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PRIMITIVE SUBALGEBRAS OF EXCEPTIONAL
LIE ALGEBRAS

MARTIN GOLUBITSKY AND BRUCE ROTHSCHILD

The object of this paper is to classify (up to inner auto-
morphism) the primitive, maximal rank, reductive subalgebras
of the (complex) exceptional Lie algebras. By primitive we
mean that the subalgebras correspond to (possibly discon-
nected) maximal Lie subgroups.

In [3], the corresponding classification for the (complex) classical
Lie algebras was completed, as was the classification of the non-
reductive maximal rank subalgebras of all the simple Lie algebras.

Using case by case techniques and some more general results
proved in § 1, we prove the following theorem:

THEOREM 0. The primitive maximal rank, reductive subalgebras
of the exceptional (complex, simple) Lie algebras are listed (up to
conjugacy by an inner automorphism) in the table below. Further,
all subalgebras isomorphic to one of these are conjugate by an inner
automorphism.

We note that Theorem 5.5 (p. 148) in the reductive case of
Dynkin [2] is incorrect. In particular A, P D,, A, P AP A, A, P A,
in E, A5G A4, in E; and 4,P A, in F, are not maximal subalgebras.

Algebra | Subalgebra * Reference in text

Es A D E, maximal §2 case 1, (a) (i)
Af — §2 case 1, (b) (i)
A D Es maximal §2 case 2, (a) (i)
A; — §2 case 2, (b), (i)
Al maximal §2 case 4, (i)
D? — §2 case 5, (i)
Dsg maximal §2 case 6,
As maximal §2 case 7, (i)
T Cartan subalgebra —

E A1 D Ds maximal §2 case 1, (a), (ii)
AP Dy — §2 case 1, (b), (i)
Al — §2 case 1, (b), (i)
A: P Ds maximal §2 case 2, (a), (i)
ADT! — &2 case 2, (b), (ii)
A maximal §2 case 7, (ii)
EspT! maximal §2 case 9,
T? Cartan subalgebra —
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Algebra Subalgebra * Reference in text
Es AP As maximal §2 case 1, (a) (iii)
A3 maximal §2 case 2, (b), (iii)
D:s@ T2 — § 2 case 5, (iii)
Ds® T maximal §2 case 6,
Ts Cartan subalgebra —
Fi A1 @D Cs maximal §3 case 1, (a)
Al maximal §3 case 2
Bs maximal §8 case 7
Dy algebra of longer roots §3 case 8
G2 A? maximal §4 case 1
A maximal §4 case 3

T* denotes the center of the subalgebra, where k is the dimension of the center. The
other superscripts refer to the number of summands of the corresponding algebra.

(See Table 12, p. 150 of [12]).
The authors wish to thank Robert Steinberg for several helpful
remarks.

1. Preliminaries. We now present some basic notation and a
characterization of primitivity from [3].
Let p be a maximal rank subalgebra of a simple Lie algebra g.
By maximal rank, we mean that there exists a Cartan subalgebra %
of g which is contained in p. We fix k.
Let W be the Weyl group relative to . 9 is then decomposed
by & into
»p=hoD ; €

where the @’s are roots in g determined by %, and the e,’s are the
corresponding one dimensional root spaces. p is then uniquely de-
termined by the roots ¢ for which e, cp. Let K, = {® a root of ¢
relative to & |e, C p}. Define W, = {ae W |a(K,) = K,}.

PROPOSITION 1.1. Let p be a maximal rank subalgebra of g.
Then p is primitive if and only if the following holds: If 1 is a
subalgebra of g such that p Cl, and W, W,, then p=1or [l = g.

Proof. This is just Proposition 3.2 of [3].
We will use this as our definition of primitivity.

In our notation K, is the set of all roots in g. We introduce
an operation [,] on K, x K, which is induced from the Lie algebra
structure of g. Let @,y € K,, then



PRIMITIVE SUBALGEBRAS OF EXCEPTIONAL LIE ALGEBRAS 373

0 if [e,, ey] = 0

[P 91 = LD + if les ey] = €puy .

Note that a[®, ¥] = [a(®), a(v)]Vae W. Denote by (@, v) the standard
inner product on A*, the dual space to h, given by the Cartan-
Killing form.

Now let p be reductive, i.e., p is given uniquely as the direct
sum of simple algebras and its center. Thus there exists non-
isomorphic simple Lie subalgebras of ¢: X, X,, -+, X, such that
p=Xh@.-- PX:-PDT where T is the center of p and where X}
.denotes the direct sum of all ideals of p isomorphic to X;, and k; is
the number of such ideals. Note that since X; = (AN X;) D D €0,
where the @ are unique, K,, and W, make sense.

LEMMA 1.2. Let q; = X!. Then W,C W,.

Proof. Let e W,. Let f be an inner automorphism of ¢ re-
presenting . Then f(p) = p. Also f(X;) is an ideal of p isomorphic
to X;. Thus f(X;) Cq; since all ideals of p isomorphic to X, are in
.q;. Hence f(q;) = ¢q; and ac W,.

Let z be a subalgebra of g with Cartan subalgebra #&,C A.
Assume that z is regular (in the sense of Dynkin [2]), i.e., let
K, ={pcK,|e,Cz}, then 2z = h, P Dcx,6,. Denote by K} all of the
roots in K, orthogonal to the set K,. Let k) be the subspace of %
-orthogonal to A,.

Let zt =h: D > K €pe Note that if @, + are roots of ¢ such
that [, 4] = 0, then (@, ) = 0. We then leave it to the reader to

show that
LEMMA 1.3. z' is a subalgebra of g, and K, = K;}.

THEOREM 1.4. Let p be a maximal rank, reductive subalgebra.
Let p=XAr@P- - PXPT (as described above). Let q; = XFi, and
let Y =qt. If p is primitive, then either ¥ = q, D -+ B q, or the
subalgebra, 1, generated by the vector subspace q, + Y + h is g.

Proof. Since elements of the Weyl group act as isometries,
W, = Wy,. Now [¢.D - Pgq,, q]=0, thus (¢;:P :-- Paq,, q)=0.
Hence X2 --- P X< Y, and p & [.

Now if e W, then (a) a(K,) C K, and (b) a(K,) C K,. (a) follows
from Lemma 1.2 and (b) from the above remark that X, = W,.
Now K, U K, forms a set of generators for K, (under [,]). Thus
a(K) C K, (since a acts as a “homomorphism” relative to [,]). So
we have shown that W, W,. By Proposition 1.2 and by the primi-
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tivity of p, either I =p or | =g. If I = p, then clearly Y =
X2 oo P Xk, Otherwise I = g.

Let @, + be roots in a simple Lie algebra where all of the roots
have the same length. If (®,+) =0, then [@, ] =0. Otherwise
[#, 4] = # + 4 and the length of @ + + is greater than the length
of @ or 4 since (, 4r) = 0. Hence the following.

