

A semilattice is a commutative, idempotent semigroup (S, •) in
which we define the partial ordering a rg b to be ab = α. So all our
semilattices are meet-semilattices [6]. That is, the product of any pair
of elements in S is their greatest lower bound.

Every semilattice (S, ) can be represented as a semilattice (Sf, n)
of sets. In particular one can represent each s in S by its set Cs

of all lower bounds of s. For s, t in S we have

(l.i) cs n ct = cst.

So we get a representation with S^ the set of all lower sets Cs.
Note that no lower set is a nontrivial union of lower sets. Indeed

(1.2) C g C ^ U U Ctn implies Cs £ Ct. for some i.

The existence of representations of semilattices suggests the
study of functions φ on S which can be extended under some repre-
sentation to measures (or signed measures) on the σ-algebra generated
by the representation. Motivation for such a study comes from pro-
bability theory wherein each bounded measure Φ on the Borel sets
in Rn is represented by a distribution function φ on Rn according to
the relation

<1 3) Φ(s) = Φ{CS).

In this case Rn is a semilattice relative to the coordinate-wise ordering.
That is, for s = (siy , sn) and t = (tιy , tn) in Rn, st = (s, A t19 ,
sn Λ ίΛ). Explicit characterization of distribution functions φ is given
essentially by two conditions. The first condition (positive definiteness,
usually defined in terms of iterated differences [3]) guarantees that
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the finitely additive extension whose existence is implied by (1.2) is
nonnegative. The second condition (upper continuity) yields the coun-
table additivity of the extension.

S. Newman [4] has defined positive definite functions and functions
of bounded variation on a semilattice. We give several equivalent
definitions for these concepts below, avoiding combinatorial difficulties
by making use of certain structures and objects associated with a
semilattice S: ideals, characters, the semigroup ring Z(S) over the
integers, the boolean ring I(S) of idempotents in Z(S), the positive
cone Z(S)+, the transform representing Z(S) as a function ring on
the characters, and the Stone space X(S).

2. Algebraic structures associated with a semilattice* Given
a semilattice S let Z(S) be the semigroup ring of S over the ring Z
of integers. That is, Z(S) consists of all integer-valued functions f
on S with finite support. Z(S) is a ring under functional addition
and the convolution product

(2.1) f*g(t) = Σ f(r)g(s)
rs = t

where the summation runs through all nonzero terms given by ordered
pairs (r,s) in S with rs = t. Since S is commutative, so is Z(S). S
is injected into Z(S) by defining for s, x in S

(1 if x = s
(2.2) s(x) = \

(0 if x φ s.

Let S be the set of all functions of the form (2.2) with s in S-
For all r, s, t in S we have

(2.3) rs = t iff r*s = t.

So (S, *) is isomorphic to (S, ). In terms of (2.2) each f in Z(S) is
of the form

(2.4) f = Σ f(s)s
seS

where we ignore vanishing terms and sum only over the support of
f. In the form (2.4) the convolution (2.1) is the product induced by
the product in S through (2.3) and the distributive law. Since the
free commutative group generated by S is the additive group Z(S),
every function φ on S into an additive group (G, +) has (under identi-
fication (2.2) of S with S) a unique extension to an additive func-
tion on Z(S) into G given by

(2.5) (φ, f) = Σ f(s) Φ(s).
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If S has a unit 1 (i.e., semigroup identity), then 1 is a unit in Z(S).
A character p on a semilattice S is a function on S into {0,1}

such that

(2.6) p(rs) = p(r)p(s) for all r, s in S. [5]

(Some authors call this a "semicharacter".) The set T(S) of all charac-
ters on S is a semilattice (the dual of S) under the functional product

(2.7) pq(s) = p(s) q(s).

Each element s of S defines a character p8 on S,

11 if x > s
(2.8) ps(α) . ,
v ; w 10 otherwise.

Let P(S) be the set of all such functions (2.8) on S which we call
principal characters.

For f in Z(S) and p in T(S) define the transform

(2.9) f(p) = Σ f(β) P(s)
seS

which is (p, f) in terms of (2.5). Note that s(p) = p(s). (2.9) defines
a ring homomorphism on Z(S) into a ring of bounded, integer valued
functions on T(S). That is,

(2.10) \f^+g(p) = f(p) + S(P) and

(f*ff(p) = f(p) o{p)

As will be shown in Propositions 2 and 3 below, this homomorphism
is injective.

