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TWO REMARKS ON ELEMENTARY EMBEDDINGS
OF THE UNIVERSE

THOMAS J. JECH

The paper contains the following two observations: 1.
The existence of the least submodel which admits a given
elementary embedding j of the universe. 2. A necessary and
sufficient condition on a complete Boolean algebra B that the
Cohen extension VB admits j .

A function j defined on the universe V is an elementary embedd-
ing of the universe if there is a submodel M such that for any
formula φ,

(*) Va?!, , xn[ψ(^u •••><) < > M 1= <p(jxlf , jxn)].

Let j be an elementary embedding of the universe. If N is a
submodel, let j N = j\N be the restriction of j to N. N admits j if

(**) N N j N is an elementary embedding of the universe.

If B is a complete Boolean algebra, let VB be the Cohen extension
of V by j?. VB admits j if

(***) VB 1= there exists an elementary embedding i of the

universe such t h a t iSj

THEOREM 1. There is a submodel L(j) which is the least submodel
which admits j . 1

THEOREM 2. The Cohen extension VB admits j if and only if the
identity mapping on j"B can be extended to a j(V) — complete
homomorphism of j(B) onto j"B.

Before giving the proof, we have a few remarks. The underlying
set theory is the axiomatic theory BG of sets and classes of Bernays
and Godel [1]. The formula ψ in (*) is supposed to have only set
variables. However, if for any class C we let j(C) = U aeonJ(C Π Va),
then (*) holds also for formulas having free class variables ("normal
formulas" of [1].) Incidentally, "j is an elementary embedding of the
universe" is expressible in the language of BG (viz.: j is an ε-isomor-
phism and VC1vC2[^7(iC1,iQ = j(^(C19 Q ) ] where j^7 are the Gδdel
operations).

1 This was observed independently by K. Hrbacek, giving a different proof.
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A submodel M is a transitive class containing all ordinals which
is a model of GB; the classes of M are all those subclasses C of M
which satisfy the condition Va(C ΓΊ VaeM). The submodel M in (*)
is unique and M = j(V). It is a known fact that if j is not the
identity then there exists a measurable cardinal. And, as proved
recently by Kunen [2], j(V) Φ V. On the other hand, if there
exists a measurable cardinal, then there exists a nontrivial elementary
of the universe (cf. Scott [6]).

The notion L(j) differs somewhat from the notion of relative
constructibility, introduced by Levy [4]; in general, L(j) 2 L[j].

A homomorphism is C-complete, if it preserves all Boolean sums
Σίe/^i where {u^ ie 1} eC. As usual, j"B is the algebra {j(u): ueB};
j(B) is an algebra, j(B) 3 j"B, and j(B) is not necessarily complete
(although jF-complete).

A similar observation as our Theorem 2 was used recently by J.
Silver in his result about extendable cardinals.

As a corollary of Theorem 2, we get the following theorem of
Levy and Solovay [5]: If tc is measurable and \B\</c, then tt is

measurable in VB.2

Let j be a fixed elementary embedding of the universe. First
we prove Theorem 1.

Let J i b e a submodel.

LEMMA 1. // jM is a class of M then M admits j .

Proof. We must show that for any formula φ,

(VΪ G M)M N (φ(x) -+jM 1=

If M 1= φ(x), then since M \= φ(x) is a normal formula, we have jV \=
(jM\= <p(j(x)) However, |= is absolute, so that M N (jM\= φ{j{x)))

LEMMA 2. If j Π M is a class of M and if M is closed under j
(i.e., j"M Q M), then M admits j .

Proof. It suffices to show that jM is a class of M. Obviously,
jM Π M = j ΓΊ M, and because M is closed under j , we have jM g M,
and 3 m = 3 M ΓΪ M - j Π M.

Now we define the model L(j):

( i ) Lo(Λ=Of

(ii) Lα(i) = \JLβ(j) if α is a limit ordinal,
β<a

2 An example of models which are not mild extensions but still admit j are the
models constructed by Kunen and Paris in [3].
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(iii) La+ί (j) = Def «.La(j), ε,j Π - M i ) » if a is even,

(iv) La+1 (j) = La(j) U [J"La(j) n ^{La{j))\ if a is odd,
(v)

(iii) means that La+1(j) consists of all subsets of La(j) which are
definable in La(j) from j n La(j). &*(La(j)) is the set of all subset
of La{j).

By standard methods it follows that La(j) is a submodel. That
La(j) satisfies the axiom of choice is proved in Lemma 4.