COROLLARY 1.5. Let g be a simple Lie algebra all of whose roots
have the same length (in particular E,, E, and E). Then if » is a
primitive subalgebra, ¥ = X2 @ -+ P Xrr,

Proof. In such an algebra X1+ X + h = 1.

If I =9, then g can be decomposed into to direct sum of two
ideals, which contradicts the fact that g is simple.
As an immediate application of this corollary we get:

COROLLARY 1.6. Let g be a simple Lie algebra whose roots all
have the same length. Let p be a subalgebra of g. If K} + @, then
P is not primitive.

Note: This corollary is true even if the roots of g do not have
the same length.

2. E,, E, and E,. We first describe the roots of the algebras
E,, E, and E, (see [1]). Let 2z, 2, -+ -, 2, be the standard orthonormal
basis for the dual space to a fixed Cartan subalgebra of E,. With
respect to this basis the roots of E, are given by

Iy={xzxz|lsi1<j=<8
and

ID)g = {£1/2(z, > 2z, & - -+ & 2,) | the number of minus signs is even.}

We shall refer to these as type I roots and type II roots respectively.
The roots of type I will be denoted by =% 3 j when no confusion
arises; e.g., —=2,+ 2, is denoted by —2 + 3, etc. The roots of
Type II will be denoted by the corresponding sequences of signs, e.g.,
1/2(, + 2, — 2+ 2, — 2, — 2% — 2 + %) =(+ + — + — — — +).

We take E, and E, to be regular subalgebras of E,. The roots
of E, are all of those roots of E, orthogonal to 7 + 8. Thus

I, =U)sNEKg,={Fx1 7|1 =1<J=6}U({T— 8
(II); = (II)¢ N Kz, = {£(x * * * x x + —) |an odd number
of the » are — and the others are -+}.
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The roots of E, < E, are as follows:

D= UsNKg,={£i+j|1=j<j<5}
(II)g = (I)s N Ky, = {#=(x * * * x + 4+ —) |and odd number
of the = are — and the others are +} .

When no confusion arises, we shall write merely (I) or (II). Also,
we note that (I), generates a maximal rank subalgebra, which we
also denote by (I), (or sometimes by (I)). The algebra (I), is maximal
in E..

We note that all roots of E;, have the same length, 1”2. Thus
the Weyl group acts transitively in each of these algebras. As observed
in Corollary 3.3. of [3], the Cartan subalgebras in E, are primitive.

In order to classify the primitive, reductive, maximal rank sub-
algebras we need some information about their Weyl groups. We note
first that the reflections about roots of type I are just determined
by signed permutations of z, ---, 2. For if @ and B8 are roots, then

Sa(ﬁ):,e——z—(g’—'g—)a:ﬁ’—(a,ﬁ)a, as (a,a) =2.

(o, @)
fzi if k=3j
If «a =17— 7, then S,(z) = 42; if k=<1.
|2, otherwise
g—zi if b=y
If «a =1+ 7, then S,(z,) ={—2; if k=1

'\ 2, otherwise .

We can thus, for example, identify S, with the transposition

(22 it a=1-2 and with (L3 33008 it a=112

These reflections, then, generate signed permutations with an even
number of sign changes.

LEmMMA 2.1. (a) Any two sets of three mutually orthogonal roots
wn E, are conjugate by an inner automorphism (i.e., by a Weyl group
element).

(b) Any set of mutually orthogonal roots is conjugate by a Weyl
group element to a set of roots (mutually orthogonal) of type I.

Proof. Let «,, ,, &, be mutually orthogonal roots in E,. Since
the Weyl group acts transitively on the roots, we may assume
o, =1— 2,

Suppose «, is a root of type II. Since (a, @) =0, a, =
(4 F oxxxxxx), say (+ + xxxxxx), Let B8 = (— — *%x%x%xx%x),
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where B is taken to agree with « in the last six signs. Then
Sl —2) =1—2, Sp(a) =1 + 2. Since no root of type II is orthogonal
to both of these, (b) holds. In particular, S,;(a;) is of type I, say
1+ 7, % J# 1 or 2. Then there is some signed permutation f fixing
1 and 2, and taking ¢ + j into 8 — 4. The permutation can be taken
from Wy, or Wy, if © —j is in Kz, or K, respectively. Thus fS;
takes a,, a,, @; into 1 + 2, 3 — 4, and (a) holds.

On the other hand, if @, is a root of type I, and if a, # 1 + 2,
then we can find a signed permutation f, as above, such that f fixes
1 and 2 and f(a) =3 —4. Then let 8= (+ + 4+ — + + + —).
Si1—-2)=1-2, S58—4) =(——+ — — — — +). Thus we have
reduced the problem to the case where «, is of type II, and the
lemma is proved.

Let N, be the subgroup of the Weyl group of E, consisting of
the signed permutations. We have the following normal forms for
elements of the Weyl group:

THEOREM 2.2. Let g be a Weyl group element. Then one of the
following three cases holds:

(a) geN.,.

(b) 3feN,, ac(Il),>9 = f8S..

(¢) 3IfeN,, a,BeI),>(a,B) =0 and g = fS;S..

Proof. Any Weyl group element g has the form g =S, -+ S,,
where the «; are roots of the algebra. Recalling that S,S; = NP
we may move any S,, where a; is of type I, to the left past all
roots of type II. Thus we may assume g =S, -+ S, S, -8,
(k + 1 = n), where the B; are of type I, and the v; of type II. Let
this be a representation of ¢ so that I is minimal. Then all the v;
are mutually orthogonal. For if («, 8) =0, then S,S; = S,S,, and
thus if there are any <, and <v; not orthogonal, we may assume that
we have (v,v) = +£1 or *+2. If (v, ~v,) = *+2, then 7, = +a, and
S,S;, =1, the identity. If (v, 7) = &1, then S8, =S,Ss, 0
where S,,(v,) is a root of type I. In either case, we can decrease [,
a contradiction. Thus we may write g = fS, -« Sry where all the
v, are mutually orthogonal type II roots, and f is a signed permutation.

Two roots of type II are orthogonal if and only if they agree in
four signs, and disagree in four signs, e.g., (+ + + + + + + +)
and (+ + + + — — — —). Thus in E; it is easy to see that there
can be at most two mutually orthogonal roots of type II. Thus, for
E, the theorem is proved.

Suppose that for E, or E, we have v, v, and v, mutually
orthogonal. Then for an appropriate signed permutation - we have
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) =(+—+—+—+ —)
Bv) =(—+—++— + —)
v =(—++——+ + —).

Thus S,.S,,S,, = h™*hS, k" *hS, h*hS, h™'h = h™'Si;)Ship Sraph.  Let
B=—++—+——+. Then Sy, SuupSrirySe=(—1)+(12)(34)(56)(78) =
aeN,. Thus S,.8,S;, = h™*StpSiuySiirySeSsh = h~'aS:h. Thus g =
fh~'aSshS,, -++ S;. By the arguments above, this reduces I by two,
a contradiction. Hence I < 2. This proves the theorem.