Let I(S) be the set of idempotents in Z(S). Since Z(S) is a
commutative ring, I(S) is a Boolean ring with f /\g = f*g and fVg =
f + g — f*g. The isomorphism of (S, •) with (5, *) imbeds (S, •) as a
subsemilattice of I(S).

Let i^S) consist of all members of Z(S) of the form t — s with
s < t in S. Let J(S) be the semigroup generated by K(S) under *.

LEMMA 1. Every f in Z(S) has a representation of the form

f = Σ?=i e/i where βiβZ and ft e J(S) with f< ̂  0 cmd f4*fy = 0 for

i Φ j. Moreover, we may assume that the range of f is {ε19 , εn}.

Proof. Choose a nonempty finite subset F of S such that F
contains the support of f and at least one zero of f if f has zeros.
Let /Ί, •••,/» be the atoms of the Boolean ring generated in J(S)
by JP7. These atoms belong to J(S) since S is a semilattice. Since
each s, for s in F, is a sum of some of these atoms we get our
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representation from (2.4)
Given p in T(S), either f(p) = 0 or by (2.10) there is some i in

our representation such that fj(p) = 1 for j = i and 0 for j Φ i. In
either case f{p) — e< for some i. On the other hand we can choose
principal p19 , pn such that fj(Pi) = 1 for ί = j1 and 0 for ΐ ^ i
Then f(Pt) = e«.

An ideal in S is a subset I of S such that

(2.11) r, s e I iff rs e I.

(Some authors prefer the terms "filter" or "dual ideal".) There is a
one-one correspondence between ideals Ip in S and characters p on S
given by the relation

(2.12) I, = p"1 (1).

Clearly, (2.11) is equivalent to (2.6) under (2.12). Ip is nonempty iff
p Φ 0. Ip is a principal (i.e., finitely generated) ideal iff p is a prin-
cipal character (2.8). In terms of (2.12) we can express (2.7) as Ipq =
iP n iq.

3* Separation. A set H of ideals in S separates S if every
principal ideal I is the intersection of all members of H which contain
J. H amply separates S if for every principal ideal / and finite
subset F of S disjoint from I there is some J in H which contains I
and is disjoint from F. Using the correspondence (2.12) we can for-
mulate these definitions for H a set of characters on S. H separates
S if given r Φ s in S there exists p in H with p(r) Φ p(s). H amply
separates S if given s in S and F a finite subset of S with st < s
for all t in F there exists p in H with p(s) = 1 and p(t) = 0 for all
t in F. Clearly, if H amply separates S then H separates S. The
converse holds if H is a semilattice under (2.7).

For each s in S let [s] be the set of all p in T(S) such that p(s) =
1. For H a subset of T(S) let [s]# = JϊΠ [s] and let πH be the homo-
morphism on Z(S) defined by (2.9) with p restricted to H.

PROPOSITION 1. For any subset H of T(S) the following are
equivalent:

( i ) H separates S.
(ii) The kernel of πH on K(S) is trivial.
(iii) πH is an isomorphism on (K(S), fg).
(iv) πH is an isomorphism on (S, *)
(v) [s]H = [t]H implies s = t.

Proof. Clear.
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PROPOSITION 2. For any subset H of T(S) the following are equi-
valent:

( i ) f(H) = f(T(S)) for every f in Z(S).
(ii) πH is a Boolean isomorphism on I(S).
(iii) πH is a semilattice isomorphism on J(S).
(iv) πH is a ring isomorphism on Z(S).
(v) The set τcH(S) of functions on His linearly independent over Z.
(vi) H amply separates S.
(vii) [s]H § [S^H U U [sn]H implies [s]H §Ξ [Si]H for some i.

Proof, (i) => (ii). Let fel(S) and πHf = 0.

The latter condition means f(H) = {0}. Hence f = 0 by (i) and
Lemma 1.

(ii) => (iii) a fortiori.

(iii) => (iv). Consider f Φ 0 in Z(S). We contend πHf Φ 0. We

may assume in the representation of f given by Lemma 1 that ε/j. Φ 0.

