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CONDITIONS FOR ISOMORPHISM
IN PARTIAL DIFFERENTIAL EQUATIONS

H. H. JOHNSON

This paper studies systems of linear homogeneous p. d. e.
in two independent variables with constant coefficients. For
such systems powerful algebraic tools are available to obtain
results which may indicate patterns for more general systems.
Linear isomorphism is defined, and necessary and sufficient
conditions for linear isomorphism between two systems are
found. This result is obtained from the infinite prolongation
of the systems, and two systems are isomorphic if and only
if their infinite prolongations are isomorphic. One unexpected
result is the important role played by lower-order coefficients
which do not appear in such classical notions as ellipticity,
hyperbolicity or characteristics. The classification problem
for these p. d. e. is reduced to a problem in linear algebra
involving a finite number of relations.

Usually notions such as jets, exterior forms, linear bundles, etc.,

in C°° or Cω categories are used to express our definitions. Since we

are concerned here with linear objects we shall use this opportunity

to state the definitions in terms of linear algebra.

Let z = (21, , zm) be a point in the real vector space V. We

denote d5z = idόz
ι, •••, dάz

m) where j = 1 or 2. Let a and b be real

m by m matrices. Consider systems Σ of the form d2z = dxza + zb.

The total prolongation PΣ of Σ is the system d2z = zLa + 6,

zι = dtz, d2zγ = dγzγa + zj), where zι = iz\, •••£?)• Let PV denote the

real vector space of 2m-tuples iz, zL). Observe that the equation

d2zx = d&a + zj> is dictated by 'involutiveness' from z1 = dtz, since

d2zL — d12z = djβ^a + zb). If 2 = fix1, x2) is any solution of Σ then

iz, zL) = (/, dfjdx1) is a solution of PΣ, and every solution of PΣ

arises in this way.

Similarly, P2Σ is the system on P2V = {iz, zγ, z2)}, d2z = zxa + zb,

<522i = z2a + zj>, d2z2 = dγz2a + z2b, zt = dγz, z2 = d& Then PnΣ is defined

similarly on PnV. Finally, P°°Σ is the system on z* = iz, z19 z2, •••)

b 0 0 0 0
a b 0 0 0
0 a b 0 0

= z 0 0 a b 0
00 0 0 0 a b
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0 0 0 0 0 •

/ 0 0 0 0 •

0 I 0 0 0

= z«, 0 0 I 0 0

0 0 0 I 0 .
•

\
where a, b, 0,1 denote m by m real matrices, 0 the zero and / the
identity matrices.

We shall denote by Σf a system d2y = dγyc + yd where y is a
point in the real vector space U and dimension (£7) = m\

DEFINITION 1. Two systems Σ and 2' are isomorphic if: (1)
There is a linear transformation π: PrV—> U,

π(z, zγ, , zr) = zk + s ^ + + zr&r ,

where the k3 are m by m' matrices so that the ' pull-back' of the
equations d2y = dxyc + yd in Σf are in P r2\ That is,

d2zk + + d2zrkr = (dtzk + dyZrkr)c + izk + + £r&r)d

are equations in PrΣ. Now if z = fix1, x2) is any solution of Σ then

y =fk + djk, + + d\fkr is a solution of Σf.
(2) Similarly, there is a linear transformation p:PsU—>V so

that the pull-back of 322 = d1za + £& is in PSΣ'.
(3) Finally, we require coherence in the following sense. Lett-

ing psπ:Pr+sV->PsU be defined by

psπ(z, zί9 , zr+s) = izk + + zrkr, zjt + •

we require that ρ°p8π(Zj z19 •• , zr+8) = z. This guarantees that if
z = f(x1,a?) is a solution of Σ corresponding to the solution y=g(x1, x2)
of Σr under π, then # will correspond to / under p. We also require
that πoprp(y, . . . , yr+s) = y.

It is not difficult to generalize this to nonlinear systems using
jet language. One may compare isomorphism with absolute equiva-
lence. Using [2, Prop. 1] absolutely equivalent systems can be proved
to be isomorphic.

DEFINITION 2. Two systems Σ and Σ' are infinitely isomorphic
if there exists a matrix K with countably infinite columns and rows
such that
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(1) each column has all but a finite number of elements zero;
(2) Kr1 exists satisfying (1);
(3) the transformation y^ = z^K transforms P°°Σ' to P°°Σ, that

is, P°°Σ is the system d2z~ = z^KP'K-1, d^ = z^KQ'Kr1 when P°°Σ'
i s d2yoo = VooP'f d ^ = y^Q'.

PROPOSITION 1. If Σ and Σ' are isomorphίc they are infinitely
isomorphic.

by

Proof. Prom π: PrV—> U in Defintion 1 we obtain

p~π: P~V-+P~U

p~π(zj) = (zk + + zrkr, zje + •

+ zr+1kr, , zjc + + zί+rfcr, •)

which corresponds to a matrix K with finite columns. Similarly p°°p
corresponds to a matrix H, and HK — KH = I follows from condition
(3) in Definition 1.