We now proceed with the classification of the primitive, maximal
rank, reductive subalgebras, p, of E..

The general plan of attack in classifying the possible algebras p
will be to assume that X, is some particular algebra, say A, or D,
etc., and then to conjugate X, (by Weyl group elements) into a form
suitable for deciding whether or not the various maximal rank,
reductive subalgebras with X, as an ideal are primitive. Theorem 2.1
is used for the latter. The number of cases to consider is kept small
this way since there are only a few choices for X,, and, of course,
the rank of X, is limited by 8. In particular, X, cannot be B,, C,, G,
or F, since the roots of E, have only one length. Because the argu-
ments are essentially the same, we treat E,, E, and Ej together.

We consider the following cases for X;:

Ay, Ay Ay AD(L > 4, A(l > 4))E,, E; .

Case 1. X, = A,

(@) k =1. (See §1 for the definition of k).

By Corollary 1.5 and the primitivity of p,» = A, @ Y, where
Y = A}

(i) In E;let K, ={£(7+ 8)}. This can be done without loss
of generality since the Weyl group acts transitively. Then A} = E.,.
As is easily checked, A4, @ E; is maximal, and hence primitive.

(ii) In E,, let K, = {#(7 — 8)}. Since the roots of ¥ must be
orthogonal both to 7 — 8 (4,) and to 7 + 8 (since they are roots of
E)), Y must have only roots of type I. Then

Ky={+i*xj[l=1<j=6},

or Y =D, A D D, is the algebra (I);,, which is maximal, and thus
primitive.

(i In E, let K, ={+(1—2)}. Then Y = A}, and K, =
(=@ +2), £i+j, 3<1<j <5, and all type IT roots of the form
H(+ Fxxx+ 4+ —)and +(+ + xxx — — )}

We see, then, that Y= A4;. In this case p=A4,P A4; is maximal,
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and thus primitive.

by k. >1

Here we let p = AL P Y.

(i) In Ei, since each A, summand has a root orthogonal to the
others, we can assume that for the first two summands A, P A, =
Al Ky = {1 += 2}, by Lemma 2.1. Let Y=A4"7"@ Y. Then
Y < (4)*, and thus K7 < (I).

If k, =2, then K, = K31 = D,

Here we digress to prove a lemma about D, factors of reductive
subalgebras.

LemMA 2.3. D, & E, is always conjugate to the algebra with
roots {1 xJj|1l e <jg=1l}. If D, has only type I roots, and if
1> 4, then Wy, C W,,.

Proof. Let D,C E,. Let h be the Cartan subalgebra of FE.,.
Let & be the Cartan subalgebra of D,. Note that dim#i = 1. We
can choose an orthonormal basis w,, w,, +++, w;, of h so that the roots
of D, are just +w, T w;, 1 <1 <75 < 1.

Now w, + w, are orthogonal. Thus by Lemma 2.1 we can assume
{+w, + w,} = {*+1 £2} in E,. w, — w, is not orthogonal to w, + w.
nor to w, — w,. But any type II root is orthogonal either to 1 — 2
or to 1+ 2. Thus w, — w, is of type I. By use of a signed per-
mutation fixing the set {+1 + 2}, we can take w, — w, to be 2 — 3.
Clearly w, + w, then becomes 2 + 3 under this same signed permu-
tation. Thus we may assume +1 =+ 2, +2 + 3 and therefore +1 + 3
are roots of D,. Continuing in this way, we can assume =7 =+ 7,
1<i1<j<l, are roots of D,. These are all the roots of D, and
hence the first part of the lemma is proved.

Now in fact what we saw was that if D, has only type I roots,
then up to conjugacy by a signed permutation the roots of D, are
+ix7, 12i<j =L

Thus it is sufficient for establishing the last part of the lemma
to assume that the roots of D, are 1+ 7, 1<i<j<1I.

Let ge W,,. Suppose, contrary to the assertion, that g is not a
signed permutation. Then by Theorem 2.1, either ¢g = fS,, or g =
fS:S., f a signed permutation, and «, 8 roots of type II with
(o, B) = 0. In the first case, either S,(1 + 2) or S,(1 — 2) is of type
II, and thus fS.(1 + 2) or fS.(L — 2) is of type II, and hence not in
K,,, contradicting the assumption that ge W,,.

For the second case, let g = fS,S;, (@, 8) =0, and let ¢ +j¢ K,,.
As above, g(t £j)e K,, & (I). Thus S,S;(i +j) & (I). Now if «a
and B, disagree in sign in one of the ¢ or j positions, and agree in
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the other, then S,S;(¢ + j) are both in (II). (We see this by observing
S.S; = S8, and if (v,a) =0, then S,(v) =~v. 4 —j is orthogonal
to one of « and B, and ¢ + j to the other). Thus « and AR must
agree in both the ¢ and j positions, or both disagree. Changing ¢
and j, we see that a and 8 must totally agree or totally disagree
on positions 1,2, -++, 1. If I >4, this contradicts (a, 8) = 0. This
completes the proof of the lemma.

We now return to the case at hand, namely 4@ D, in E,. By
Lemma 1.2 we have W, < W,, and by Lemma 2.3, W, , & W,. But
AP D; < (I). Hence A:&D D, is not primitive, by Prop. 1.1.

This means that we may assume k, > 2. By Lemma 2.1 we
may assume that Kp = {£(1 £2), =@ — 4)}, the roots for the first
three factors A4,. Now 3 +4 is in K{». If 3+ 4¢K,, then p is
not primitive, by Corollary 1.6. If 3 + 4¢ K,, then since Y has no
summands of type A, in it, K, & (I) contains another root « such
that [3 + 4, a] # 0. But then either [-8 + 4, @]+ 0 or [3 — 4, a] # 0,
contradicting the fact that +=(3 — 4) are the roots for a direct
summand A, of p.

This all implies that %, can’t just be 3. In fact, the same kind
of reasoning implies that k, must be even if k£, > 1. k, =6 is not
possible, since, by Lemma 2.1, we can assume K, consists of six of
the following eight roots, together with their negatives: 1 + 2, 3 & 4,
546, 7+ 8. But then Kjf consists of the other two, and we have
two more summands of A,. Thus k, =4 and k, =8 are the only
possibilities. By Corollary 1.5, then, the only remaining possibilities
are A1 D, and A}, where Kgp, = {£(1 £2), =3 £4), i+,
b=i<j=8 and Kg={x(1+2), =@=*4), £(5+6) =+ (7T=x8)

We first show that A D, is not primitive by showing WA§@D4 =
Woenys Where K, 5y, = {£i£j|1,J =4 ori,j=5}. Let ge W, g4,
If g is a signed permutation, then ge Wy g,,. If g =S, f a signed
permutation, « € (II), then fS, must take one of 1+ 2 and 1— 2 into
(II), contradicting g€ WA§@D4-

If ¢ = 7S:S., (@, B) = 0 then, just as in the proof of Lemma 2.3,
a and B must totally agree or totally disagree in sign in positions
5, 6, 7, 8, say they agree. Then since (a, 8) = 0, they must totally
disagree in positions 1, 2, 3, 4. Thus S,S, are in W,q,, (by com-
putation). Since ge W,gp, f=9S:S. is in W, g, and thus in
Wo,ep, by the observations above. Hence ge W,g,,. This completes
the proof that W, g,.S Wyep,. Hence A, D, is not primitive.