Hence by (iii) there is some peH with f^p) = 1. For such p Lemma

1 and (2.10) yield f(p) = εx ^ 0. (iv) => (v) since 5 is a set of inde-

pendent generators for the additive group Z(S). (v) =» (vi). Consider

898l9 , sn in S with ss* < s for i = 1, , n. In J(S) define

(3.1) f = (s — at)* "- *(s — an) wi th a{ = ss i e

Expanding (3.1) we get

(3.2) f = s + Σ (~l) f c ( α )πα

where A is the set of all subsequences a = {αίχ, , αίA.} (1 ̂  ^ < <ik ^
n) of α0 = {alf •• ,an], k{a) is the number k of terms in a, and πα
is the product of all terms in a.

By (v) f(p) cannot vanish identically on H since in (3.2) s has a
nonzero coefficient and is distinct from every πa. So there exists p e
H with 0 Φ f(p) = p(s)[l - pis,)] [1 - p(sn)]. That is, p(s) = 1 and
p(βi) = 0 for i = 1, , n.

The equivalence of (vi) and (vii) is trivial.
(vi) implies (iii) since f = 0 in (3.1) iff s = a{ (that is, s ^ st ) for

some i.
Finally, (iii) implies (i) by Lemma 1.

PROPOSITION 3. The set P(S) of principal characters amply se-
parates S.

Proof. Given s e S and F a finite subset of S with st < s for all
ί e ί 7 , take ps in (2.8) to separate s from F.

A character p is irreducible if qr = p in T(S) implies either
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q = p or r = #>.

PROPOSITION 4. 2%θ irreducible characters separate S.

Proof. Given si < s in S let Q be the set of all q in Γ(S) such
that q(s) = 1 and q(t) = 0. Q is nonempty since p s in (2.8) belongs
to Q. By Zorn's lemma Q has a maximal member relative to the
ordering p <£ # defined by p = pg in (2.7). For it is clear that the
functional maximum of any chain in Q is a character belonging to Q.
Now a maximal p in Q must be irreducible. For if p — qr then 1 =
p(s) = q(s)r(s) and 0 = p(t) — q(t)r(t). So either q or r belongs to Q,
hence equals p since p is maximal in Q.

4* The positive cone Z(S)+.

PROPOSITION 5. For any f in Z(S) the following are equivalent:

( i ) Σ ^ J ( s ) ^ 0 for every aeS.
(ϋ) Σ*ei/(s) ^ 0 for every ideal I in S.

(iii) f(p) ̂  0 for every character p.

(iv) There exists an amply separating set H of characters such

that f(p) ^ 0 for all p in H.
(v) f has a representation given by Lemma 1 with all the coeffi-

cients Si nonnegative.

Proof, (i) => (ii). Let a be the product of all the elements in
the support of f which also belong to I. Then the sums in (i) and
(ii) are identical, (ii) implies (i) since (i) is (ii) restricted to principal
ideals, (ii) and (iii) are equivalent through (2.9) under the corres-
pondence (2.12).

(iii) implies (iv) a fortiori.
(iv) implies (v) by Lemma 1 and Proposition 2.
(v) implies (iii) by Lemma 1.
Define Z(S)+ to be the set of all f in Z(S) satisfying the condi-

tions in Proposition 5. Then Z(S) is a lattice-ordered ring with Z(S)+

as positive cone. In terms of the representation of Lemma 1 we have

(4.1) f+ = ±εt fi,f- = £ε7fi, ±

Finally,

(4.2) K(S) s J(S) fi I(S) S

5* Positive definite functions*
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PROPOSITION 6. For any real-valued function φ on S the following
are equivalent:

( i ) Given s19 , sn in S and εx , en in Z

(5.1) g e,e, φ(siSj) ^ 0.

(ϋ) (Φ, f2) ^ 0 for all f in Z(S).

(iii) (φ, f) ^ 0 for all f in I(S).
(ϊv) (φ, f)^0 for all f in J(S).
( v ) (φf f) ^ 0 for all f in Z(S)+.
(vi) Given a,ax, , an in S with aι ^ a for i = 1, , n then

(5.2) Σ ( - l)k{a)+1 Φ{πa) S Φ(a)
ae A

in terms of notation introduced with (3.2).

Proof, (i) is equivalent to (ii) via the relation

(5.3) f = Σ eiSi
i — l

for which (φ, f2) is just the sum in (5.1) according to (2.5).

(ii) implies (iii) implies (iv) a fortiori.