We now obtain an algebraic condition equivalent to infinite
isomorphism.

THEOREM 1. Two systems Σ and Σr are infinitely isomorphic if
and only if

(1) m — m',
(2) there exist m by m matrices k, k19 •••, kr such that

bk = kd ,

bkj. + ak = kc + ktd,

bk2 + akx — kγc + k2d ,

bkr krd ,

and (3) ί/ie infinite matrix

K =

Ik
hi

•

K
0
0
•

0
k
kι
•

k

o r

•

0
0
k

•

kr

•

0
0
0
k

\



404 H. H. JOHNSON

has a column-finite inverse.

Proof. Assume (1), (2) and (3) Then K defines a linear trans-
formation between P°°V and P°°U, which gives an infinite isomorphism,
since the equations in (2) are equivalent to PK = KPr, and (1) implies
Q = Q' while it is easy to check that QK = KQ.

Conversely, if if is a matrix defining an isomorphism between
P~Σ and P~Σ', then PK = KPf and QK = KQ'. Let W be the real
vector space of countably infinite column vectors whose components
are all zero except possibly a finite number. These matrices P, Q, K
can be regarded as linear transformations on W to itself.

Then K defines a linear transformation, if0, on WjQr{W) to
W/Q(W) by K0(w + Q'(W)) = K(w) + Q(W), since if w = Q'(v) then
K(w) = KQ'(v) ~ QK{v). This Ko is onto because K is onto (it has
an inverse), and Ko is one-to-one because if

K(w) = Q(v) = QK{v,) = KQ'(vd ,

then w = Q'^).
Since Tf/QίTF) is isomorphic to W/Q'(W), their dimensions are

the same. But the dimension of W/Q(W) is m, since and vector
(^IJ 2̂> •••)*> where the vf are 1 by m, may be expressed as

(^,0,0, . . . ) ' + Q(v2,vz, . . . ) ' .

Similarly for Q'. Hence m = mf.
From QiΓ = Q'K = iΓQ', if one partitions if into m by m

submatrices, it is immediate that K must have the form in (3). Then
relations (2) follow at once from PK = KP'.

THEOREM 2. If P™Σ and P°°Σ' are infinitely isomorphic, then
Σ and Σ' are isomorphic.

Proof. Let k, ku , kr be as in Theorem 1. Then π: PrV—* U
defined by π(z, zx, , zr) = zk + zjcγ + + zrkr satisfies

d2(zk + ^^i + + 2;rA:r) — dx(zk + + zrkr)c

— ( ^ + + zrkr)d

ΞΞ foα + zb)k + (2;2α + ^ 6 ) ^ + + (dγzra + r̂6)A:r

— (ZJC + 2̂̂ 1 + + «r^r-l + ^lZrkr)C — (zk + ^ A

+ + «rfcr)d (modulo P7"!7)

= z(bk — kd) + zt(ak + δfci — kc — k±d)

+ + zr(akr^ + 6fer — kr^c — krd) + 31^r(αfcr — ferc) = 0 .

Thus condition (1) of Definition 1 is satisfied.
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If H = K~ι the analogous relations for H define p: PSU—+ V
which satisfies condition (2) of Definition 1. Finally, condition (3)
follows from HK = KH = I.

COROLLARY. In order that Σ and Σ' be isomorphic it is necessary
that m — m' and b be similar to d.

Proof. The matrix K~ι exists only if krι exists, so k~xbk = d.
This last observation shows the importance of the O-order coef-

ficients, which is rather unexpected in light of the classical notions
such as characteristics which are invariants but in which b plays no
part [3, 4, 5].

Observe that if Σ and Σf are isomorphic using the relations in
Theorem 2, then from akr = krc one sees that for any eigenvector v
of c, akrv = krcv = Xkrv, so krv is an eigenvector of a belonging to
the same eigenvalue provided krv Φ 0. The author conjectures that
in all cases the eigenvalues of Σ and Σr coincide.

EXAMPLE 1. If Σ is d2z
ι = z\ d2z

2 = d.z1 and Σ' is d2y
ι = y\

•32y
2 = 0, then taking r = 0 and

* - ί ° x

\0 0
we find Σ and Σf isomorphic. The Cauchy problem for Σ with
initial data zι(x\ 0) = φ(xι) and z2(x\ 0) — ψ{%1) is well-posed, for its
solution is z1 = φ(xι) exp (af), z2 = φ\xγ) exp (x2) + ^(α;1) — φf(x1).

EXAMPLE 2. Now let Σ be d2z
ι = z2, d2z

2 = d^z1 and Σr be

dzV1 = y2' ΰ2y
2 = 0 .

These systems are not isomorphic, for Σf has solutions

t = x2ψ{xι) + φ{xι), y2 = fix1) ,

while Σ is equivalent to d^z1 = d^1, whose solution for z1(x1, 0) = 0,
z2(x\ 0) = ^(x1) requires ψ that be infinitely differentiable [l,p.27].
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