A8, the last case, is primitive. We show this by noting that the
following elements are in W, (¢) (13)(24), (d) (35)(46), (e) (57)(68),
(f) arbitrary sign changes (even number), and (g) S;S,, where a =
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(++++++++)and p=(++++ — — — —). Let ¢ be an
algebra strictly containing A% and invariant under WAf. If K,
contains a root of (I) not in K,, then using (c), (d) and (e) above we
see that K, must contain all of (I). But S,S.4 + 5) is in (II), and
thus K, also has a root of type II. But then K, has all roots of
type II since (I) is a maximal subalgera, and ¢ = E;. If K, contains
a root of type II, say a, then we can assume a, = «, using (f).
Similarly, using (f) we see that (+ — — + + + + +)€ K,. But then
SeSe(+ — — ++ 4+ + +)=—-2—-3¢e¢K,, and ¢ = E; by the case
above, as this is a new root of type I. Thus the only algebra larger
than A} invariant under W,s is E;, and A} is primitive. This com-
pletes the case X, = A, for E,. (ii) In E, we may assume that the
first copy of A, is given by K, = {£(7 — 8)}, and the second by
{1 — 2)}, using Lemma 2.1. Just as k, had to be even in the E,
case above, the same argument shows that %, must be odd for E,,
and thus k =38,56 or 7, as k >1. But if k =5, then Kp =
{1 +2, +3+4, =(7— 8} up to signed permutations, and thus
K3 = {£5 & 6}, and (A)* = A2, contradicting %, = 5. Hence this
case is impossible. The only remaining possibilities are A D, and
Al, by rank considerations and Corollary 1.5.

Kpep, ={£1£2 *+i+7,351<j=<6, =(7T—28)}.

We show that A D, is primitive. Let @ = (+ — + + + + + —),
B=(-+++++ —+). Then S;S, is in Wyep. Let ¢ be a
subalgebra of E, properly containing A®@ D, and invariant under
W pep,» Suppose K, contains a root of type I not in K, sgp. Then
K, contains all of (I),, using the algebra multiplication [,] of q.
Now S;S.(2—38) e K, a root of type II. Thus, since (I), is a maximal
subalgebra of E,, ¢ = E;. On the other hand, if K, contains a root,

v, of type (II), then, since f = G _3 _gi S) is in Wyen, f(7)
must be in K,. Thus [7, f(7)]€ K, But this is one of the four roots
+2 4+ 3 which is not in KA§®D4. Thus ¢ = E, by the previous argu-
ment, and A} D, is primitive.

Now consider A!. We claim that this is primitive also,

KA7: {ilizy i3i4‘y i5i6y i(7—8)}‘

Let g be a subalgebra properly containing A7 and invariant under W,

and in particular under (c) (13)(24), (d) (35)(46), (e) G oA g) 7

and S;S., where a=(+ — + + + + + —) and B=(— + + + + + — +).
If K, contains a root of type I not in K, then using (c), (d) and
the algebra multiplication we see K, contains all of (I),. Further,
K, contains S;S,(2 — 3), which is a root of type II. Thus, since (I),
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is maximal, ¢ = E,. On the other hand, if K, has a root v, of type
II, then f(v) e K,, [V, f(M]e K, and [7, f(v)] is a root of type I not
in K,. Then the previous argument yields ¢ = E.. Thus A is
primitive.

Note. As can be seen in the last few arguments, the crucial
thing in demonstrating that a given subalgebra p is primitive is
knowing which elements of W, to use in showing that larger algebra
invariant under W, is E,. The arguments thereafter are just like
the ones above. Thus, from now on, rather than show in detail why
a given algebra is primitive, we shall simply indicate which elements
of W, one uses

(iii) In E; we can assume K = {1l =* 2}, by Corollary 1.5.
Then Kji:< (I)s. In this case, as in E;, we must have k, even, by
the same arguments. k&, = 6 is impossible since (I), doesn’t contain
KAf. Thus only A A, and A! remain. We claim that neither of
these is primitive.

Kpgs, = {£1x£2, £3 4, £4+5, £3 £5}. We show that
Wees, & W, Let ge Wi, -g cannot be of the form fS,.,f a
signed permutation and ae (II);, for either fS,(1 — 2) or fS.(1 + 2)
would be in (II);, and thus not in Ky Suppose ¢ = fS,S,,
(a, B) = 0, f a signed permutation, «, 8e(Il),. As we saw in the
proof of Lemma 2.3 (since A, = D,), 8 and « must agree in each of
positions 3, 4 and 5, or disagree in these three position. Similarly
they must agree or disagree in both positions 1 and 2. Since they
are both in (II);, they must totally agree or totally disagree in
positions 6, 7, 8. It is impossible, then, for « and B to agree in
exactly four positions, contradicting («, 8) = 0. Thus ¢ must be in
W, and WAf@A3 C Wi, So Ai A, is not primitive.

We now consider the last case, A KAi ={£1 =+ 2, £3 + 4}.
Here we show that Ws< W,, where K, = {xixj[l1=1<j =4}
and thus that A! is not primitive. Let ge W As above, g = fS,
is not possible, as fS.(K,) & (I), I ¢ =fS;S., as above, @ and B
must agree in both positions 1 and 2 or disagree in both, and
similarly for positions 8 and 4. Also, as «, e (II);, they totally
agree or totally disagree in positions 6, 7 and 8. Since (a, 8) =0,
« and @ must agree in exactly four positions, and these must be
1,2,3 and 4 or 5,6, 7 and 8. In either case, S,S; ¢ W s and S,S; e W,
(by computation). Then f = ¢S;S,e¢ W, But a signed permutation
in W is clearly also in Wp,. Thus fe W,, and g = fS;S.€ Wy,
and A! is not primitive.

Before beginning Case 2, we prove a lemma about subalgebras
A S K.



382 MARTIN GOLUBITSKY AND BRUCE ROTHSCHILD

LEMMA 2.4. Let A,C E..

@ IfIZ6 fors=8,1=4fors="T or 1l<3 for s =06, then
all A, are conjugate, and in particular conjugate to A, with K, =
{xE—-DI1l=1<j=1+ 1}

by If 1 =T for By, =5 for E, or |l =4 for E, then there
are two conjugacy classes of A, whose simple roots are respectively
+@E—(@+1), 1<isl,and =@ — @+ 1)), L<i=<1— 1, together
with =1 + (I + 1)). (Note: where we write (¢ + 1) and (I + 1) above
we mean numerical addition, of course).