To prove (iv) implies (v) apply Lemma 1, (v) of Proposition 5,
and additivity of (φ, ) on Z(S) to get (Φ,f) = ΣiUε;(0>^;) with both
factors nonnegative in every term on the right.

(v) implies (ii) since f2 e Z(S)+ according to (iii) of Proposition 5
and (2.10).

We call φ positive definite if it satisfies the conditions of Proposi-
tion 6. Note that (iv) becomes Newman's definition [4] if we take f
in (3.1) and distribute φ into (3.2).

6* Functions of bounded variation*

PROPOSITION 7. For φ a real-valued function on S the following
equivalent:

(i) There exists M<°o such that given s19 , sn in S and ε19 ,
en in Z satisfying

( ( U ) ? 6 ί = { l f0τal1 seS

n

then IΣ εi

(ϋ) fel(S)
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(iii) s u p Σ \(Φffi)\

[iff,- = 0 for %Φ j

((iii) is essentially Newman9s definition of bounded variation [4].)

Proof. The equivalence of (i) and (ii) follows from the relation
(5.3). Under (6.1) f for f in (5.3) maps the set P of principal
characters into {0,1}. By Proposition 3 and the equivalence (i) and
(iv) in Proposition 2 (6.1) is equivalent to fel(S).
(ii) => (iii). Given fi in (iii) let f = Σ^./^vo fi and g — Σ(*,/iκo Λ
Then Λ^eI(S).
Moreover,

(6.2) (0, O - (0, fir) = (φ,f-g) = ± \ (φ, f%) \.

By (ii) the left side of (6.2) is bounded.
(iii)=>(ii). Each f in I(S) is of the form f = ^ J i in the re-

presentation given by Lemma 1. Hence \(φ,f)\— \ Σ?=i (Φ, fi) \ ̂  Σ?=i

Let V(Φ) be the supremum in (iii) of Proposition 7. We call V(φ)
the ίoίαZ variation of ^ and call φ of bounded variation if its total
variation is finite. Note that

(6.3) V(φ) = sup (φ, f - ur).
f,geI(S)

For ^ a real-valued function on S and r an element of S define

(6.4) φr(s) = φ(rs) for all seS.

Then

(6.5) far, f) = (φ, r*f) for all feZ(S).

Define

(6.6) 10| (r) = F(^r) for all r e S .

PROPOSITION 8. For φ real-valued on S the following are equi-
valent:

( i ) I φ I ( r ) < oo f o r a l l r e S
(ii) For each f in I(S)

sup (φ, g — h) < oo
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(iii) For each f in I(S)

supΣ|(0,Λ)| < -

415

(iv) For each f in Z(S)+

geZ(S)

where \g\ ^ f means there exist representations in Lemma 1 such that
f = ΣΓ e/4 and g = ΣΓ δ/< with |$<| ^ e<.

(v) ^ is ίfee difference of two positive definite functions. There
is a Jordan decomposition φ+ — <fr = φ with φ+, φ~ positive definite
and φ+ + φ~ = \φ\.

Proof. Setting f = r in (ii), (iii), or (iv) one sees that the supre-
mum there is just (6.6). So (i) is implied by (ii), (iii), or (iv). The
converse holds because the supremum in (ii), (iii), (iv) is (|^|,/)

G i v e n (i) l e t φ+ = (\φ\ + φ)/2 a n d φ~ = (\φ\ - φ)/2. T h e s e a r e
p o s i t i v e def inite b e c a u s e \(Φ,f)\ ^ (\Φ\,f) for al l fel(S). H e n c e (i)
i m p l i e s (v) . T h e c o n v e r s e is t r i v i a l .

COROLLARY 8(a). φ is of bounded variation iff φ is the difference
of two positive definite functions of bounded variation.

7'• Measures on the Stone space* Let (S, •) be a semilattice
with unit 1. (One can trivially adjoin a unit to a semilattice which
has none.) Let X(S) be the set of all characters p on S with p(ϊ) —
1. In the notation introduced in §3, [s] £ [1] = X(S) for all seS.
Since X(S) contains all the principal characters it amply separates S
by Proposition 3 and 0 Φ [st] = [s] Π [t] for all s,t in S.