LEMMA 3. i = j Π L(j) is a class of L(j) and

j) = L(ί) =

Proof. By induction on a, we prove

La(j) = La(i) =

If a is a limit ordinal or a = β + 1 with β even, then the proof is
standard. Let β be odd:

x e Lβ+1 (j) ~xe Lβ(j) V [x £ Lβ(j) Axe L(j) A (ly e Lβ(j))[x = j(y)]]
- x e Lβ(i) V [x S L/,(i) Λ (3?/e L (̂i))[a? =
<-». x e Lβ+ί(i)

COROLLARY. L(j) \= V = L(i).

LEMMA 4. L(j) t= Axiom of Choice.

Proof. If V = L(i) then there is a well ordering of the universe,
definable from i; hence L(j) N Axiom of Choice.

LEMMA 5. L(j) is closed under j .

Proof, (a) If X ^ On and Xe L(j) then there exists a such that
XeLa(j) and i ( I ) g α g L f f ( i ) ; hence j(X) e La+1(j) and so i(X) G
L(i). Similarly, ίf I g 0% x Ow.

(b) If Xe L(j) is arbitrary, then since L(j) |= AC, there exists
a well founded relation i? e L(j) on ordinals which is isomorphic to
ΓC({X}), the transitive closure of {X}. Hence j(TC({X})) - TC({jX})
is isomorphic to j(R) which is well founded and by (a), jReL(j); thus

LEMMA 6. If M admits j then
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L(j) = LM(j f)M)S

Proof. Same as of Lemma 3.
Now, Theorem 1 follows.

BLet B be a complete Boolean algebra. The Cohen extension V
is the Boolean-valued model of Scott [7] or Vopenka [8]. There is a
natural embedding x \—» x of V into F * and C i—» C can be defined also
for classes, in a natural way (in (***), we should rather write i ^j).
More generally, if M is a submodel satisfying the axiom of choice and
if Be M is an ikf-complete Boolean algebra then MB is the Cohen
extension of M by B.

LEMMA 7. The condition in Theorem 2 is necessary.

Proof. Let i be such that

(1) VB |= i is an elementary embedding of the universe and i Ξ2 j .

Let G be the canonical generic ultrafilter on B, i.e.,

G e V{B), dom (G) = {ύ:ue £},
( } G(ώ) = u for all w e B.

From (1) it follows that

(3) VB t= ί(G) is an ί(F)-complete ultrafilter on ί(B), i.e.,

(4) F ΰ N ί(G) is a O'F)V-complete ultrafilter on (jB)\

Let / be the following function from j(B) into B:

f(v) = lvei(G)J.

By (4), / is a i(F)-complete homomorphism of j(B) into B and for all
u e B, f(ju) = lijuy e i(G)J = [i(u) e i(G)J = [ueG]=u. If we let h -
jof then h is a i(F)-complete homomorphism of j(B) onto j"B and
h\j"B is the identity.

LEMMA 8. T%e condition is sufficient.

Proof. Let h be a ^'(F)-complete homomorphism oί j(B) onto j"B
such that feθ"w) = i u for all u e B. We are supposed to find i such
that (1) holds. To simplify the considerations, assume that G is some
V-complete ultrafilter on B and that V[G] is the universe. (This is
possible because

VB f= V[G] is the universe,
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where G is the canonical generic ultrafilter defined in (2).)
Let i(G) = h^W'G). We have i(G) 3 i"G, and

i(G) is a j(V)-complete ultrafilter on j(B).

Let πβ: VB -> F[G] be the G-interpretation of VB:

πG(0) = 0,

Since j(B)ej(V) is an i(F)-complete Boolean algebra, i(F) i ( i 3 ) =
i(F®) is the Cohen extension of j(V) by j(B); it follows from the
definition of ί(G) that i(G) is a i(F)-complete ultrafilter on j(B).
Let ττίί?: O'F) i B-*(iF)[iG] be the i(G)-interpretation of (jV)jB and let

i(πGx) = πiG(jx), for all # e F2*.

Now we claim that i is a function, i is an elementary embedding
of V[G] into (jV)[ίG] and that i 3 j . To prove that, note that for any
formula φ and for all x e VB,

This can be proved by induction on the rank of x and on the com-
plexity of φ. In particular, if πGx = πGy, then \x — y\v

B e G, so that
[iff = i2/] j!β e i"G S i(G) and so i(ττ^) = ττίG(ix) = 7Γ^(JV) = ί(πGy). Simi-
larly, if F[G] 1= φ{πGx), then 0*F)[ΐG] t= <P(i(πσx)). If xeV, then
i(a?) = i(πGx) = 7Γίσ(ii) = i(x).

This completes the proof of Theorem 2.
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