Proof. Let h be the fixed Cartan subalgebra of E,. Let h, S h
be the Cartan subalgebra of A4,. We can choose vectors w,, «++, W,
in 2 such that h, is the hyperplane in the span of {w,, «--, w;,}
determined by the w;, — w;,,, 1 <1=<1. We can assume that the
w; — w;,, are the simple roots of A,, since ! < s in all cases. We
can assume w, — w, is 1 — 2, by conjugating with a Weyl group
element. If w, — w, is of type I, then a signed permutation can
conjugate {w, — w,, w, — w;} to {1 — 2,2 — 3}, If w, — w, is of type
II, it must have the form =(+ — **x=xxx). Using a signed per-
mutation, we can assume that w, — w; is (+ — + + = xxx), Let
B=(+ + — + x*x=xx%), where g8 and w, — w, agree in the last four
positions. Then S;(1 —2) =1—2, Sp(+ — + + xxx%) = —2 4 3.
Hence we can assume w,— w; is a root of type I, and (w,—w., w,— ws}=
{1 — 2,2 — 3}, Next consider w, — w,. If it is in (I),, then using a
signed permutation we can assume that w,— w,=3—4. If w,—w,¢e
(II), then since it is orthogonal to 1 — 2 and not to 2 — 3, using a
signed permutation we can assume it is (+ + — + 4+ x * x.) Letting
B8 = (+ 4+ + — + xxx), and using S;, we can assume w; — w, € (I),.
Continuing in this way yields (a).

For (b) we do the E; case, E; and FE, being entirely similar. By
() we can assume w; — w;, =t— (t+ 1) for 1 £¢<6. Now if
w, — W, is a root of type I, then since (w, — ws ¢ — (¢ + 1)) = 0 for
1<7<5, and (w, — wg, 6 — 7) %= 0, we can assume w, — wyis T—8 or 7 + §,
and if w, — w, is of type II, then it must be +=(+ + + + + + — —)
for the same reasons. Let ¢ = (+ + + + + + + +). Then S, fixes
i — (¢t + 1), 1 <6, and takes w, — w,; into a root of type I. Thus it
is reduced to the previous case. The two forms (the one with 7 — 8
and the one with 7 4+ 8) obtained here are not conjugate, since in
the first case all the roots are orthogonal to (+ + + + + + + +),
whereas in the second case no root is orthogonal to all of them.
This completes the proof of (b).

Case 2. X, = A,
@ k=1 Y= A}
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(i) In E; we can take K,, = {(6 — 7), (7 + 8), =(6 + 8)},
since by Lemma 2.4 all A4, in E; are conjugate. Then A; = E;. Now
A, P E; is maximal and thus primitive.

(i) In E, take K, = {x£(7-8), *=(++++ +—+ —),
+(+ + + + + — — +)} (by Lemma 2.4). Then A; = A;, where
K, ={x(t—13), G +6)|t#7, 1 j=1,---,5}. This is maximal,
and thus primitive.

(iii) In E,;, by Lemma 2.4, we can take

K,={£1-2), £2-3), (- 3).

Then Kj, = {£4=£5, £(+ + +e&+ + —), £(+ + +&e,— — +) |
€ F €y & = €,). Thus A = A, P A,. Either we have a summand of
A,, and Case 1 applies, another summand of A4,, violating %k, =1, or
neither and hence a root orthogonal to p, contradicting primitivity
by Corollary 1.6.

by k>1

(i) In K, let one copy of A, have K, = {£a, =3, £0} where
0 =a+ B, and let v be a root in another copy of A,. By Lemma
2.1 we can assume a =1+2, vy=1—2. Now (8,1+ 2) %0, and
(8,1 —2) = 0. Thus B must be of type II, and using a signed per-
mutation we may assume 8= (+ + + + + + + +). Since [, 8] =
0, we have 6 = (— — + + + + + +).

The roots in the second copy of A, are orthogonal to ¢ and g,
but not to 1 — 2. Thus they are +=(1 — 2), +7, +7, where 7 and
7 are of type II. Using a signed permutation, then, which fixes z,
and z,, we can assume 7)=(+ —+++———)and t=(—++++———).

Then Kjp={x@—4), (4 -5), =@ —5), =6 1), =(7T-8),
4+ (6 — 8)}, and A= A% (two more copies). Thus Y S A% If Y=~ A
then either Y = A, P Z, which is already covered by Case 1, or Y =
A, or A: If Y = A, then there is a root orthogonal to p in E
which can’t happen by Corollary 1.6. Thus Y = A2 and p = Al
This is primitive, as can be seen using the following elements of

W (46)(657)(38) and (1 3392 & T _g).

(ii) In E; we can assume that for one copy of A4, K, =
{(+x7—-8), =(+++++—4+—-), £(+++++——+)}. AF = D),
since any root of Ay & K, must be orthogonal to 7 + 8 and, in this
case, to 7 — 8. Thus, by using signed permutations, we can assume
that for the second copy of A, we have K, = {+(1 — 2), £@2 — 3),
(1 —3)}. Then Kj2 = {4 —5), £(5 + 6), =(4 + 6)}. Hence 4] is
the only possibility. A:is primitive, which can be seen using the elements

/12 345 678 12 3 4 5 6178
of W (45—612—378) and fS;S., where f—<12—3—4—5—678>

a=(+—-——++—+-),B=(H—+——++ —).
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(iii) In E; we can assume that the first copy of A, has K,, =
{1 —-2), =2 —3), =1 — 3)}, by Lemma 2.4. Then A4; = A, P 4..
As in subcase (a) (iii) of case 2, p = A} is the only possibility. This
is maximal in E; and hence primitive.

Case 3. X, = A,
@ k=1
In E, we can assume by Lemma 2.4, that

K, ={+1+2 +2+3, +1+3},

(i) In E, then Af = D, with K, ={xi+j[4=1<j <=8}
By Lemma 2.3, we have W, ep & W, & W,. Thus A;@ D; is not
primitive.

(ii) In E;, Ay = A;P A, where Kf, ={+4+5, £5+6, =(7— §)}.
Either this violates &, = 1 or it has been included in a former case.

(iii) In E; Ay = A} with Kj = {£4 = 5}. This was treated in
Case 1.

(b) k, > 1. Then k, = 2 since the rank of A} is greater than 8.

(i) In E, there are two non-conjugate ways to imbed A% in E..
We see this as follows. By Lemma 2.4 we can assume that the
first copy of A, has K, = {*(i—J)|1=<i<j=4}. Let h be the
Cartan subalgebra of the second copy of A;. We can assume the
coordinates are chosen so that the roots are given by

w; — w1l S0 <j=4).

Now w; — w; is orthogonal to the roots of the first copy of A4,. So
if w, — w, is a root of type I, by use of a signed permutation we
can assume that w, — w, is 5 — 6. If w, — w, is of type II, it must
be of the form ==(+ + + + = xxx) in order to be orthogonal to the
first copy of A,. But then conjugating by an element g which agrees
with w, — w, in all positions except 5 and 6 gives us a root of type I
while keeping fixed the first copy of A,. Thus we may assume
w, — W, =5 — 6.