X(S) is a subset of {0,1}S, the space of all {0, l}-functions on S.
This space is compact since it is a product of finite spaces. The
product topology is determined by pointwise convergence of the func-
tions. So X(S) is a closed subspace of {0,1}S since a limit of
characters with p(l) = 1 is again a character with p(ΐ) = 1. So X(S)
is compact in the topology it inherits from {0,1}5. For p in X(S)
and E a subset of X(S) we have peE if£ given any finite subset F
of S there exists q in E with q(t) = p(t) for all t in F. Applying
this characterization to [s] and its complement we conclude that [s]
is both open and closed. The topology is the smallest topology in
X(S) for which [s] is open-closed for every s in S.
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THEOREM I. Let φ be a real-valued function on a semilattice S
with unit 1. Define the set function

(7.1) Φ([s]) = φ(s) for all s e S.

Let J^sf be the σ-algebra generated in X(S) by the sets [s] with se S.
(a) Φ extends to a bounded, countably additive measure on J^sf

iff Φ is positive definite.
(b) Φ extends to a bounded, countably additive, signed measure

on Szf iff φ is of bounded variation.

Proof. Since X(S) amply separates S, (ii) of Proposition 2 gives
through (2.5) a unique extension of Φ in (7.1) to a finitely additive,
real-valued function Φo on the Boolean algebra J^J generated in 2X{S)

by the sets [s] with se S. Since every [s] is compact-open and the
compact-open subsets of X(S) form a Boolean algebra, every member
of J^o is compact-open. So no member of J^ζ can be a union of in-
finitely many, pairwise disjoint, nonempty members of j^J . Therefore
(a) follows from Proposition 6 and the well-known extension theorem
for measures on Boolean algebras of sets.

Finally, (b) follows from (a) and Corollary 8(a).

THEOREM II. Let φ be a real-valued function on a semilattice S
with unit 1. Let H be any set of nonzero characters on S. Let
J^f(H) be the σ-algebra generated in 2H by the sets [s]H with se S.
Define

(7.2) Φ([s]H) = φ(8).

Then
(i) Φ extends to a bounded, countably additive measure on J^(H)

iff

(Given any sequence {fn} in Z(S) such that

\fn(p) i 0 for all peH, then (φ, fn) [ 0.

(ii) Φ extends to a bounded, countably additive, signed measure
in J^f(H) iff Φ is of bounded variation and (7.3) holds for \φ\.

Proof. The Daniell condition (7.3) implies (v) of Proposition 6
through monotoneity of convergence in (7.3) applied to the sequence
{/*, 0, 0, •••} for any feZ(S)+. So (7.3) implies φ is positive definite.
So (φ, —) is a finitely additive measure on the Boolean algebra I(S).
Define

(7.4) Φ(πHf) = (φ,f) for fel(S).
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(7.4) is consistent with (7.2) under (2.2) and (2.5). Moreover, (7.4)
vanishes for πHf=f\H= 0 by (7.3). So Φ in (7.4) is a finitely addi-
tive measure on the Boolean algebra πH(I(S)) which is a subalgebra
of 2H. Since Φ is continuous by (7.3), Φ is countably additive and
hence extends to a countably additive measure on the ^-algebra gen-
erated by πH(I(S)) in 2H. This σ-algebra contains J*f(H) because
[s]H = (π^s)"1 (1). That is, πHs is the indicator of [s]H.

The last statement implies πHs is measurable, hence integrable,
and therefore πHf is integrable for all feZ(S). So the converse
(7.3) in (i) follows from continuity of the integral.

Finally (ii) follows from (i) applied to φ+, φ~ since these satisfy
(7.3) whenever \φ\ does.

Note that (7.3) can be put in the explicit form

(7.5) Given sequences {sj and {t3) in S and increasing sequences {Mn}
and {Nn} of positive integers such that

then

Σ P(Si) ~ Σ P(h ) 1 0 for all peH,

Σ Φ(st) - Σ Φih) I 0.
i j

8* Measures on distributive lattices* Let (L, Λ , V) be a
distributive lattice with distinct lower and upper bounds 0 and 1.
We shall usually write αδ for a Λ 6.

Each finite sequence aQ = {au •••, an] in L defines a mapping on
Z+ into L, namely

(8.1)

1 for fc = 0

for 1 < k <\yeA
U(α)=A

0 f or & > n

(See (3.2) for explanation of notation.)
Note that ao(ΐ) = aγ V V an and αo(w) = ^ an.

A measure φ on L is an isotone valuation [1] which vanishes at
0. That is, φ is a real-valued function on L such that

( i ) 0(0) = 0
(ii) φ(a) ̂  φ(b) for α ^ δ

(iii) ζ5(α V 6) + Φ(ab) = Φ(a) + φ(b) for all α, b.

(8.2)

As is well-known (iii) in (8.2) extends by induction to the inclu-
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sion-exclusion formula

(8.3) φ(a, V V O = Σ ( - l)* ( α ) + 1 Φ(πa)
ooeA

in terms of the notation in (3.2). In terms of the injection of a
distributive lattice L into the Boolean algebra J^(L) it generates,
the measures on L correspond to the finitely additive measures on

PROPOSITION 9. The function defined in (8.1) satisfies:
( i ) ao(k) ^ aQ(k - 1) for k > 0
(ii) For k>0, n>l, and at the sequence a0 with last term

deleted,

aQ(k) = a,(k) V anaγ(k - 1).

Proof, (i) holds because each term πa of the join in (8.1) defining
ao(k) is a lower bound of a similar term in the join defining ao(k — 1).
(ii) follows from (8.1) if we apply the distributive law to split the
join in (8.1) into those terms πa with a a subsequence of at and
those with last term an.

PROPOSITION 10. For φ a measure on L and a0 = {al9 •••, an} a

finite sequence in L,

Proof. Apply (iii) of (8.2) to (ii) of Proposition 9 and sum over
k so that, after deleting terms which cancel in pairs, one gets

( 8 # 5 ) Σ Φ(*m) - Σ ΦMk)) + φ(an).Σ
k

So (8.4), being trivial for n = 1, follows by induction from (8.5).

PROPOSITION. 11. For finite sequences a0 = (aly •••,«») and β0 =

(K •", bn) in L we have aQ(k) ̂  βo(k) for all k iff

(8.6) X h(ai) ̂  Σ hφj) for every measure h on L with range {0, 1}.

Proof. As is well-known [1] such lattice homomorphisms h se-
parate I/, giving a representation of L as a lattice (L, Π, U) of sets.
Hence the first condition in Proposition 11 is equivalent to

(8.7) h(ao(k)) ̂  h(βo(k)) for all {0, l}-measures h and all k.

Applying the lattice homomorphism h to (8.1) we conclude that



MEASURES ON SEMILATTICES 419

h(ao(k)) = 1 iff at least k terms α̂  have h(ai) = 1, equivalently

* 8 ' 8 * Σ h{a%) ^ k.
i

So (8.7) is equivalent to k ^ ΣΓ=i h(Jb3) for all positive integers k
satisfying (8.8). This condition is equivalent to (8.6) since sums of
Λ-values are always nonnegative integers.

PROPOSITION 12. A real-valued function φ on L is a measure iff
for all finite sequences a0 = (aly , an) and β0 = (bίf , bm) in L

( 8 # 9 ) ao(k) ̂  βo(k) for all k implies Σ Φfa) ̂  Σ Φ(bs).
i=l j=l

Proof. (8.9) applied to sequences a0, β0 of O's with mΦn implies
Φ(0) = 0 since ao(k) = βo(k). (8.9) with m = n = 1 gives (ii) of (8.2).
Finally, (8.9) applied to a0 = {α, 6} and βQ = {ab, a V b} gives (iii) of
(8.2) since ao(k) Ξ βo(k).

Conversely, let φ be a measure on L. Then (8.9) follows from
(8.4) in Prop. 10 and (ii) of (8.2).

THEOREM III. Let L be a distributive lattice with 0,1. Let M
be any subset of L such that 1 e M. A real-valued function φ on M
extends to a measure on L iff (8.9) holds for all finite sequences a0

and β0 in M.