Now if w,— w, is of type II, then it must be = (+ + + + &,&% %),
where ¢, and ¢, disagree, in order that it not be orthogonal to 5 — 6.
Now conjugating by a root g which agrees with w, — w, everywhere
except in positions 6 and 7 we fix the first copy of 4, and 5 — 6 as
well. w, — w, becomes a root of type I, which can be assumed to
be 6 — 7, using a signed permutation. Thus, we can assume w, — w, =
6 —1T.

Now w, — w, must be orthogonal to 5 — 6 but not to 6 — 7, and,
of course, orthogonal to the first copy of A,. If w, — w, is of type
II, then it must be of the form 4(+ + + + + + — —) or
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+(+ + + + — — + +). Conjugating by (+ + + + + + + +) or
(+ + + + — — — —), respectively, we fix 5 — 6, 6 — 7 and the first
copy of A;, while conjugating w,; — w, into a root of type I, in
particular +(7 + 8). Hence we may assume w, — w, is of type I.
There are two cases: w;, — w, =7+ 8 or 7 — 8.

Thus we have the two non-conjugate imbeddings of A? in E,
namely

Ki={t(i—j)|1<i<j=4,5<i<j=<8)
and
Ep={£( - I1=si<j=4,5=i<j=TTU{(E+8[56=5i=T}.

These are not conjugate since in the first case there is a root,
(+ + + + + + + +), orthogonal to K, whereas in the second case
there is no such root.

But then in the first case, (42)* # @, and thus p» has a factor
of lower rank, which has already been covered in Cases 1 and 2.
Thus only the second case need be considered. Here we claim that
A? is not primitive, and in fact that Wi W where

Kp={fi+j|1=i<j=45<i1<j<8}.

Let ge W, If g is a signed permutation, then clearly ge Wpe.
Suppose g = fS,, where f is a signed permutation and « e (II);. Then
S, must take all roots of A? into roots of type I, and « =
+(+++++++—) or =(+ + + + — — — +) and neither of
these is a root of E,. Thus g # fS,. Finally, then, let g = fS;S,,
(B, @) =0, f a signed permutation. But 8 and a must agree com-
pletely or disagree completely on the first four positions, by the
same reasons as were used in the proof of Lemma 2.3. Thus, as
(@, B) =0, a and R must disagree completely or agree completely,
respectively, on positions 5, 6, 7 and 8. But then S,S.e W,, and
therefore f = ¢S,S; is in W,:. We already saw that this implies
fe WDZ since a and B agree or disagree completely on 1, 2, 3 and 4.
Thus ge Wy, and A2 is not primitive.

(ii) In E; we can assume for the first copy of A, that K, =
{1+ 2, £2 + 3, =1 = 3}. Then as in Case 2, (a), (ii) above, Af =
A, P A,. Then either p = AP A, P A,, which was covered in Case 1,
or p = A; P A4, and there is a root, namely the root of A,, orthogonal
to p, and hence p isn’t primitive (Corollary 1.6).

(iliy In E; A = A%, so A? isn’t a subalgebra of Ei.

Case 4. X, = A,.
(i) In E; by Lemma 2.4, we can assume
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K, ,={£(t-9)I1=i<j=5}.

Then Kj, = {+6+7 =7+ 8, £6 = 8; all roots of type II having
the same sign in positions 1 through 5}. Thus Af = A,, and A? is
the only possibility in this case. This subalgebra is maximal, and
thus primitive.

(ii) In E;, by Lemma 2.4, we can assume

Ki,={x(t—-9[l=1<j=5}.

Then Kj, # @, and there must be another summand. This has
rank less than 4, and hence is covered by previous cases.

(iii) In E; Lemma 2.4 implies that there are two possible im-
beddings of A,, up to conjugacy. In both cases Kj, + @, and thus
we obtain only cases previously considered.

Case 5. X, = D,.

We can assume by Lemma 2.3 that K, ={tixj|[l1=1<j=4}.

(i) In By Kj, ={*+i+j|6=<i<j=<8}. Thus D =D, and
the only case not previously considered is D, @ D,. This algebra is
primitive in K, To see this we use S;S.€ Wyep, where a =
++++—-—+4+-), 8=+ ++ + — — +), and sign changes,
all of which are in W, 5p,.

(ii) In E;,, K, # @. The only possibilities here were covered
by earlier cases.

(i) In E;, K),= ©. In fact, D, is primitive in E;, which can
be seen by using S;S, from (i) above, together with sign changes
on the first five coordinates.

Case 6. D, | > 4.

By Lemma 2.3 we can assume that K,, = {1+ Jj|[1=i1<j =1}
Let p be a primitive subalgebra of E, with a D, summand. Since
K3, < (I),, we can apply Lemma 2.3 to get

W, oWy C Wy, .

Since p is primitive and p < (I),, we have that p = (I),. Thus the
only possibilities are D, in E,, D; in E;, (both are maximal and hence
primitive) and D, @ A, in E, (which is covered by a previous case).

Case 7. X, = A, | > 4.
(i) In E,, suppose I <7 and suppose

Ky={t(i—-)Il=si<j=l+1}.

Then Kj, # @, as it contains (+ + + + + + + +), and since [ > 4,
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the rank of A is less than 4, and these possibilities have been
covered by previous cases. Thus, by Lemma 2.4, we have one other
possibility, namely [ = 7 and

Ki,={x(—-)I1=i<j=TU{£(E+8|1l=:1=T},

Kj,= @. We claim that A, is not primitive. In particular, we
show W, c W,

To see this, let ge W,. Then if g is a signed permutation,
ge Wy. Let g=fSa, f a signed permutation, ae (II);. Then S,
must not take any root of K, into a root of type II. The only
possibilities are a = +(+ + + + + + + —), which is not a root.
Finally, suppose g = fS;S,, (8, @) = 0, f a signed permutation. But
B and a must either agree completely or disagree completely in all
positions, or else some root of K, would be taken by S;S. into a
root of type II, and fS,S, ¢ W,. This violates (@, 3) = 0. Hence
if ge W,,, then g is a signed permutation, and W, & Wp,.

The only other case of A, S E; is | = 8. Since A,C A,C 4,
using Lemma 2.4, we can assume that K, contains

{(FEC-DI1=i<j =T},
Then it is easy to see that this can only happen when

K ={£(—-)I1Zi<j=TTU{E+8[1=Z1=T)
U{(++ ++++++) 2+ +++ ++— )},

Then A, is maximal, and hence primitive.

(ii) In E,, A;< A, and we can assume by Lemma 2.4 that
K,c{xi+j|1=i<j=6}. Thus K; # @, as it contains 7 — 8.
Since Kj, has rank less than 4, we have already covered these
possibilities by previous cases.