Proof. By Proposition 12 we need only show that φ can be ex-
tended to L with (8.9) preserved. Since (8.9) is a property of finite
character the axiom of choice yields a maximal extension of φ to some
subset N of L containing M such that (8.9) holds. We contend N =L«

Suppose N Φ L. Then we could choose x in L — N and define

( 8 Λ 0 ) Φ(x) = inf Σ Φ(bj) - Σ Φ(at)
(8.11) 3=1 i—l

where the infimum is taken over

(8.11) all {a19 , ap}, {bl9 , bq} in N with
{x, aly •••, ap} ^ {δi , bq)

in terms of the functions defined by (8.1) in L. Note that (8.11) is
nonvoid since {1}, {1, 1} e (8.11). Therefore φ(x) < <χ>. On the other
hand the inequality in (8.11) implies by Proposition 11 that {aly ,
ap} ^ {&!, •• , 6 J . Hence φ(x) ^ 0 by (8.9). With the inequality in
(8.11) for the hypothesis of (8.9) the conclusion of (8.9) follows from
(8.10). On the other hand given
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(8.12) {ap+1, , an} ^ {x, bq+ί, , δw}

with the α s and 6̂ s in ΛΓ we conclude from (8.11), (8.12) and Proposi-
tion 11 t h a t {a19 , aPJ , an} ^ {bιy •••,&,•••, δ j . So Σ?=i φi^) ^
Σ?=i 0(δ, ) since (8.9) holds in N. That is,

( 8 Λ 3 ) Σ Φ(a<) ~ Σ W ^ Σ « - Σ Φ(a<).

Hence by (8.10) the left side of (8.13) is a lower bound of φ(x).
That is, the conclusion of (8.9) holds with the hypothesis (8.11).
Therefore, since (8.9) holds for (8.11) and (8.12) it must hold for all
sequences in {x, N} by Proposition 11. This contradicts the max-
imality of N. So N = L.

THEOREM IV. Let (L, Λ, V) be a distributive lattice with dis-
tinct 0.1. Let (S, Λ) be a subsemilattice of (L, Λ) such that 0,1 eS.
Then a real-valued function ψ on S extends to a measure on (L, Λ, V)
iff both of the following conditions hold:

(i) ψ(0) = 0 and
(ii) For all finite sequences {a19 , an} and {bly , bm} in S,

a1 V V an ^ &! V V bm in L implies

(8.14) Σ ( - l ) * ( α ) + 1 Φ(πa) ̂  Σ ( - l ) f c ( α ) + 1 Φ(πβ)
aeA βeβ

in the notation of (3.2)

Proof. Every measure φ on L satisfies (i) by definition, φ satisfies
(ii) since (8.14) is just φ(at V ••• Vα.) ̂  ^(δi V V δΛ) which holds
because φ is isotone.

Conversely, let (i) and (ii) hold for φ on S. Consider an arbitrary
member f = α*(l — αx) * * (1 — αw) of J(S) with α, alf , an in S
and a{ ^ a for all ΐ . In terms of the join in Z(S), f = α — ̂  V
V αw. So for (2.5) we have (φ, f) = ^(α) - (& αx V V αw). With
δ1 = . . . = bm = a in (ii), (8.14) becomes (φ, ax V V αn) ̂  ^(α).
Hence (φ, f) ^ 0. So (iv) of Proposition 6 holds. That is, φ is posi-
tive definite. This together with (i) implies that (φ, ) of (2.5) is a
measure on I(S).

To prove φ on S extends to a measure on L we apply Theorem
III. We need only show that (8.9) holds for sequences in S. The
hypothesis of (8.9) implies \fk{a)=kπa ^ ykia)=kπβ i n L for all k.
Using these inequalities in the hypothesis of (ii) we get

(8.15) (φ, V πa)^(φ, V πβ)
k(a)=k k(a)=-k
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for all k for the conclusion (8 14). Summing (8.15) over k and sub-
jecting both sides to Proposition 10 in terms of the measure (φ, ) on
I(S) we get the conclusion of (8.9) from (8.4).

9* Regular measures on a regulated semilattice* A regulated
semilattice [2] is a triple (S, , <) where

(i) (S, •) is a semilattice with 0 in which a1 = δ1 implies a = δ,
where for E a subset of S the annihilator of E, consisting of all x
in S such that xe = 0 for all e in E, is denoted by EL.