Let a,, a;, -+, @; be the simple roots of 4;. By Lemma 2.4 we
can assume that for 1 <4, a;=1%¢— (¢ + 1), and «; is either 5 — 6
or 5+ 6. We have (a; a;) = 0 for ¢ <4, and (as a;) # 0. Thus a;
must be a root of type Il of the form =+(+ + + + + — + —) or
+(+ + + + + — — +) (since we are in E;), and thus «, must in
fact be 5 — 6.

Now A;D A; and hence we can assume K, = K, U {x(7 — 8)}.
A, is maximal, and thus primitive.

A, itself is not primitive, and in fact W, & W,. TFor let
ge Wy. If g is a signed permutation, then ge W, also. Suppose
g = fS. f a signed permutation, ae€ (lI),. S, must take one of
1—-2,2—-38,--+, 0r 5—6 into a root of type II, for not all of the
first six positions of a can have the same sign (in (II);). Thus we
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can assume S,(1 —2) is in (II),. Now if S,8 — 4), S.(4 —5) or
S.(6 — 6) is a root of type II, say fS.(8 — 4), then fS,(8 —4) and
fS.(1 — 2) would be two orthogonal roots of type II in A,. Such a
pair of roots does not exist. Thus S, must not take 83—4,4—5,5—6
into roots of type II. « has the same sign on positions 3, 4, 5, 6,
and must have in positions 1 and 2 different signs. There are four
possibilities:

@ =£(+—+++++-)

b) £(+————— + =)
© H(—++++++-)
@ #(—+-————+-).

We note that in all four cases, ae K,. In cases (a) and (c), a e K,
hence S.e W,,, and fe W,. By the remark above, fe W,. Since
K,cK,, SecW,. Thus ge W,.

In case (b), for ¢ =2,38,4,5, fS.(4 — (¢ + 1)) = f(2 — (¢ + 1)), and
these must not be +(7 — 8), as (7 — 8) is orthogonal to all other
roots of type I. Thus f fixes +=(7 — 8). Now f = f"f’, where f’ is
a permutation, and f” changes some signs. Clearly, if f” changes
any signs on f'(2), <+, f’(6), then it changes them all, or else some
f@ — (¢ + 1)) ¢ K. Since /" must change an even number of signs,
and f’ must fix {7, 8}, then if f” changes any signs on f’(2), -+, f'(6),
it must also change sign on either f'(1) or 7,8. In either case, f”
changes sign on {f’(1),, --+, f’(6)}={1, --+, 6}. Thus f” either changes
all signs or no signs on 1,2, ---,6. Then fe W,, and therefore
feW,. But aeK,, and thus S, and fS, are in W,.

In case (d), the argument is the same with 1 and 2 interchanged.

Finally, let g = fS,S;, (@, 8) = 0. Then since @ and B are
orthogonal, they can’t totally agree or totally disagree in sign on
1,2,83,4,5 and 6. Hence there is some root 7 — j which S,S, takes
into a type II root. We can assume S;S,(1 — 2)e (II),., Now since
all of 1 — 7, 3 <7< j £ 6 are orthogonal to 1 — 2, none of them are
taken into roots of type II, as there aren’t two orthogonal type IT
roots in K,, as noted above. Thus a and 8 must totally agree or
totally disagree in sign on 3, 4, 5 and 6. Since S,S.(1 — 2)e(II),, B
and « must agree on exactly one of positions 1 and 2. Thus « and
B totally agree or totally disagree on five positions, contradicting
(a, B) = 0. Thus g cannot be of the form fS;S,.

(iii) In E; let A,C E;. We have A,C A;,. Now by Lemma 2.4,
K, is either {z(t —j) |1 =1<j=5dlor {x(t—J)|[l=i1<j=4}U
{t+5[l=i=4}.

In the first case, there is a simple root in A, orthogonal to
1—-2,2—-3,3—4 and not to 4 — 5. This root must be of type II,
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80 it is +=(+ + + + — + + —), and A4, is the subalgebra generated
by1-2,2-3,3—4,4—5and (+ ++ + — + + —). But then
K;, contains (+ + + + + — — +), and thus we have considered
this in previous cases.

In the second case, the argument is the same.

Finally, A; cannot be imbedded in E;. For A4,C A4;, and we can
assume that K, is one of the two possibilities described above.
Then there would be a simple root a in K, orthogonal to 1 — 2,
2—3, 3—4, and 4 -5 (resp. 4+ 5), and not orthogonal to
++++—-—++—) (resp. (+++ + + — — +)). This is im-
possible in Ei.

Case 8. X, = E,.

We need only consider E,C E,. There are seven mutually
orthogonal roots of E,. By Lemma 2.1 we can assume that these
roots are all of type I. There is a root of type I orthogonal to
these seven. This root is in Kz, and thus we are done by previous

cases.

Case 9. X, = E,.

Let E,CE,, s="T7,8. D,C E,. By Lemma 2.3 we can assume
that K, ={*+i+j|1<i<j<b5}. There is no further root of
type I in E; or else either we obtain D,C E;, or we obtain five
mutually orthogonal roots in E;, both impossible. Thus all other roots
of E; are of type II. We can assume that (+ + + + + — — +) is
in K;. But then K; # @ in E;, and hence we are done by previous
cases. In E,, E; is maximal and hence primitive.

3. F,. The roots of F, are described as follows. Let 2, 2, 2, 2
be the standard orthonormal basis for the dual space to a fixed
Cartan subalgebra h of F,. With respect to this basis the roots of

F, are given by

) ={*z *xz|l=1j=4

(IID) = {—;-(izl TR zo} .

As in the case of the E,, we denote the roots of type III by the
corresponding sequence of -+ and — signs, the roots of type II by
the corresponding % — j, and the roots of type I merely by the
corresponding -+=j. Thus 1/2(z, + 2, + 2 — 2,) is denoted (+ + + —),
2 — 2, is denoted 3 — 2, 2, is denoted 4, and so on. Also, we use
(I) U (IF), (II), ete. to denote the subalgebras determined by these
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roots, when no confusion results.

We note that the roots have two lengths. Roots in (I) and (III)
have length 1, and roots in (II) have length 1" 2. The Weyl group
W of F, acts transitively on the roots of each length.

As in the case of E, above, using Theorem 1.4 we see that if p
is a maximal rank, reductive, primitive subalgebra, and if »p =
X -+ P X}, then either

(Xlkl)L = X} PP Xk, or (XA &) (‘lekl)L) +h

generates (as a subalgebra) F,

Case 1. X, = A,.

@ k =1.

By transitivity of the Weyl group on roots of each length, we
may assume that K, = {£1} or K, = {£(1 — 2)}. In the first case
Ki ={£L, (ixjl2=14,75=<4. Thus A =B, But K, UK,
generates (I) U (II), which is not K, U K nor K. Thus A, D Z
can’t be primitive, by Theorem 1.4. In the second case,

fo={£(1 +2), £3, £4, £3 £ 4, £(+ + + +),
H(+ + =) (= ) (= )}

Then A! = C,, and A4, P C, is maximal, and hence primitive.

by k = 2.

First we observe that if K, = {+a} and the other K, = {4},
then not both & and B can be shorter roots, or else [A,, A]] 0 con-
tradicting fact that the two copies of A, were ideals in p. Thus it
is sufficient to consider only three cases for «, 8 (up to conjugacy):

@ 1,2-3

@ 142 1-—2

@) 1-2 3—4.

In the first case, Kz = {4}, and the Lie algebra generated by
A D (A)*t = A2 P A, is more than A2 P A, (e.g., 1 + 4), but not all
of F, (e.g., (+ + + +)). Thus AP Z can’t be primitive.

In the second case Kj: = {+3, £4, +3 + 4}, and (4)"' = B,.. In
the third case, Ki2={£(1+2), 2@ +4), =(+ + + +), =(+ + — )},
and again (A)* = B,. Since the Weyl group is transitive on the
shorter roots, there is some element w such that w(+ + + +) = 1.
Then w(+ + — —) is a shorter root orthogonal to 1, and hence, using
a signed permutation if necessary, we may assume w(+ + — —) = 2.
Then since w(l + 2) and w(3 + 4) are orthogonal to neither 1 nor 2,
and they are orthogonal to each other, we must have w({£(3 + 4),
+(@1 + 2)}) = {£1 + 2}. Hence w takes the B, from case (3) into the
B, of case (2). Thus w takes B} into B}, which is just A4? in each
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case. Hence cases (2) and (3) are conjugate, and we only need to
consider case (2).

In this case we claim A?@ B, is not primitive. In particular
A:P B, is a subalgebra of the algebra (I)U (II), and W gz C
Wvan. For let we Wgp. Then w must preserve each summand,
and within each summand it must preserve the roots of each length.
Hence w takes {3, 44} onto itself. Also w preserves {+1 + 2}.

If w@)e(III) (and thus w(@)e(II), as w(l) and w(2) are
orthogonal), then we may assume w(l) = (++ + +), w@) =(++——),
or w?2) =(+——+). If w@ =(+ + — —), then w1 —2) =3+14,
contradicting the fact that w fixes {£3, +4}. If w@) = (+ — — +),
then w(l —2) = 2+ 3, which is not orthogonal to w(8 — 4) € {13 4-4}.
Thus neither case can occur, and w(l) and w(2) are of type I. Hence
w is a signed permutation, therefore fixing (I) U (II) as well. Thus
Wazes, © Winuun, and Az B, is not primitive.

() k, =3.

Let the three copies of K, be {+a}, {£p}, {=v}. Then at most
one of &, B, v can be a shorter root, or else two copies of A, would
have [A,, 4] = 0, as above in the k, = 2 case. Thus there are two
cases to consider (up to conjugacy) for a, B, 7:

@ 1,2-3,2+3

@2 1-2,1+2 3—4,

In the first case, K = {%4}. Then (4)' = A, and AID A,
generates as a Lie algebra B, A,. Thus there is no primitive
subalgebra in this case.

In the second case, Ki» = {*+(3 +4)}, and (4)* = A,. Here we
get A! which is treated below.

d)y k, = 4.

A contains A? as a summand, and by the %k, = 3 case we can
assume K, = {+1 £ 2, +3 +4}. But this is not primitive, since
At < (II), and W;, = WD Wa.

Case 2. X, = A,.

If K,,< (I)U (IlI), then we may assume K, ={+1, =(++ ++),
+(— + 4+ +)}. Then Kj ={+@-—3), (8 —4), =2 — 4)}. Thus
we get A, A4,. Similarly, if K, < (II), then we may assume
K, ={£@2—-3), 23 — 4), £(2 — 4)}, and then

Ki = {*1, £(+ + + +), £(— + + )} .

Hence we get in either case 4, 4, with one K, < (I)U (III) and
the other K, C (II). This algebra is maximal and thus primitive.

Case 3. X, = B,.
As we observed in Case 1 above, all B, F, are conjugate. Thus
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we can assume K ={=+1, =2, +1+2}. Then K3, = {+3, +4, =3+ 4},
and we have B, B,. But this generates (I) + (II) = B,. Thus
there are no primitive subalgebras in this case.

Case 4. X, = A,.

If K,,c(lI), then we may assume K, = {*l1+2, £2+3,
+1+ 3}. Then Kj = {£4}, and we have 4, A;,. This is covered
by Case 1. On the other hand, K,, can have at most one root (and
its negative) in (I), or else it would also have one in (II), con-
tradicting the fact that all roots of A, have the same length. Thus,
if K,,c(I)U (III), then all but at most one root (and its negative)
are in (IIT). This is impossible.

Case 5. X, = A,.
This is not contained in F, as a maximal rank subalgebra.

Case 6. X, = B,.

Just as in Case 3, there is only one way, up to conjugacy, to
have B,C F,, namely Kp = {1, =i+ j|2=1,5 <4}. Then K; =
{£1}. Thus By = A,. A,+ B, generates (I) 4 (II) = B,. Thus there
is no primitive subalgebra in this case.

Case 7. X, = B,.
As above, all B,C F, are conjugate, and we may assume K, =
(I) U (II). This is maximal, and thus primitive.

Case 8. X = D,.

K,,= (II) is the only possibility. This is primitive, since W, =
W, and W;, is transitive on shorter roots. However D, is not
maximal, since D,C B, = (I) U (II).

Case 9. X, = C..
All C, are conjugate K;, = K, as in Case 1 (a).

Case 10. X, = C,.
This is not a maximal rank subalgebra of F.,.

4. G,. Let a, a, be simple roots of G,. Then K, = {*a,
+a,, =(a, + a,), +Ca, + a,), =Ba, + a,), = (3, + 2a,)}

Case 1. p = A,.
The roots of A, are all of the same length.
The only way to imbed A, then, is as roots of longer length,
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i.e., K, ={*a, +Ba, + a;) + (3, + 2a,)}. This is maximal and
hence primitive.

Case 2. p=A,.

There are two possibilities up to conjugacy for K, = {£p},
namely, 8 = «, and B = a,, since the Weyl group acts transitively
on roots of each length, and there are two lengths of roots in K,
that of «, and that of «,.

If = a, this is not primitive, since W, & W, = W,. If
B = a, then the only root v with [v,a]=[v, —a] =0 is v=
+@a, + 2a;). Thus we have A} with K = {+a,, £@a, + 2a,)}.

Further, if fe W,, i.., f(+a) = *a,, then

0 = f(0) = flxa, 3a, + 2a] = [f(a), fBax, + 2]
= [xa, f3a, + 20)] -

Thus f(+=@Ba, + 2a,) = +(3a;, + 2a;). Hence fe W e. Thus A, is not
primitive.

Case 3. p = A

Since K. is not contained in the roots of one length, we have,
up to conjugacy, K. = {Fa, =(3a, + 2a;)} This is maximal, and
thus primitive.
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