(ii) the regulator < is a binary relation on S satisfying:

(At)
(A)
(A)
(A)
(A)

(Λ)

(A)

α < δ
0 < 0,
If α <
If α <
Given
that {<
for all
Given

implies

δ and
bSc

p <q

i,
a, δ, c

such that {δ,
If K,

ί α ^

c <
then
^ 0
any

with

dlf •
^ S

:δ,

d then
α < c,

there exist

α < δ

ί̂ 1 and

there

α* <

δd,

«i>

for

exist
, α^ =
q for

, and &!,
some iy and α,

dx,
= 0
all

• , dn and
and di < e<
i, then p 4

, δw such
< δ, < g

βi> J β w

for all i,

It was shown in [2] that a regulated semilattice (S, , <) is
characterized by the existence of a unique representation ( ^ , Π , c )
in which 6^ is a topological base of interiors of compact subsets of
a locally compact space X and A c 5 means the closure of A is in-
terior to B. We consider the following question here: Which functions
φ on S can be extended, when transferred to £f under the represen-
tation, to regular Borel measures on the locally compact space XI

The regulator <C can be extended to a binary relation on finite
sequences α0, J3O in $ by defining
(9.1) β0 < a0 to mean there exists a finite sequence 8 in S such that
δ1 S /So1 and for each d# in δ there is some a{ in α0 with dfc < α, .
In terms of the representation it is easily seen that (9.1) means

THEOREM V. Let φ be a real-valued function on a regulated
semilattice S. Under the representation of (S, , <) as (£f, Γ), c )
in a locally compact space X the function φ has a unique extension
to a regular Borel measure on X iff the following conditions hold:

(i) Φ(0) = 0
(ii) For every finite sequence a0 — {au •••,«„} in S

(9.2) (ψ, a, V V an) = sup (φ, b, V V bm)
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where the left side of (9.2) is given explicitly by the left side of (8.14)

Proof. Let φ satisfy (i) and (ii). With b, = . . . = bm = 0 in (ii)
we conclude from (i) that (9.2) is nonegative. So φ is positive definite
since (vi) of Proposition 6 holds.

For each compact subset C of X define

(9.3) φo(C) = inf (φ, a, V V an)

where A{ is the member of Sf representing the member α̂  of S. We
contend that φ0 is a regular content, hence is the restriction to com-
pact sets of a unique regular Borel measure on X. That is, we must
verify the following five conditions for compact sets C and D:

(mθ Org φo(C) < oc,
(m2) C g £> implies 0O(C) g

U D) ^
(m4) C Π D = ^ implies ^0(C) + ψo(D) g ^0(C U
(m5) ^o(C) = inf ^0(D).

DW>C

(mj and (m2) follow trivially from (9.3).

Given αx, , αm, , an in S such that
(9.4)

then

(9.5)
Φo(C U •

(φ,a

A,

Ό)

ro + 1

U ••

VII

V

5, a, V

• V o ,

=

.)

! C and

• V am V """ V a%) - ( Λ α i V ' ' ' V

since AA U U Am U U An a C U i? and ^ is positive definite.
Taking infima on the right side of (9.5) we get (m3). To verify (m4)
consider any Bu , Bk in Sf which cover C{jD. Using properties
of the base Sf and the disjointness of C, D we can find A19 , Am,
•••, An in S? such that (9.4) holds, each A{ is contained in some Bjt

and ilί Π A, = 0 for i ^ m < i <£ ^.
So

ί(«i V V α j * ( α w + 1 V V αβ) = 0 and

(αi V V an ^ b, V V &* in Z(S).

From (9.3) and (9.4) we get φo(C) ^(Φi^V- V am) and φo(D) ^
(φ, αm + 1 V V am) which yield under addition

(9.7) φo(C) + φo(D) ^ ( Λ α 1 V V α , V α , ) ^ ( A 6 1 V V i i )

by (9.6). Taking an infimum on the right side of (9.7) we get (ra4).
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To verify (m5) consider an arbitrary ε > 0. Choose a19 •••, an in
(9.3) with φo(C) > (φ, aγ V V α j — ε. Choose a compact set D
such that C c ΰ g Λ u U i r Then by (9.3) φQ(D) ^ (φ, a, V
V αΛ) < 0O(C) + ε. Hence (m5) holds. Thus ^0 is a regular content.

Let 0 be the unique regular Borel measure that extends φO'φo(C) =
φ(C) = inf̂  0(A) where C is any compact set and the infimum is
taken over all finite unions A of members of £? such that 4 3 C .
So φ0 in (9.3) is the only content which extends φ.

Conversely, if φ has an extension φ then (i) and (ii) must hold
since they state that φ(0) = 0 and φ(A) = sups=>i4^(B) for A, β finite
unions of members of S^.
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